Download citation
Download citation
link to html
In the title compound, C6H2F5N, the N atom of the amino group deviates by 0.19 (2) Å from the plane of its bonded atoms and thus has slightly pyramidal sp2 hybridization. The crystal packing is governed largely by N—H...F inter­actions and inter­action of F atoms with the perfluoro­phenyl ring (C—F...πF = 3.21 and 3.25 Å). Inter­molecular N—H...F hydrogen bonds link mol­ecules into polar sheets parallel to the (100) plane.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807023197/sg2169sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807023197/sg2169Isup2.hkl
Contains datablock I

CCDC reference: 651474

Key indicators

  • Single-crystal X-ray study
  • T = 100 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.025
  • wR factor = 0.065
  • Data-to-parameter ratio = 5.8

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT089_ALERT_3_B Poor Data / Parameter Ratio (Zmax .LT. 18) ..... 5.83
Author Response: the low data/parameter ratio results from the fact that it is a noncentrosymmetric structure of perfluorinated compound for which Friedel pairs were merged.

Alert level C PLAT150_ALERT_1_C Volume as Calculated Differs from that Given ... 604.30 Ang-3
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 27.47 From the CIF: _reflns_number_total 688 Count of symmetry unique reflns 695 Completeness (_total/calc) 98.99% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 0 Fraction of Friedel pairs measured 0.000 Are heavy atom types Z>Si present no PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 2
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 1 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Structural study of pentafluoroaniline, (I), originates from our interest in diverse interaction observed in fluorinated compounds [e.g. X(O,N,C)—H···F, F···perfluorophenyl, phenyl-perfluorophenyl] that can be exploited for crystal engineering. The crystal structure of two monofluorinated anilines have been reported recently (Chopra et al., 2006) showing no intermolecular N—H···N and N—H···F interactions as cohesive force of the crystal. No hydrogen bonds were also found in decafluorodiphenylamine structure (Grzegorczyk & Gdaniec, 2006). Hydrogen bonding to covalently bound fluorine was a subject of several reports and nowadays low propensity of 'organic' fluorine to participate in classical hydrogen bonding is well recognized (Reichenbächer et al., 2005).

The molecule of (I) is shown in Fig. 1. A l l C—F distances are within the range 1.338 (2)–1.342 (2) Å. The amino group is slightly piramidalized, N atom of the amino group deviates by 0.19 (2) Å from the plane of its substituents, and thus the N atom hybridization is intermediate between sp2 and sp3. The C1—N1 bond of 1.376 (3) Å is substantially shorter than that observed in the 1:2 pentafluoroaniline - pentafluorophenol cocrystal [1.410 (5) Å; Gdaniec, 2007]. In the latter case the amino nitrogen, which acted as an acceptor of hydrogen bonding from the phenolic OH group, had the sp3 hybridization.

The crystal packing of (I) is governed largely by N—H···F interactions and interaction of fluorine atoms with perfluorophenyl rings. The N—H···F interactions correspond to relatively strong bonding as indicated by the H···F distances and N—H···F angles (Table 1). These hydrogen bonds assemble molecules of (I) into polar sheets parallel to the (001) plane (Fig. 2a). The F···F intermolecular contacts are all longer than 3.084 (2) Å. The pentafluorophenyl rings of molecules related by an n-glide plane are arranged into stacks parallel to the [101] direction.These stacks exhibit large offset which brings atoms F2 and F6 directly above and below the centroid of the electron-defficient phenyl ring, with F···centroid distances of 3.21 and 3.25 Å, respectively (Fig. 2 b). Similar F···pentafluorophenyl ring interactions were observed in decafluorodiphenylamine (Grzegorczyk & Gdaniec, 2006).

Related literature top

For related literature on the structure of the pentafluoroaniline cocrystal and of some other fluorinated anilines, see: Gdaniec (2007), Chopra et al. (2006), Grzegorczyk & Gdaniec (2006); for a review on fluorine atom interactions, see Reichenbächer et al. (2005).

Experimental top

Pentafluoroaniline was purchased from Alfa Aesar. Single crystal used for this study was obtained by recrystallization from n-heptane at 277 K. It was mounted in a cryoloop and flash-cooled to 100 K

Refinement top

The H atoms of the amino group were located in electron-density difference maps and were freely refined. In the absence of significant anomalous scattering effects, Friedel pairs were averaged.

Structure description top

Structural study of pentafluoroaniline, (I), originates from our interest in diverse interaction observed in fluorinated compounds [e.g. X(O,N,C)—H···F, F···perfluorophenyl, phenyl-perfluorophenyl] that can be exploited for crystal engineering. The crystal structure of two monofluorinated anilines have been reported recently (Chopra et al., 2006) showing no intermolecular N—H···N and N—H···F interactions as cohesive force of the crystal. No hydrogen bonds were also found in decafluorodiphenylamine structure (Grzegorczyk & Gdaniec, 2006). Hydrogen bonding to covalently bound fluorine was a subject of several reports and nowadays low propensity of 'organic' fluorine to participate in classical hydrogen bonding is well recognized (Reichenbächer et al., 2005).

The molecule of (I) is shown in Fig. 1. A l l C—F distances are within the range 1.338 (2)–1.342 (2) Å. The amino group is slightly piramidalized, N atom of the amino group deviates by 0.19 (2) Å from the plane of its substituents, and thus the N atom hybridization is intermediate between sp2 and sp3. The C1—N1 bond of 1.376 (3) Å is substantially shorter than that observed in the 1:2 pentafluoroaniline - pentafluorophenol cocrystal [1.410 (5) Å; Gdaniec, 2007]. In the latter case the amino nitrogen, which acted as an acceptor of hydrogen bonding from the phenolic OH group, had the sp3 hybridization.

The crystal packing of (I) is governed largely by N—H···F interactions and interaction of fluorine atoms with perfluorophenyl rings. The N—H···F interactions correspond to relatively strong bonding as indicated by the H···F distances and N—H···F angles (Table 1). These hydrogen bonds assemble molecules of (I) into polar sheets parallel to the (001) plane (Fig. 2a). The F···F intermolecular contacts are all longer than 3.084 (2) Å. The pentafluorophenyl rings of molecules related by an n-glide plane are arranged into stacks parallel to the [101] direction.These stacks exhibit large offset which brings atoms F2 and F6 directly above and below the centroid of the electron-defficient phenyl ring, with F···centroid distances of 3.21 and 3.25 Å, respectively (Fig. 2 b). Similar F···pentafluorophenyl ring interactions were observed in decafluorodiphenylamine (Grzegorczyk & Gdaniec, 2006).

For related literature on the structure of the pentafluoroaniline cocrystal and of some other fluorinated anilines, see: Gdaniec (2007), Chopra et al. (2006), Grzegorczyk & Gdaniec (2006); for a review on fluorine atom interactions, see Reichenbächer et al. (2005).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: Stereochemical Workstation (Siemens, 1989). Mercury, Version 1.4 (Macrae et al., 2006); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. : Molecular structure of (I) with displacement ellipsoids shown at the 50% probability level.
[Figure 2] Fig. 2. : Crystal structure of (I): (a) (001) sheet of molecules viewed down the z axis with N—H···F hydrogen bonds shown as dashed lines and (b) F···pentafluorophenyl ring interactions (F···ring centroid distances are given in Å)
2,3,4,5,6-Pentafluoroaniline top
Crystal data top
C6H2F5NF(000) = 360
Mr = 183.09Dx = 2.012 Mg m3
Monoclinic, CcMelting point: 306 K
Hall symbol: C -2ycMo Kα radiation, λ = 0.71073 Å
a = 7.591 (2) ÅCell parameters from 1580 reflections
b = 13.311 (2) Åθ = 4–25°
c = 6.4023 (14) ŵ = 0.23 mm1
β = 110.90 (2)°T = 100 K
V = 604.3 (2) Å3Block, colorless
Z = 40.4 × 0.4 × 0.4 mm
Data collection top
Kuma KM4CCD κ geometry
diffractometer
682 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.014
Graphite monochromatorθmax = 27.5°, θmin = 4.6°
ω scansh = 99
2423 measured reflectionsk = 1417
688 independent reflectionsl = 68
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025All H-atom parameters refined
wR(F2) = 0.065 w = 1/[σ2(Fo2) + (0.0435P)2 + 0.2882P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
688 reflectionsΔρmax = 0.28 e Å3
118 parametersΔρmin = 0.17 e Å3
2 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.023 (3)
Crystal data top
C6H2F5NV = 604.3 (2) Å3
Mr = 183.09Z = 4
Monoclinic, CcMo Kα radiation
a = 7.591 (2) ŵ = 0.23 mm1
b = 13.311 (2) ÅT = 100 K
c = 6.4023 (14) Å0.4 × 0.4 × 0.4 mm
β = 110.90 (2)°
Data collection top
Kuma KM4CCD κ geometry
diffractometer
682 reflections with I > 2σ(I)
2423 measured reflectionsRint = 0.014
688 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0252 restraints
wR(F2) = 0.065All H-atom parameters refined
S = 1.08Δρmax = 0.28 e Å3
688 reflectionsΔρmin = 0.17 e Å3
118 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.4464 (3)0.90222 (15)0.6239 (4)0.0201 (5)
F20.70684 (17)0.76715 (11)0.5825 (2)0.0194 (3)
F30.6465 (2)0.56639 (11)0.5710 (2)0.0235 (4)
F40.3236 (2)0.49224 (11)0.6051 (3)0.0236 (4)
F50.06082 (18)0.62247 (10)0.6494 (2)0.0213 (3)
F60.1169 (2)0.82310 (11)0.6457 (2)0.0206 (3)
C10.4132 (3)0.80038 (18)0.6127 (4)0.0142 (5)
C20.5454 (3)0.73180 (18)0.5952 (4)0.0149 (4)
C30.5158 (3)0.62946 (17)0.5912 (4)0.0156 (5)
C40.3526 (3)0.59154 (18)0.6096 (4)0.0164 (5)
C50.2195 (3)0.6579 (2)0.6307 (4)0.0161 (5)
C60.2493 (3)0.75991 (17)0.6305 (4)0.0154 (5)
H20.341 (7)0.939 (3)0.608 (7)0.047 (11)*
H10.522 (5)0.924 (3)0.568 (6)0.025 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0221 (10)0.0125 (10)0.0274 (11)0.0006 (8)0.0110 (10)0.0010 (8)
F20.0139 (6)0.0219 (7)0.0240 (7)0.0031 (6)0.0087 (6)0.0001 (6)
F30.0205 (7)0.0192 (7)0.0333 (9)0.0070 (6)0.0127 (6)0.0011 (6)
F40.0276 (9)0.0126 (7)0.0329 (8)0.0017 (6)0.0136 (7)0.0000 (6)
F50.0170 (7)0.0224 (7)0.0275 (8)0.0047 (6)0.0115 (6)0.0005 (6)
F60.0184 (7)0.0200 (7)0.0260 (7)0.0049 (6)0.0112 (6)0.0005 (6)
C10.0151 (13)0.0140 (10)0.0128 (8)0.0006 (9)0.0043 (9)0.0003 (8)
C20.0118 (9)0.0190 (12)0.0135 (10)0.0014 (9)0.0041 (8)0.0009 (8)
C30.0151 (11)0.0158 (11)0.0160 (10)0.0039 (8)0.0056 (9)0.0001 (8)
C40.0188 (12)0.0140 (10)0.0151 (9)0.0014 (9)0.0046 (9)0.0004 (8)
C50.0140 (10)0.0196 (11)0.0146 (11)0.0036 (9)0.0052 (8)0.0004 (9)
C60.0140 (11)0.0173 (11)0.0146 (10)0.0018 (10)0.0049 (8)0.0012 (9)
Geometric parameters (Å, º) top
N1—C11.376 (3)F6—C61.341 (3)
N1—H20.91 (4)C1—C21.390 (3)
N1—H10.83 (4)C1—C61.397 (3)
F2—C21.342 (3)C2—C31.379 (3)
F3—C31.341 (3)C3—C41.381 (3)
F4—C41.339 (3)C4—C51.384 (3)
F5—C51.338 (3)C5—C61.377 (3)
C1—N1—H2113 (3)C2—C3—C4120.3 (2)
C1—N1—H1118 (2)F4—C4—C3120.3 (2)
H2—N1—H1118 (3)F4—C4—C5120.8 (2)
N1—C1—C2121.8 (2)C3—C4—C5118.9 (2)
N1—C1—C6121.8 (2)F5—C5—C6120.1 (2)
C2—C1—C6116.3 (2)F5—C5—C4119.7 (2)
F2—C2—C3119.4 (2)C6—C5—C4120.2 (2)
F2—C2—C1118.4 (2)F6—C6—C5119.4 (2)
C3—C2—C1122.2 (2)F6—C6—C1118.47 (19)
F3—C3—C2119.9 (2)C5—C6—C1122.1 (2)
F3—C3—C4119.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H2···F3i0.91 (4)2.20 (4)3.086 (3)162 (4)
N1—H1···F4ii0.83 (4)2.40 (4)3.146 (2)151 (3)
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC6H2F5N
Mr183.09
Crystal system, space groupMonoclinic, Cc
Temperature (K)100
a, b, c (Å)7.591 (2), 13.311 (2), 6.4023 (14)
β (°) 110.90 (2)
V3)604.3 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.4 × 0.4 × 0.4
Data collection
DiffractometerKuma KM4CCD κ geometry
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2423, 688, 682
Rint0.014
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.065, 1.08
No. of reflections688
No. of parameters118
No. of restraints2
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.28, 0.17

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), CrysAlis RED, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), Stereochemical Workstation (Siemens, 1989). Mercury, Version 1.4 (Macrae et al., 2006), SHELXL97.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H2···F3i0.91 (4)2.20 (4)3.086 (3)162 (4)
N1—H1···F4ii0.83 (4)2.40 (4)3.146 (2)151 (3)
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x+1/2, y+1/2, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds