Download citation
Download citation
link to html
The title compound, C8H10O2S, was prepared from the reaction of H2O2 and methyl 4-tolyl sulfane. The tolyl C atoms are coplanar, the largest deviation being 0.0143 (13) Å for the methyl C atom.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807018545/sg2165sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807018545/sg2165Isup2.hkl
Contains datablock I

CCDC reference: 647683

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.035
  • wR factor = 0.109
  • Data-to-parameter ratio = 20.2

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT031_ALERT_4_C Refined Extinction Parameter within Range ...... 3.00 Sigma PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ?
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Methyl 4-tolyl sulfone, (I), is an important intermediate in the synthesis of the herbicide Mesotrione (Yang et al., 2006) and was obtained from the reaction of hydrogen peroxide and methyl 4-tolyl sulfane. The molecular structure of (I) is illustrated in Fig. 1. Atoms C1, C2, C3, C4, C5, C6, C7 and S1 are coplanar, the largest deviation being 0.0143 (13) Å for C7. The dihedral angles between the C1—C7/S1 plane and the O1/O2/S1 and C8/01/02 planes are 52.57 (7) and 89.65 (5)o, respectively. C—H···O interactions in the crystal structure of (I) lead to the formation of hydrogen-bonded chains (Table 1 and Fig. 2).

Related literature top

For related literature, see: Bahrami (2006); Yang et al. (2006).

Experimental top

The title compound was prepared from hydrogen peroxide and methyl 4-tolyl sulfane, according to the procedure of Bahrami (2006).

Refinement top

H atoms were added at calculated positions and refined using a riding model. H atoms were given isotropic displacement parameters equal to 1.2(or 1.5 for methyl H atoms) times the equivalent isotropic displacement parameters of their parent atoms and C—H distances were restrained to 0.93 Å for those bonded to phenyl ring, 0.96 Å for those bonded to methyl.

Structure description top

Methyl 4-tolyl sulfone, (I), is an important intermediate in the synthesis of the herbicide Mesotrione (Yang et al., 2006) and was obtained from the reaction of hydrogen peroxide and methyl 4-tolyl sulfane. The molecular structure of (I) is illustrated in Fig. 1. Atoms C1, C2, C3, C4, C5, C6, C7 and S1 are coplanar, the largest deviation being 0.0143 (13) Å for C7. The dihedral angles between the C1—C7/S1 plane and the O1/O2/S1 and C8/01/02 planes are 52.57 (7) and 89.65 (5)o, respectively. C—H···O interactions in the crystal structure of (I) lead to the formation of hydrogen-bonded chains (Table 1 and Fig. 2).

For related literature, see: Bahrami (2006); Yang et al. (2006).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The structure of (I), shown with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. View showing the C—H···O hydrogen bonding. [Symmetry code: (i) -x + 1, -y + 2, -z (ii) -x + 1, +y + 1/2, -z + 1/2].
Methyl 4-tolyl sulfone top
Crystal data top
C8H10O2SF(000) = 360
Mr = 170.23Dx = 1.336 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 5.7272 (2) Åθ = 9.9–13.9°
b = 7.9162 (2) ŵ = 0.33 mm1
c = 18.7857 (5) ÅT = 298 K
β = 96.514 (1)°Prismatic, colorless
V = 846.20 (4) Å30.25 × 0.20 × 0.20 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
1773 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.021
Graphite monochromatorθmax = 28.2°, θmin = 2.2°
ω/2θ scansh = 77
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1010
Tmin = 0.922, Tmax = 0.937l = 2525
11134 measured reflections3 standard reflections every 60 min
2041 independent reflections intensity decay: 0.3%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.109 w = 1/[σ2(Fo2) + (0.0572P)2 + 0.1531P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
2041 reflectionsΔρmax = 0.26 e Å3
101 parametersΔρmin = 0.24 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.009 (3)
Crystal data top
C8H10O2SV = 846.20 (4) Å3
Mr = 170.23Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.7272 (2) ŵ = 0.33 mm1
b = 7.9162 (2) ÅT = 298 K
c = 18.7857 (5) Å0.25 × 0.20 × 0.20 mm
β = 96.514 (1)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1773 reflections with I > 2σ(I)
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
Rint = 0.021
Tmin = 0.922, Tmax = 0.9373 standard reflections every 60 min
11134 measured reflections intensity decay: 0.3%
2041 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 1.09Δρmax = 0.26 e Å3
2041 reflectionsΔρmin = 0.24 e Å3
101 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2439 (2)0.81084 (15)0.06740 (6)0.0696 (4)
O20.6068 (2)0.9756 (2)0.09536 (7)0.0791 (4)
S10.35964 (7)0.95683 (5)0.099533 (19)0.05110 (17)
C10.3139 (3)0.96216 (17)0.19100 (8)0.0435 (3)
C30.4491 (3)1.0388 (2)0.31124 (9)0.0556 (4)
H30.56351.08730.34410.067*
C20.4838 (3)1.0346 (2)0.23968 (9)0.0525 (4)
H40.61951.07990.22450.063*
C40.2490 (3)0.97301 (18)0.33535 (8)0.0502 (4)
C50.0814 (3)0.9003 (2)0.28502 (9)0.0560 (4)
H70.05440.85480.30010.067*
C60.1123 (3)0.8943 (2)0.21331 (8)0.0524 (4)
H80.00110.84510.18040.063*
C80.2140 (4)1.1359 (2)0.06245 (9)0.0653 (5)
H9A0.04841.12480.06530.098*
H9B0.24161.14670.01320.098*
H9C0.27201.23440.08850.098*
C70.2132 (4)0.9822 (3)0.41361 (10)0.0734 (5)
H10A0.34711.03510.43990.110*
H10B0.19490.87020.43170.110*
H10C0.07481.04720.41900.110*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0963 (10)0.0634 (7)0.0455 (6)0.0132 (6)0.0075 (6)0.0105 (5)
O20.0540 (7)0.1354 (13)0.0490 (7)0.0164 (7)0.0107 (5)0.0012 (7)
S10.0517 (3)0.0644 (3)0.0364 (2)0.01429 (15)0.00173 (15)0.00173 (14)
C10.0433 (7)0.0488 (7)0.0374 (7)0.0055 (5)0.0004 (5)0.0011 (5)
C30.0642 (10)0.0577 (9)0.0428 (8)0.0133 (7)0.0026 (7)0.0056 (6)
C20.0491 (8)0.0612 (9)0.0466 (9)0.0106 (6)0.0029 (6)0.0016 (6)
C40.0619 (9)0.0470 (7)0.0417 (8)0.0026 (6)0.0067 (7)0.0011 (6)
C50.0465 (8)0.0677 (9)0.0544 (9)0.0056 (7)0.0084 (6)0.0030 (7)
C60.0424 (7)0.0647 (9)0.0482 (8)0.0039 (6)0.0031 (6)0.0050 (7)
C80.0828 (12)0.0649 (10)0.0474 (9)0.0176 (9)0.0042 (8)0.0067 (7)
C70.0960 (15)0.0810 (12)0.0448 (10)0.0068 (11)0.0151 (9)0.0005 (8)
Geometric parameters (Å, º) top
O1—S11.4313 (13)C4—C71.509 (2)
O2—S11.4344 (14)C5—C61.379 (2)
S1—C81.7487 (17)C5—H70.9300
S1—C11.7677 (15)C6—H80.9300
C1—C61.381 (2)C8—H9A0.9600
C1—C21.382 (2)C8—H9B0.9600
C3—C41.381 (2)C8—H9C0.9600
C3—C21.381 (2)C7—H10A0.9600
C3—H30.9300C7—H10B0.9600
C2—H40.9300C7—H10C0.9600
C4—C51.393 (2)
O1—S1—O2118.25 (9)C6—C5—C4121.47 (15)
O1—S1—C8108.01 (9)C6—C5—H7119.3
O2—S1—C8108.88 (10)C4—C5—H7119.3
O1—S1—C1108.45 (7)C5—C6—C1119.16 (14)
O2—S1—C1107.85 (7)C5—C6—H8120.4
C8—S1—C1104.55 (7)C1—C6—H8120.4
C6—C1—C2120.72 (14)S1—C8—H9A109.5
C6—C1—S1120.45 (11)S1—C8—H9B109.5
C2—C1—S1118.83 (12)H9A—C8—H9B109.5
C4—C3—C2121.76 (14)S1—C8—H9C109.5
C4—C3—H3119.1H9A—C8—H9C109.5
C2—C3—H3119.1H9B—C8—H9C109.5
C3—C2—C1119.06 (15)C4—C7—H10A109.5
C3—C2—H4120.5C4—C7—H10B109.5
C1—C2—H4120.5H10A—C7—H10B109.5
C3—C4—C5117.83 (14)C4—C7—H10C109.5
C3—C4—C7120.72 (16)H10A—C7—H10C109.5
C5—C4—C7121.45 (16)H10B—C7—H10C109.5
O1—S1—C1—C629.76 (14)S1—C1—C2—C3179.88 (12)
O2—S1—C1—C6158.93 (13)C2—C3—C4—C50.4 (2)
C8—S1—C1—C685.30 (14)C2—C3—C4—C7178.81 (16)
O1—S1—C1—C2149.93 (12)C3—C4—C5—C60.2 (2)
O2—S1—C1—C220.76 (15)C7—C4—C5—C6178.95 (16)
C8—S1—C1—C295.02 (14)C4—C5—C6—C10.1 (2)
C4—C3—C2—C10.2 (2)C2—C1—C6—C50.3 (2)
C6—C1—C2—C30.2 (2)S1—C1—C6—C5179.98 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H9B···O2i0.962.503.363 (2)150
C3—H3···O1ii0.932.593.4665 (19)158
Symmetry codes: (i) x+1, y+2, z; (ii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC8H10O2S
Mr170.23
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)5.7272 (2), 7.9162 (2), 18.7857 (5)
β (°) 96.514 (1)
V3)846.20 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.33
Crystal size (mm)0.25 × 0.20 × 0.20
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.922, 0.937
No. of measured, independent and
observed [I > 2σ(I)] reflections
11134, 2041, 1773
Rint0.021
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.109, 1.09
No. of reflections2041
No. of parameters101
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.24

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), CAD-4 EXPRESS, XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H9B···O2i0.962.503.363 (2)149.5
C3—H3···O1ii0.932.593.4665 (19)157.6
Symmetry codes: (i) x+1, y+2, z; (ii) x+1, y+1/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds