Download citation
Download citation
link to html
4-Hy­droxy­pyridine-2,6-di­carb­oxy­lic acid (chelidamic acid, hypydc[H]H2) reacts with MnCl2·2H2O in the presence of piperazine in water to afford the title complex, {[Mn3(C7H2NO5)2(H2O)8]·3H2O}n or {[Mn3(hypydc)2(H2O)8]·3H2O}n. This compound is a one-dimensional coordination polymer, with the twofold symmetric repeat unit containing three metal centres. Two different coordination geometries are observed for the two independent MnII metal centres, viz. a distorted penta­gonal bipyramid and a distorted octa­hedron. The 4-oxidopyridine-2,6-di­carboxyl­ate anions and two of the water mol­ecules act as bridging ligands. The zigzag-like geometry of the coordination polymer is stabilized by hydrogen bonds. O-H...O and C-H...O hydrogen bonds and water clusters consolidate the three-dimensional network structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270113025006/sf3207sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113025006/sf3207Isup2.hkl
Contains datablock I

CCDC reference: 960121

Introduction top

In recent years, the rational design and synthesis of discrete polymeric coordination architectures have attracted great inter­est because of their inter­esting topologies and useful properties. In these fields, the selection of particular ligands as building blocks is usually a key factor in the structures of the resulting complexes. Of the different ligands that can be used, multidentate N- or O-donors have attracted considerable attention due to their varying coordination modes. Generally, chelidamic acid (hypydc[H]) tends to react as a polyfunctional ligand with metal salts to yield insoluble polynuclear materials, and it is also well known to act as a bridging ligand in pertinent metal complexes. A large number of coordination polymers containing chelidamic acid ligands have been reported (Ghosh et al., 2005; Zou, Luo et al., 2010; Zou, Peng et al., 2010; Zou et al., 2009). The polymerization mechanism is determined by the coordination modes of the ligands, as well as by hydrogen bonding between the monomeric units. Over the past few decades, the crystal engineering of coordination polymers has been of particular inter­est due to their structural versatility, unique properties and applications in different areas of science. Therefore, much research has been focused on controlling the structure and topology of coordination polymers. In this regard, the effects of several physical or chemical factors, such as temperature, solvent, ligand flexibility, influence of metal ions and pH have been successfully considered. Undoubtedly, helical coordination polymers are the most fascinating one-dimensional motif because of their structural similarities to the building blocks of life, such as DNA and the polypeptide chains of proteins. In these biological systems, it is well known that function arises from conformation (Notash et al., 2012; Brammer et al., 2004; Bo et al., 2008). In the present paper, and in other work published recently by our research group, ligand flexibility plays a basic role in the final structure of the polymers obtained (see Fig. 1).

Recently, Eshtiagh-Hosseini & Mirzaei (2012) reported the preparation of a dinuclear MnII complex with chelidamic acid as the heterocyclic carb­oxy­lic acid, by the help of proton transfer from chelidamic acid to the chloride anion and/or 2-amino­pyrimidine present in the solution. This complex, {[Mn2(hypydc[H])2(H2O)4].4H2O}n, is a one-dimensional coordination polymer with two symmetry-independent heptacoordinated Mn atoms, both in a distorted penta­gonal bipyramidal environment. Both the 4-hy­droxy-2,6-di­carboxyl­ato­pyridine ligands and the water molecules act as bridging ligands. The staircase-like geometry of the coordination polymer is stabilized by intra- and inter­molecular ππ stacking inter­action. A centrosymmetric o­cta­mer of noncoordinated water molecules fills the voids and connects the polymeric chains through hydrogen bonds. Following our inter­est in the coordination chemistry of proton-transfer systems obtained from N- and O-donor ligands and polycarb­oxy­lic acids (Mirzaei et al., 2011), we have now reacted manganese(II) chloride dihydrate with chelidamic acid and piperazine in a 1:2:4 molar ratio in aqueous solution. Colourless prismatic crystals of the title compound, (I), were obtained via slow solvent evaporation of the reaction mixture. Its composition is very close to that reported by Eshtiagh-Hosseini & Mirzaei (2012) for the {[Mn2(hypydc[H])2(H2O)4].4H2O}n complex.

Experimental top

Synthesis and crystallization top

The reaction of MnCl2.2H2O (12 mg, 0.075 mmol), piperazine (26 mg, 0.30 mmol) and hypydc[H]H2 (30 mg, 0.15 mmol) in deionized water (10 ml) afforded colourless cubic crystals of the title compound upon slow evaporation of the solvent from the reaction mixture at room temperature. Analysis, found (calculated for C14H26Mn3N2O21): C 23.66 (23.25), H 3.61 (3.62), N 3.63% (3.87%).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. Water H atoms were found in a difference Fourier map and refined isotropically. C-bound H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.95 Å and Uiso(H)= 1.2Ueq(C) for aromatic C—H groups. The maximum and minimum residual electron-density peaks are 0.89 and 0.73 e Å-3, respectively.

Results and discussion top

The structure of (I) consists of repeating units of trinuclear MnII related by inversion centres and two-fold axes. Atom Mn1 adopts a hexacoordinated o­cta­hedral geometry, while Mn2 is heptacoordinated penta­gonal bipyramidal (Fig. 2). Two other trinuclear coordination polymers, [Cu3(C7H2NO5)2]n.3nH2O and [CuAg2(C7H2NO5)2]n, generated from chelidamic acid have been reported (Zou, Peng et al., 2010).

The polymer structure of (I) can be described as a chain of repetitions of three MnII cations, [–Mn1–Mn2–Mn1–]. Atom Mn2 is located on a two-fold axis, while adjacent pairs of Mn1 atoms are centrosymmetrically related (Fig. 2).

Each hypydc3- anion is coordinated to Mn1 as a tridentate chelate and, in addition, each of the ligating carboxyl­ate O atoms bridges to an adjacent Mn atom, one to Mn1 and the other to Mn2. A water molecule also bridges Mn1 and Mn2. The equatorial NO4 coordination plane of Mn1 is completed by a symmetry-related carboxyl­ate O atom, while the two axial positions are occupied by water molecules. The o­cta­hedral Mn2 environment is completed by two water molecules in a cis arrangement.

In a similar reaction condition, Eshtiagh-Hosseini & Mirzaei (2012) reacted MnII chloride and chelidamic acid in the presence of two basic ligands, 2-amino­pyrimidine and 2-amino-4-methyl­pyrimidine (in a 1:2:4 molar ratio), in an aqueous solution to afford two polymeric complexes, {[Mn2(hypydc[H])2(H2O)4].4H2O}n and [Mn4(hypydc[H])4(H2O)10].3.34H2O (see Fig. 1). The different basic ligands utilized in the two reactions lead to the formation of two different structures. As is obvious in Fig. 1, by altering the auxiliary ligand and fixing other parameters, such as the coordinating ligand, pH, metallic centre source and molar ratio, we were able to produce three different coordination polymers. Inter­estingly, in all three reactions, after deprotonating the acid ligands, the basic ligands do not enter the crystalline lattice. In (I), charge balance is attained by deprotonation of the hydroxyl group in the 4-position. An O atom of the hydroxyl group and the water molecules axially coordinated to the Mn1 centres inter­act with each other via hydrogen bonds, propagating one-dimensional zigzag-like chains in two dimensions (Fig. 3, Table 2).

The water molecules play a significant role in the expansion of the three-dimensional network of (I). Hexameric water clusters (H2O)6 are created by the water molecules coordinated to Mn1 and Mn2 and two uncoordinated water molecules. These water clusters act as a glueing factor, linking the polymeric chains along the b axis. The polymeric chains are further connected to each other along the c axis, via O—H···O and C—H···O inter­actions between an uncoordinated water molecule and a carboxyl­ate and a C—H group from the hypydc3- anions (Table 2).

In polymer (I), there are two intra­molecular inter­actions, with H···A distances of 1.84 (4) and 2.04 (4) Å. Hydrogen bonds cause the formation of heterosynthons such as S(6), R44(13), R32(8) and R22(7) (Bernstein et al., 1995), which increase the stability of the crystalline network (Fig. 4).

Related literature top

For related literature, see: Bernstein et al. (1995); Bo et al. (2008); Brammer (2004); Eshtiagh-Hosseini & Mirzaei (2012); Ghosh et al. (2005); Mirzaei et al. (2011); Notash et al. (2012); Zou et al. (2009); Zou, Luo, Li, Tang, Xing, Peng & Guo (2010); Zou, Peng, Wen, Zeng, Xing & Guo (2010).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA (Stoe & Cie, 2005); data reduction: X-AREA (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. Reaction scheme for three analogous complexes. [Added text OK?]
[Figure 2] Fig. 2. A view of the repeat unit of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (a) 1 - x, y, 1/2 - z; (b) 1/2 - x, 3/2 - y, 1 - z.]
[Figure 3] Fig. 3. A partial view of the hydrogen-bonded strip of (I) (see Table 2). A cyclic hydrogen-bonded motif, viz. R42(12), is formed. Hydrogen bonds are indicated by dashed lines.
[Figure 4] Fig. 4. A view of the C—H···O and O—H···O hydrogen bonds in polymer (I). Hydrogen bonds are indicated by dashed lines.
catena-Poly[[di-µ2-aqua-hexaaquabis(µ3-4-oxidopyridine-2,6-dicarboxylato)trimanganese(II)] trihydrate] top
Crystal data top
[Mn3(C7H2NO5)2(H2O)8]·3H2OF(000) = 1468
Mr = 723.19Dx = 1.859 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 11.156 (2) ÅCell parameters from 3478 reflections
b = 14.659 (3) Åθ = 2.3–29.1°
c = 15.887 (3) ŵ = 1.54 mm1
β = 96.07 (3)°T = 120 K
V = 2583.5 (9) Å3Block, colourless
Z = 40.27 × 0.25 × 0.23 mm
Data collection top
Stoe IPDS 2T
diffractometer
3478 independent reflections
Radiation source: fine-focus sealed tube2816 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
Detector resolution: 0.15 pixels mm-1θmax = 29.1°, θmin = 2.3°
rotation method scansh = 1215
Absorption correction: numerical
shape of crystal determined optically
k = 2020
Tmin = 0.681, Tmax = 0.718l = 2121
10298 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.039P)2 + 6.117P]
where P = (Fo2 + 2Fc2)/3
3478 reflections(Δ/σ)max < 0.001
225 parametersΔρmax = 0.89 e Å3
0 restraintsΔρmin = 0.73 e Å3
Crystal data top
[Mn3(C7H2NO5)2(H2O)8]·3H2OV = 2583.5 (9) Å3
Mr = 723.19Z = 4
Monoclinic, C2/cMo Kα radiation
a = 11.156 (2) ŵ = 1.54 mm1
b = 14.659 (3) ÅT = 120 K
c = 15.887 (3) Å0.27 × 0.25 × 0.23 mm
β = 96.07 (3)°
Data collection top
Stoe IPDS 2T
diffractometer
3478 independent reflections
Absorption correction: numerical
shape of crystal determined optically
2816 reflections with I > 2σ(I)
Tmin = 0.681, Tmax = 0.718Rint = 0.048
10298 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.89 e Å3
3478 reflectionsΔρmin = 0.73 e Å3
225 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.36914 (3)0.73674 (2)0.42522 (2)0.01410 (10)
Mn20.50000.62106 (3)0.25000.01295 (12)
O10.54200 (15)0.71787 (11)0.35205 (10)0.0149 (3)
O20.72986 (16)0.76526 (13)0.33967 (11)0.0204 (4)
O30.77451 (15)1.01512 (11)0.56725 (10)0.0149 (3)
O40.31850 (15)0.80217 (11)0.55390 (10)0.0153 (3)
O50.36727 (15)0.91453 (12)0.64747 (11)0.0175 (3)
O60.31107 (18)0.85040 (13)0.34424 (12)0.0198 (4)
O70.42150 (17)0.60531 (13)0.47596 (12)0.0199 (4)
O80.32102 (15)0.65326 (12)0.29041 (11)0.0156 (3)
O90.52009 (18)0.51457 (13)0.34499 (12)0.0195 (4)
O100.00000.44449 (19)0.25000.0226 (5)
O110.9566 (3)0.8385 (2)0.3335 (4)0.0803 (16)
N10.52220 (17)0.81985 (13)0.48515 (12)0.0129 (4)
C10.6352 (2)0.76621 (16)0.37481 (14)0.0141 (4)
C20.6252 (2)0.82861 (15)0.44875 (14)0.0125 (4)
C30.7137 (2)0.89153 (15)0.47464 (15)0.0141 (4)
H30.78520.89490.44710.017*
C40.6970 (2)0.95074 (15)0.54235 (14)0.0128 (4)
C50.5906 (2)0.93861 (16)0.58166 (15)0.0147 (4)
H50.57640.97480.62920.018*
C60.5074 (2)0.87417 (15)0.55087 (14)0.0132 (4)
C70.3885 (2)0.86337 (15)0.58808 (14)0.0132 (4)
H6A0.356 (4)0.874 (3)0.316 (3)0.041 (11)*
H6B0.287 (3)0.897 (2)0.370 (2)0.022 (8)*
H7A0.376 (4)0.569 (3)0.498 (3)0.044 (11)*
H7B0.448 (3)0.574 (3)0.444 (2)0.030 (10)*
H8A0.262 (4)0.625 (3)0.307 (3)0.060 (14)*
H8B0.298 (3)0.688 (3)0.252 (2)0.036 (10)*
H9A0.587 (4)0.511 (3)0.370 (2)0.040 (11)*
H9B0.489 (4)0.463 (3)0.333 (2)0.035 (10)*
H100.044 (4)0.481 (3)0.287 (3)0.054 (13)*
H11A0.904 (6)0.813 (4)0.334 (3)0.072 (17)*
H11B0.920 (6)0.855 (4)0.292 (4)0.086*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.01057 (17)0.01546 (17)0.01758 (18)0.00431 (13)0.00764 (13)0.00428 (13)
Mn20.0123 (2)0.0142 (2)0.0133 (2)0.0000.00552 (18)0.000
O10.0125 (8)0.0171 (8)0.0166 (8)0.0042 (6)0.0077 (6)0.0046 (6)
O20.0142 (8)0.0266 (9)0.0223 (9)0.0074 (7)0.0107 (7)0.0085 (7)
O30.0115 (8)0.0157 (8)0.0183 (8)0.0044 (6)0.0048 (6)0.0025 (6)
O40.0106 (7)0.0180 (8)0.0185 (8)0.0050 (6)0.0072 (6)0.0049 (6)
O50.0157 (8)0.0193 (8)0.0193 (8)0.0060 (7)0.0107 (7)0.0071 (7)
O60.0211 (9)0.0193 (9)0.0201 (9)0.0008 (7)0.0071 (7)0.0040 (7)
O70.0163 (9)0.0229 (9)0.0222 (9)0.0017 (7)0.0101 (7)0.0051 (8)
O80.0101 (8)0.0191 (8)0.0185 (8)0.0006 (7)0.0064 (6)0.0053 (7)
O90.0153 (9)0.0195 (9)0.0233 (9)0.0020 (7)0.0005 (7)0.0034 (7)
O100.0284 (15)0.0200 (12)0.0204 (13)0.0000.0080 (11)0.000
O110.0220 (13)0.0297 (14)0.193 (5)0.0127 (11)0.030 (2)0.020 (2)
N10.0111 (9)0.0147 (9)0.0141 (9)0.0031 (7)0.0068 (7)0.0027 (7)
C10.0132 (10)0.0154 (10)0.0148 (10)0.0006 (8)0.0065 (8)0.0010 (8)
C20.0113 (10)0.0149 (10)0.0124 (10)0.0014 (8)0.0062 (8)0.0014 (8)
C30.0107 (10)0.0169 (10)0.0157 (10)0.0040 (8)0.0063 (8)0.0022 (8)
C40.0098 (10)0.0141 (10)0.0147 (10)0.0023 (8)0.0029 (8)0.0011 (8)
C50.0127 (10)0.0159 (10)0.0166 (11)0.0033 (9)0.0065 (8)0.0043 (8)
C60.0117 (10)0.0141 (10)0.0147 (10)0.0017 (8)0.0060 (8)0.0004 (8)
C70.0121 (10)0.0138 (10)0.0148 (10)0.0022 (8)0.0062 (8)0.0004 (8)
Geometric parameters (Å, º) top
Mn1—O12.3707 (17)O6—H6B0.85 (4)
Mn1—O4i2.2279 (17)O7—H7A0.84 (4)
Mn1—O42.3795 (17)O7—H7B0.77 (4)
Mn1—O62.162 (2)O8—H8A0.84 (5)
Mn1—O72.146 (2)O8—H8B0.82 (4)
Mn1—O82.4758 (19)O9—H9A0.81 (4)
Mn1—N12.228 (2)O9—H9B0.84 (4)
Mn2—O12.1682 (17)O10—H100.91 (4)
Mn2—O1ii2.1682 (17)O11—H11A0.70 (6)
Mn2—O82.2119 (17)O11—H11B0.78 (6)
Mn2—O8ii2.2119 (17)N1—C21.346 (3)
Mn2—O9ii2.1664 (19)N1—C61.337 (3)
Mn2—O92.1664 (19)C1—C21.502 (3)
O1—C11.279 (3)C2—C31.382 (3)
O2—C11.246 (3)C3—H30.9500
O3—C41.312 (3)C3—C41.410 (3)
O4—Mn1i2.2279 (17)C4—C51.409 (3)
O4—C71.273 (3)C5—H50.9500
O5—C71.247 (3)C5—C61.378 (3)
O6—H6A0.78 (4)C6—C71.517 (3)
O1—Mn1—O4138.38 (6)C7—O4—Mn1i131.33 (14)
O1—Mn1—O868.37 (6)Mn1—O6—H6A121 (3)
O4i—Mn1—O1150.32 (6)Mn1—O6—H6B115 (2)
O4i—Mn1—O470.32 (7)H6A—O6—H6B100 (4)
O4i—Mn1—O883.17 (6)Mn1—O7—H7A125 (3)
O4—Mn1—O8153.25 (6)Mn1—O7—H7B113 (3)
O6—Mn1—O190.36 (7)H7A—O7—H7B101 (4)
O6—Mn1—O496.73 (7)Mn1—O8—H8A94 (3)
O6—Mn1—O4i93.37 (7)Mn1—O8—H8B111 (3)
O6—Mn1—O880.92 (7)Mn2—O8—Mn1103.69 (7)
O6—Mn1—N190.04 (8)Mn2—O8—H8A138 (3)
O7—Mn1—O182.88 (7)Mn2—O8—H8B98 (3)
O7—Mn1—O4i86.39 (7)H8A—O8—H8B110 (4)
O7—Mn1—O496.84 (7)Mn2—O9—H9A114 (3)
O7—Mn1—O6165.49 (8)Mn2—O9—H9B119 (3)
O7—Mn1—O884.65 (7)H9A—O9—H9B113 (4)
O7—Mn1—N199.47 (8)H11A—O11—H11B80 (6)
N1—Mn1—O169.32 (6)C2—N1—Mn1121.27 (15)
N1—Mn1—O469.71 (6)C6—N1—Mn1120.47 (15)
N1—Mn1—O4i140.01 (7)C6—N1—C2117.39 (19)
N1—Mn1—O8136.58 (7)O1—C1—C2115.67 (19)
O1—Mn2—O1ii98.24 (9)O2—C1—O1124.7 (2)
O1—Mn2—O8ii86.96 (7)O2—C1—C2119.6 (2)
O1ii—Mn2—O8ii76.92 (7)N1—C2—C1114.54 (19)
O1ii—Mn2—O886.96 (7)N1—C2—C3123.5 (2)
O1—Mn2—O876.92 (7)C3—C2—C1122.0 (2)
O8ii—Mn2—O8155.36 (10)C2—C3—H3120.3
O9ii—Mn2—O1ii87.28 (7)C2—C3—C4119.3 (2)
O9—Mn2—O187.28 (7)C4—C3—H3120.3
O9ii—Mn2—O1172.21 (7)O3—C4—C3122.5 (2)
O9—Mn2—O1ii172.21 (7)O3—C4—C5121.1 (2)
O9—Mn2—O8ii109.02 (7)C5—C4—C3116.5 (2)
O9ii—Mn2—O8ii88.95 (7)C4—C5—H5120.1
O9—Mn2—O888.95 (7)C6—C5—C4119.8 (2)
O9ii—Mn2—O8109.02 (7)C6—C5—H5120.1
O9ii—Mn2—O987.79 (11)N1—C6—C5123.5 (2)
Mn2—O1—Mn1108.68 (7)N1—C6—C7115.3 (2)
C1—O1—Mn1118.42 (14)C5—C6—C7121.2 (2)
C1—O1—Mn2132.79 (15)O4—C7—C6115.44 (19)
Mn1i—O4—Mn1109.68 (7)O5—C7—O4126.2 (2)
C7—O4—Mn1117.40 (14)O5—C7—C6118.4 (2)
Mn1—O1—C1—O2177.23 (19)O7—Mn1—O1—Mn275.31 (8)
Mn1—O1—C1—C21.9 (3)O7—Mn1—O1—C1107.98 (18)
Mn1i—O4—C7—O54.3 (4)O7—Mn1—O4—Mn1i83.66 (9)
Mn1—O4—C7—O5168.29 (19)O7—Mn1—O4—C7109.04 (17)
Mn1—O4—C7—C610.9 (3)O7—Mn1—O8—Mn273.25 (8)
Mn1i—O4—C7—C6174.88 (15)O7—Mn1—N1—C286.65 (18)
Mn1—N1—C2—C110.0 (3)O7—Mn1—N1—C6104.24 (18)
Mn1—N1—C2—C3168.00 (18)O8—Mn1—O1—Mn211.73 (7)
Mn1—N1—C6—C5168.49 (18)O8—Mn1—O1—C1164.98 (18)
Mn1—N1—C6—C78.9 (3)O8—Mn1—O4—Mn1i8.01 (18)
Mn2—O1—C1—O21.5 (4)O8—Mn1—O4—C7159.28 (16)
Mn2—O1—C1—C2177.63 (15)O8—Mn1—N1—C25.6 (2)
O1—Mn1—O4—Mn1i170.64 (7)O8—Mn1—N1—C6163.55 (15)
O1—Mn1—O4—C722.1 (2)O8—Mn2—O1—Mn112.54 (7)
O1—Mn1—O8—Mn211.20 (6)O8ii—Mn2—O1—Mn1173.76 (8)
O1—Mn1—N1—C28.02 (17)O8—Mn2—O1—C1163.5 (2)
O1—Mn1—N1—C6177.13 (19)O8ii—Mn2—O1—C12.3 (2)
O1ii—Mn2—O1—Mn197.46 (8)O8ii—Mn2—O8—Mn162.13 (5)
O1ii—Mn2—O1—C178.6 (2)O9—Mn2—O1—Mn177.02 (8)
O1ii—Mn2—O8—Mn1110.88 (8)O9ii—Mn2—O1—Mn1127.8 (5)
O1—Mn2—O8—Mn111.70 (7)O9ii—Mn2—O1—C156.2 (6)
O1—C1—C2—N14.9 (3)O9—Mn2—O1—C1106.9 (2)
O1—C1—C2—C3173.1 (2)O9—Mn2—O8—Mn175.75 (8)
O2—C1—C2—N1176.0 (2)O9ii—Mn2—O8—Mn1163.05 (7)
O2—C1—C2—C36.0 (4)N1—Mn1—O1—Mn2178.28 (9)
O3—C4—C5—C6176.0 (2)N1—Mn1—O1—C15.02 (16)
O4i—Mn1—O1—Mn25.64 (17)N1—Mn1—O4—Mn1i178.73 (10)
O4—Mn1—O1—Mn2167.62 (7)N1—Mn1—O4—C711.44 (16)
O4—Mn1—O1—C115.7 (2)N1—Mn1—O8—Mn224.88 (13)
O4i—Mn1—O1—C1177.66 (16)N1—C2—C3—C40.3 (4)
O4i—Mn1—O4—Mn1i0.0N1—C6—C7—O41.9 (3)
O4i—Mn1—O4—C7167.3 (2)N1—C6—C7—O5177.3 (2)
O4i—Mn1—O8—Mn2160.24 (8)C1—C2—C3—C4177.5 (2)
O4—Mn1—O8—Mn2167.83 (10)C2—N1—C6—C51.0 (3)
O4i—Mn1—N1—C2177.64 (15)C2—N1—C6—C7178.4 (2)
O4—Mn1—N1—C2179.51 (19)C2—C3—C4—O3176.4 (2)
O4i—Mn1—N1—C68.5 (2)C2—C3—C4—C52.4 (3)
O4—Mn1—N1—C610.39 (16)C3—C4—C5—C62.8 (3)
O6—Mn1—O1—Mn291.81 (8)C4—C5—C6—N11.1 (4)
O6—Mn1—O1—C184.89 (17)C4—C5—C6—C7176.1 (2)
O6—Mn1—O4—Mn1i91.18 (9)C5—C6—C7—O4179.4 (2)
O6—Mn1—O4—C776.11 (17)C5—C6—C7—O50.1 (3)
O6—Mn1—O8—Mn2105.22 (8)C6—N1—C2—C1179.4 (2)
O6—Mn1—N1—C282.35 (18)C6—N1—C2—C31.4 (3)
O6—Mn1—N1—C686.77 (18)
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O10i0.952.483.418 (3)169
O6—H6A···O10iii0.78 (4)2.26 (4)3.042 (2)173 (4)
O6—H6B···O3iv0.85 (4)1.81 (4)2.657 (3)173 (3)
O7—H7A···O3v0.84 (4)1.84 (4)2.654 (2)164 (4)
O8—H8A···O5i0.84 (5)1.78 (5)2.610 (2)169 (5)
O9—H9A···O3vi0.81 (4)1.79 (4)2.590 (3)170 (4)
O9—H9B···O11v0.84 (4)1.87 (4)2.678 (4)162 (4)
O10—H10···O5i0.91 (4)2.04 (4)2.934 (3)168 (4)
O11—H11A···O20.70 (6)2.07 (6)2.759 (3)167 (6)
O11—H11B···O11vii0.78 (6)2.54 (7)2.920 (11)111 (6)
Symmetry codes: (i) x+1/2, y+3/2, z+1; (iii) x+1/2, y+1/2, z; (iv) x+1, y+2, z+1; (v) x1/2, y1/2, z; (vi) x+3/2, y+3/2, z+1; (vii) x+2, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Mn3(C7H2NO5)2(H2O)8]·3H2O
Mr723.19
Crystal system, space groupMonoclinic, C2/c
Temperature (K)120
a, b, c (Å)11.156 (2), 14.659 (3), 15.887 (3)
β (°) 96.07 (3)
V3)2583.5 (9)
Z4
Radiation typeMo Kα
µ (mm1)1.54
Crystal size (mm)0.27 × 0.25 × 0.23
Data collection
DiffractometerStoe IPDS 2T
diffractometer
Absorption correctionNumerical
shape of crystal determined optically
Tmin, Tmax0.681, 0.718
No. of measured, independent and
observed [I > 2σ(I)] reflections
10298, 3478, 2816
Rint0.048
(sin θ/λ)max1)0.685
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.089, 1.01
No. of reflections3478
No. of parameters225
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.89, 0.73

Computer programs: X-AREA (Stoe & Cie, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O10i0.952.483.418 (3)168.9
O6—H6A···O10ii0.78 (4)2.26 (4)3.042 (2)173 (4)
O6—H6B···O3iii0.85 (4)1.81 (4)2.657 (3)173 (3)
O7—H7A···O3iv0.84 (4)1.84 (4)2.654 (2)164 (4)
O8—H8A···O5i0.84 (5)1.78 (5)2.610 (2)169 (5)
O9—H9A···O3v0.81 (4)1.79 (4)2.590 (3)170 (4)
O9—H9B···O11iv0.84 (4)1.87 (4)2.678 (4)162 (4)
O10—H10···O5i0.91 (4)2.04 (4)2.934 (3)168 (4)
O11—H11A···O20.70 (6)2.07 (6)2.759 (3)167 (6)
O11—H11B···O11vi0.78 (6)2.54 (7)2.920 (11)111 (6)
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x+1/2, y+1/2, z; (iii) x+1, y+2, z+1; (iv) x1/2, y1/2, z; (v) x+3/2, y+3/2, z+1; (vi) x+2, y, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds