Download citation
Download citation
link to html
In both 2-amino-6-meth­oxy-4-(4-methyl­anilino)-5-nitroso­py­rimidine, C12H13N5O2, (I), and ethyl N-[4-(1-adamantylamino)-2-amino-5-nitroso­pyrimidin-6-yl]-3-amino­propionate, C19H28N6O3, (II), the nitroso­pyrimidine unit is planar and the bond distances provide evidence for significant polarization of the electronic structures. In (II), the eth­oxy­carbonyl fragment of the mol­ecule is disordered over two sets of sites with occupancies of 0.910 (4) and 0.090 (4). In the mol­ecules of both compounds, there is an intra­molecular N-H...O hydrogen bond. The mol­ecules of (I) are linked into a chain of rings by a combination of N-H...O and C-H...O hydrogen bonds, while the mol­ecules of (II) are linked by a two-centre N-H...N hydrogen bond and a three-centre N-H...(N,O) hydrogen bond to form sheets containing four distinct types of ring.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270112017921/sf3170sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112017921/sf3170Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112017921/sf3170IIsup3.hkl
Contains datablock II

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S0108270112017921/sf3170Isup4.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S0108270112017921/sf3170IIsup5.cml
Supplementary material

CCDC references: 879464; 879465

Comment top

5-Nitrosopyrimidines constitute versatile intermediates for the design and synthesis of fused polycyclic pharmaceutical targets such as purines, pteridines and nucleoside analogues (Hurst, 1980). Here, we report the structures of two such nitrosopyrimidine derivatives, the title compounds (I) (Fig. 1) and (II) (Fig. 2), both prepared using nucleophilic displacement of methoxy substituents by amino units, following a recently reported procedure (Marchal et al., 2010).

Within the molecules of (I) and (II), the pyrimidine rings are planar. The maximum deviations of the ring atoms from the mean planes through atoms N1–C6 (Figs. 1 and 2) are 0.007 (3) Å for atom N3 in (I) and 0.026 (2) Å for atom C5 in (II). Similarly, the nitroso groups are effectively coplanar with the pyrimidine rings: atom O51 deviates from the pyrimidine mean plane by only 0.053 (2) Å in (I) and 0.001 (2) Å in (II). Indeed, in (I), the only significant deviation from planarity of the entire molecular skeleton is exhibited by the aryl ring, which makes a dihedral angle of 5.0 (2)° with the adjacent pyrimidine ring. This ring planarity in (I) and (II) may be contrasted with the non-planarity often observed for pyrimidine rings bearing adjacent bulky substituents at the 4-, 5- and 6-positions, where such rings are often, but not always, markedly non-planar, leading to a variety of ring conformations including boat forms (Quesada et al., 2004; Low et al., 2007; Trilleras et al., 2007; Cobo et al., 2008), twist-boat forms (Melguizo et al., 2003; Quesada et al., 2003; Cobo et al., 2008) and a screw-boat form (Low et al., 2007), as well as a range of intermediate forms.

The ethoxycarbonyl unit in (II), encompassing atoms O63, O64, C65 and C66 and the associated H atoms (Fig. 2), is disordered over two sets of atomic sites, with refined occupancies of 0.910 (4) and 0.090 (4). The difference between the two orientations corresponds to a rotation of ca 25° about the C62—C63 bond, while the dispositions of the ethyl groups relative to the rest of the side chain also differ (Fig. 2, Table 1).

Each compound contains an intramolecular N—H···O hydrogen bond (Table 2) having the nitroso O atoms as the acceptor in an S(6) motif (Bernstein et al., 1995). The formation of this hydrogen bond may be linked to the planarity of the nitrosopyrimidine unit in each compound. There are also two further short intramolecular contacts in (II), both involving atom N61 (Table 2), but their D—H···A angles are far too small for them to be regarded as hydrogen bonds (Wood et al., 2009). Nonetheless, the associated molecular conformation (Fig. 2) effectively prevents atom N61 from playing any role in the supramolecular assembly in (II).

Some of the bond distances in the molecules of (I) and (II) (Table 1) are of particular interest. In (I), the four independent N—C distances in the N21/C2/N3/C4/N41 fragment all have very similar values, lying in the range 1.328 (4)–1.332 (4) Å, despite the fact that the exocyclic N—C bonds are formally single bonds while the ring bonds are formally of aromatic type. On the other hand, the N1—C6 bond is significantly shorter, and N1—C2 significantly longer, than the other N—C bonds in the molecule of (I), while the C4—C5 and C5—C6 bonds are both long for their type (Allen et al., 1987). At the same time, the difference between the C5—N51 and N51—O51 distances is only 0.074 (4) Å, whereas in simple neutral compounds where there is no possibility of significant electronic delocalization these distances normally differ by at least 0.20 Å (Talberg, 1977; Schlemper et al., 1986) and the NO distance rarely exceeds 1.25 Å (Davis et al., 1965; Bauer & Andreassen, 1972; Talberg, 1977; Schlemper et al., 1986).

In combination, these observations point to significant polarization of the electronic structure of (I), with delocalized charges as in (Ia) (see scheme). Rather similar remarks apply to the bond distances in (II), except that the difference between the C5—N51 and N51—O51 bond distances is even smaller in (II), at only 0.043 (3) Å, than it is in (I), while the N1—C6 and C5—N51 distances in (II) are identical within experimental uncertainty, suggesting that forms (IIa) and (IIb) (see scheme) both contribute to the overall electronic structure of (II).

In (I), the supramolecular assembly is determined by two intermolecular hydrogen bonds, one each of N—H···N and C—H···O types (Table 2). The N21—H21A bond plays no part in the assembly as there are no other potential acceptors within plausible hydrogen-bonding distance of atom N21. In particular, N—H···π(arene) interactions are absent from the crystal structure of (I). Atom N21 in the molecule at (x, y, z) forms, via atom H21B, a nearly linear hydrogen bond to atom N51 in the molecule at (x, -1 + y, z), so generating a C(7) chain running parallel to the [010] direction. In addition, atom C46 at (x, y, z) acts as hydrogen-bond donor to atom O51, also in the molecule at (x, - 1 + y, z), so forming a second chain motif parallel to [010], this time of C(8) type and modestly reinforcing the action of the N—H···N hydrogen bond. The combination of these two interactions generates a chain of R22(11) rings (Fig. 3). There are no C—H···π(arene) hydrogen bonds or aromatic ππ stacking interactions in the crystal structure of (I), so that the supramolecular aggregation is one-dimensional.

By contrast, the supramolecular assembly in (II) leads to a two-dimensional hydrogen-bonded structure. While both N—H bonds of the NH2 group in (II) participate in intermolecular hydrogen bonding (Table 2), atom N61 is, as noted above, effectively prevented from participation by the adjacent substituents. Amino atom N21 in the molecule at (x, y, z) forms, via atom H21B, a nearly linear hydrogen bond to ring atom N1 in the molecule at (1 - x, 1 - y, 1 - z), so forming a centrosymmetric R22(8) dimer motif centred at (1/2, 1/2, 1/2). It is convenient to consider this dimeric unit as the basic building block in the structure of (II). The R22(8) motif is a very common feature in the supramolecular assembly of amino-substituted pyrimidines (Rodríguez et al., 2008), sometimes giving simple dimeric aggregates (Quesada et al., 2004), sometimes linear tetrameric aggregates (Bowes et al., 2003) and sometimes continuous chains of edge-fused rings (Low et al., 2002; Glidewell et al., 2003; Melguizo et al., 2003; Rodríguez et al., 2008)

Amino atom N21 at (x, y, z) also forms, via atom H21A, a planar three-centred N—H···(N,O) hydrogen bond to nitroso atoms N51 and O51 in the molecule at (x, 1/2 - y, -1/2 + z). This interaction directly links the R22(8) dimer centred at (1/2, 1/2, 1/2) to the four symmetry-related dimers centred at, respectively, (1/2, 0, 0), (1/2, 1, 0), (1/2, 0, 1) and (1/2, 1, 1), thereby forming a hydrogen-bonded sheet lying parallel to (100) (Fig. 4). Within this sheet, there are four different ring types, S(6), R21(3), R22(8) and R66(30).

Related literature top

For related literature, see: Allen et al. (1987); Bauer & Andreassen (1972); Bernstein et al. (1995); Bowes et al. (2003); Cobo et al. (2008); Davis et al. (1965); Glidewell et al. (2003); Hurst (1980); Low et al. (2002, 2007); Marchal et al. (2010); Melguizo et al. (2003); Quesada et al. (2003, 2004); Rodríguez et al. (2008); Schlemper et al. (1986); Talberg (1977); Trilleras et al. (2007); Wood et al. (2009).

Experimental top

For the synthesis of (I), 4-toluidine (2.0 mmol) was added to a suspension of 2-amino-4,6-dimethoxy-5-nitrosopyrimidine (1.00 mmol) in water (10 ml), and the mixture was stirred at ambient temperature and monitored by thin-layer chromatography (TLC) on silica gel, using dichloromethane–methanol (9:1 v/v) as eluent, until no starting material was detected. The resulting precipitate was collected by filtration, washed with water and dried in a vacuum desiccator in the presence of potassium hydroxide pellets to provide (I) as a brown solid (yield 97%, m.p. 488–490 K). Crystals of (I) suitable for single-crystal X-ray diffraction were grown by slow evaporation, at ambient temperature and exposed to air, of a solution in methanol. MS (EI, 70 eV): 259 (M+, 88), 242 (100), 197 (25), 172 (13), 158 (15), 91 (17). HR–MS (EI), found: 259.1067; C12H13N5O2 requires: 259.1069.

For the preparation of (II), a solution containing 6-(adamantan-1-yl)amino-2-amino-5-nitroso-pyrimidine (0.2 mmol), β-alanine ethyl ester hydrochloride (0.4 mmol) and diisopropylethylamine (2.0 mmol) in dimethylformamide (1 ml) was heated at 363 K. The reaction was monitored by TLC on silica gel, using dichloromethane–methanol (9:1 v/v) as eluent, until no starting material was detected. The solution was cooled to ambient temperature and water (20 ml) was added dropwise under continuous stirring until a fine solid appeared as a suspension. This red solid was collected by filtration, washed with water and dried in a vacuum desiccator in the presence of potassium hydroxide pellets (yield 88%, m.p. 418–420 K). Crystals of (II) suitable for single-crystal X-ray diffraction were grown by slow evaporation, at ambient temperature and exposed to air, of a solution in acetonitrile. MS (EI, 70 eV): 388 (M+, 34), 371 (13), 343 (15), 301 (19), 273 (25), 135 (100). HR–MS (EI), found: 388.2223; C19H28N6O3 requires: 388.2226.

Refinement top

It was apparent from an early stage in the refinement of (II) that the ester group was disordered. This unit was subsequently modelled using two sets of atomic sites, denoted A and B for the major and minor orientation components, respectively (Fig. 2), such that the two components differ by their orientation about the C62—C63 bond. The directly bonded interatomic distances and the one-angle nonbonded distances in the minor components were restrained to be equal to the corresponding distances in the major component, subject to s.u. values of 0.005 and 0.01 Å, respectively. The anisotropic displacement parameter components for pairs of partially occupied atomic sites occupying similar regions of space were constrained to be equal. Subject to these conditions, the site-occupancy factors refined to 0.910 (4) and 0.090 (4), respectively. All H atoms were located in difference maps, apart from those in the minor orientation component of (II), which were added in calculated positions. H atoms bonded to C atoms were then treated as riding in geometrically idealized positions, with C—H = 0.95 (aromatic), 0.98 (CH3), 0.99 (CH2) or 1.00 Å (aliphatic C—H), and with Uiso(H) = kUeq(C), where k = 1.5 for the methyl groups, which were permitted to rotate but not to tilt, and 1.2 for all other C-bound H atoms. H atoms bonded to N atoms were permitted to ride at the positions located in the difference maps, with Uiso(H) = 1.2Ueq(N), giving ranges of N—H distances of 0.88–1.02 Å for (I) and 0.91–0.96 Å for (II) (Table 2).

Computing details top

For both compounds, data collection: COLLECT (Nonius, 1999); cell refinement: DIRAX/LSQ (Duisenberg et al., 2000); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The molecular structure of (II), showing the atom-labelling scheme. The major and minor orientation components, denoted A and B, respectively, have refined site occupancies of 0.910 (4) and 0.090 (4). Displacement ellipsoids are drawn at the 30% probability level.
[Figure 3] Fig. 3. A stereoview of part of the crystal structure of (I), showing the formation of a chain of R22(11) hydrogen-bonded rings parallel to [010]. For the sake of clarity, H atoms bonded to C atoms but not involved in the motif shown have been omitted.
[Figure 4] Fig. 4. A stereoview of part of the crystal structure of (II), showing the formation of a hydrogen-bonded sheet parallel to (100). For the sake of clarity, only the major orientation component is included, and H atoms bonded to C atoms have all been omitted.
(I) 2-Amino-6-methoxy-4-(4-methylanilino)-5-nitrosopyrimidine top
Crystal data top
C12H13N5O2Z = 2
Mr = 259.27F(000) = 272
Triclinic, P1Dx = 1.427 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.975 (2) ÅCell parameters from 2765 reflections
b = 7.4704 (10) Åθ = 2.9–27.5°
c = 12.161 (4) ŵ = 0.10 mm1
α = 102.90 (2)°T = 120 K
β = 92.64 (3)°Needle, brown
γ = 101.144 (19)°0.31 × 0.17 × 0.14 mm
V = 603.4 (3) Å3
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
2249 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode1607 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.079
Detector resolution: 9.091 pixels mm-1θmax = 25.5°, θmin = 2.9°
ϕ and ω scansh = 88
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 99
Tmin = 0.960, Tmax = 0.986l = 1414
12902 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.203H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.1102P)2 + 0.523P]
where P = (Fo2 + 2Fc2)/3
2249 reflections(Δ/σ)max = 0.001
174 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
C12H13N5O2γ = 101.144 (19)°
Mr = 259.27V = 603.4 (3) Å3
Triclinic, P1Z = 2
a = 6.975 (2) ÅMo Kα radiation
b = 7.4704 (10) ŵ = 0.10 mm1
c = 12.161 (4) ÅT = 120 K
α = 102.90 (2)°0.31 × 0.17 × 0.14 mm
β = 92.64 (3)°
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
2249 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1607 reflections with I > 2σ(I)
Tmin = 0.960, Tmax = 0.986Rint = 0.079
12902 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0670 restraints
wR(F2) = 0.203H-atom parameters constrained
S = 1.07Δρmax = 0.37 e Å3
2249 reflectionsΔρmin = 0.36 e Å3
174 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.3124 (4)0.4838 (3)0.4001 (2)0.0249 (6)
C20.4249 (4)0.3550 (4)0.3585 (2)0.0223 (7)
N30.5858 (4)0.3819 (3)0.3043 (2)0.0235 (6)
C40.6450 (4)0.5515 (4)0.2851 (2)0.0215 (7)
C50.5399 (4)0.7013 (4)0.3247 (2)0.0230 (7)
C60.3716 (4)0.6502 (4)0.3820 (2)0.0231 (7)
N210.3639 (4)0.1857 (3)0.3773 (2)0.0286 (7)
H21A0.23050.16140.40950.034*
H21B0.43540.07990.35480.034*
N410.8010 (4)0.5909 (3)0.2287 (2)0.0239 (6)
H410.83560.70860.22380.029*
C410.9353 (4)0.4794 (4)0.1827 (2)0.0232 (7)
C421.0956 (4)0.5695 (4)0.1397 (3)0.0261 (7)
H421.11130.69940.14190.031*
C431.2346 (5)0.4720 (4)0.0931 (3)0.0282 (7)
H431.34420.53670.06390.034*
C441.2164 (5)0.2807 (4)0.0882 (3)0.0275 (7)
C451.0528 (5)0.1948 (4)0.1314 (3)0.0270 (7)
H451.03660.06460.12890.032*
C460.9119 (5)0.2873 (4)0.1781 (3)0.0262 (7)
H460.80140.22220.20630.031*
C471.3662 (5)0.1737 (5)0.0387 (3)0.0343 (8)
H47A1.35300.05730.06480.051*
H47B1.49820.25060.06320.051*
H47C1.34500.14340.04420.051*
N510.5875 (4)0.8800 (3)0.3143 (2)0.0296 (7)
O510.7389 (3)0.9282 (3)0.2644 (2)0.0376 (7)
O610.2721 (3)0.7846 (3)0.41860 (18)0.0277 (6)
C610.1092 (5)0.7378 (4)0.4839 (3)0.0315 (8)
H61A0.01770.62500.44020.047*
H61B0.04120.84250.50070.047*
H61C0.15850.71410.55490.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0272 (14)0.0176 (13)0.0317 (14)0.0094 (10)0.0048 (11)0.0052 (10)
C20.0267 (16)0.0136 (14)0.0287 (16)0.0078 (11)0.0027 (13)0.0060 (12)
N30.0261 (14)0.0159 (13)0.0305 (14)0.0078 (10)0.0040 (11)0.0066 (10)
C40.0249 (16)0.0169 (14)0.0239 (15)0.0074 (11)0.0018 (12)0.0047 (11)
C50.0269 (16)0.0161 (15)0.0283 (16)0.0084 (12)0.0034 (13)0.0063 (12)
C60.0267 (16)0.0163 (15)0.0273 (16)0.0100 (12)0.0006 (13)0.0031 (12)
N210.0327 (15)0.0175 (14)0.0399 (16)0.0110 (11)0.0115 (12)0.0090 (11)
N410.0249 (14)0.0147 (13)0.0354 (15)0.0079 (10)0.0070 (11)0.0091 (10)
C410.0267 (16)0.0209 (16)0.0234 (15)0.0096 (12)0.0025 (12)0.0041 (12)
C420.0284 (17)0.0197 (16)0.0328 (17)0.0081 (12)0.0050 (13)0.0086 (13)
C430.0265 (17)0.0271 (17)0.0311 (17)0.0041 (13)0.0032 (13)0.0079 (13)
C440.0294 (17)0.0263 (16)0.0266 (16)0.0102 (13)0.0014 (13)0.0024 (13)
C450.0311 (17)0.0165 (15)0.0341 (17)0.0090 (12)0.0042 (14)0.0036 (12)
C460.0278 (16)0.0202 (15)0.0317 (17)0.0066 (12)0.0043 (13)0.0069 (13)
C470.0298 (18)0.0316 (19)0.0410 (19)0.0119 (14)0.0055 (15)0.0026 (15)
N510.0360 (16)0.0179 (13)0.0393 (16)0.0096 (11)0.0107 (12)0.0111 (11)
O510.0443 (15)0.0189 (12)0.0562 (16)0.0109 (10)0.0236 (12)0.0155 (11)
O610.0317 (12)0.0166 (11)0.0402 (13)0.0136 (9)0.0104 (10)0.0087 (9)
C610.0318 (18)0.0209 (16)0.048 (2)0.0152 (13)0.0153 (15)0.0099 (14)
Geometric parameters (Å, º) top
N1—C61.303 (4)C42—H420.9500
N1—C21.382 (4)C43—C441.398 (4)
C2—N211.328 (4)C43—H430.9500
C2—N31.332 (4)C44—C451.383 (5)
N3—C41.331 (4)C44—C471.503 (4)
C4—N411.332 (4)C45—C461.380 (4)
C4—C51.460 (4)C45—H450.9500
C5—N511.347 (4)C46—H460.9500
C5—C61.424 (4)C47—H47A0.9800
C6—O611.336 (3)C47—H47B0.9800
N21—H21A1.0248C47—H47C0.9800
N21—H21B1.0084N51—O511.273 (3)
N41—C411.424 (4)O61—C611.448 (4)
N41—H410.8820C61—H61A0.9800
C41—C421.377 (4)C61—H61B0.9800
C41—C461.400 (4)C61—H61C0.9800
C42—C431.389 (4)
C6—N1—C2115.0 (2)C42—C43—C44121.4 (3)
N21—C2—N3117.4 (2)C42—C43—H43119.3
N21—C2—N1114.7 (3)C44—C43—H43119.3
N3—C2—N1127.9 (3)C45—C44—C43116.4 (3)
C4—N3—C2116.9 (2)C45—C44—C47121.7 (3)
N3—C4—N41121.5 (3)C43—C44—C47121.9 (3)
N3—C4—C5120.9 (3)C46—C45—C44123.7 (3)
N41—C4—C5117.6 (3)C46—C45—H45118.1
N51—C5—C6117.8 (2)C44—C45—H45118.1
N51—C5—C4126.9 (3)C45—C46—C41118.5 (3)
C6—C5—C4115.2 (2)C45—C46—H46120.8
N1—C6—O61119.6 (3)C41—C46—H46120.8
N1—C6—C5124.0 (3)C44—C47—H47A109.5
O61—C6—C5116.4 (3)C44—C47—H47B109.5
C2—N21—H21A116.6H47A—C47—H47B109.5
C2—N21—H21B123.2C44—C47—H47C109.5
H21A—N21—H21B119.9H47A—C47—H47C109.5
C4—N41—C41131.1 (3)H47B—C47—H47C109.5
C4—N41—H41115.9O51—N51—C5118.5 (2)
C41—N41—H41112.8C6—O61—C61116.7 (2)
C42—C41—C46119.4 (3)O61—C61—H61A109.5
C42—C41—N41116.5 (3)O61—C61—H61B109.5
C46—C41—N41124.0 (3)H61A—C61—H61B109.5
C41—C42—C43120.6 (3)O61—C61—H61C109.5
C41—C42—H42119.7H61A—C61—H61C109.5
C43—C42—H42119.7H61B—C61—H61C109.5
C6—N1—C2—N21180.0 (3)C5—C4—N41—C41178.0 (3)
C6—N1—C2—N31.1 (4)C4—N41—C41—C42173.0 (3)
N21—C2—N3—C4179.5 (3)C4—N41—C41—C467.7 (5)
N1—C2—N3—C41.6 (5)C46—C41—C42—C430.7 (5)
C2—N3—C4—N41178.1 (3)N41—C41—C42—C43180.0 (3)
C2—N3—C4—C51.6 (4)C41—C42—C43—C440.1 (5)
N3—C4—C5—N51177.7 (3)C42—C43—C44—C450.4 (5)
N41—C4—C5—N512.6 (5)C42—C43—C44—C47179.6 (3)
N3—C4—C5—C61.2 (4)C43—C44—C45—C460.3 (5)
N41—C4—C5—C6178.5 (3)C47—C44—C45—C46179.8 (3)
C2—N1—C6—O61179.8 (2)C44—C45—C46—C410.3 (5)
C2—N1—C6—C50.6 (4)C42—C41—C46—C450.8 (4)
N51—C5—C6—N1178.3 (3)N41—C41—C46—C45179.9 (3)
C4—C5—C6—N10.7 (4)C6—C5—N51—O51179.2 (3)
N51—C5—C6—O611.4 (4)C4—C5—N51—O510.4 (5)
C4—C5—C6—O61179.7 (2)N1—C6—O61—C614.0 (4)
N3—C4—N41—C412.3 (5)C5—C6—O61—C61175.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N21—H21B···N51i1.011.982.990 (4)177
N41—H41···O510.881.872.584 (3)137
C46—H46···O51i0.952.423.143 (4)133
Symmetry code: (i) x, y1, z.
(II) ethyl N-[4-(adamantan-1-ylamino)-2-amino-5-nitrosopyrimidin-6-yl]-3- aminopropionate top
Crystal data top
C19H28N6O3F(000) = 832
Mr = 388.47Dx = 1.318 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4501 reflections
a = 11.6250 (12) Åθ = 2.6–27.5°
b = 13.2225 (11) ŵ = 0.09 mm1
c = 13.0172 (13) ÅT = 120 K
β = 101.920 (8)°Needle, red
V = 1957.7 (3) Å30.40 × 0.16 × 0.16 mm
Z = 4
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
3639 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode2325 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.069
Detector resolution: 9.091 pixels mm-1θmax = 25.5°, θmin = 2.6°
ϕ and ω scansh = 1414
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1516
Tmin = 0.946, Tmax = 0.986l = 1515
25767 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0645P)2 + 1.6886P]
where P = (Fo2 + 2Fc2)/3
3639 reflections(Δ/σ)max = 0.001
268 parametersΔρmax = 0.31 e Å3
7 restraintsΔρmin = 0.31 e Å3
Crystal data top
C19H28N6O3V = 1957.7 (3) Å3
Mr = 388.47Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.6250 (12) ŵ = 0.09 mm1
b = 13.2225 (11) ÅT = 120 K
c = 13.0172 (13) Å0.40 × 0.16 × 0.16 mm
β = 101.920 (8)°
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
3639 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2325 reflections with I > 2σ(I)
Tmin = 0.946, Tmax = 0.986Rint = 0.069
25767 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0597 restraints
wR(F2) = 0.154H-atom parameters constrained
S = 1.02Δρmax = 0.31 e Å3
3639 reflectionsΔρmin = 0.31 e Å3
268 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.42886 (19)0.38739 (16)0.56513 (16)0.0254 (5)
C20.3645 (2)0.37416 (19)0.4653 (2)0.0259 (6)
N30.28924 (19)0.29905 (16)0.42787 (16)0.0277 (5)
C40.2765 (2)0.22584 (19)0.4953 (2)0.0242 (6)
C50.3428 (2)0.22683 (19)0.60333 (19)0.0235 (6)
C60.4160 (2)0.3154 (2)0.6333 (2)0.0248 (6)
N210.3766 (2)0.44612 (17)0.39673 (16)0.0321 (6)
H21A0.34650.43690.32370.038*
H21B0.43750.49560.41690.038*
N410.20201 (19)0.14980 (16)0.46531 (16)0.0266 (5)
H410.19950.10370.51980.032*
C410.1213 (2)0.13613 (19)0.3620 (2)0.0248 (6)
C420.1900 (2)0.1219 (2)0.2743 (2)0.0300 (7)
H42A0.23750.18300.26870.036*
H42B0.24410.06360.29080.036*
C430.1035 (3)0.1033 (2)0.1699 (2)0.0326 (7)
H430.14830.09480.11260.039*
C440.0207 (3)0.1940 (2)0.1451 (2)0.0346 (7)
H44A0.03380.18340.07670.042*
H44B0.06680.25600.14000.042*
C450.0498 (2)0.2067 (2)0.2317 (2)0.0320 (7)
H450.10460.26540.21460.038*
C460.0366 (2)0.2264 (2)0.3369 (2)0.0282 (6)
H46A0.08170.28910.33200.034*
H46B0.00750.23510.39380.034*
C470.0323 (3)0.0073 (2)0.1783 (2)0.0366 (7)
H47A0.08590.05150.19410.044*
H47B0.02280.00560.11080.044*
C480.0364 (2)0.0208 (2)0.2659 (2)0.0324 (7)
H480.08260.04200.27200.039*
C490.0496 (2)0.0402 (2)0.3702 (2)0.0293 (6)
H49A0.10330.01830.38750.035*
H49B0.00560.04820.42710.035*
C4100.1203 (2)0.1108 (2)0.2411 (2)0.0347 (7)
H10A0.17720.09850.17440.042*
H10B0.16490.11910.29770.042*
N510.34081 (19)0.16029 (17)0.67986 (17)0.0283 (5)
O510.27326 (16)0.08222 (14)0.66080 (14)0.0329 (5)
N610.46982 (18)0.32477 (17)0.73369 (16)0.0271 (5)
H610.46680.27070.77680.033*
C610.5316 (2)0.4152 (2)0.7773 (2)0.0292 (6)
H61A0.49590.47470.73680.035*
H61B0.61460.41070.77020.035*
C620.5273 (3)0.4297 (2)0.8931 (2)0.0358 (7)
H62A0.54870.50060.91280.043*
H62B0.44540.41920.90140.043*
C63A0.6057 (3)0.3615 (3)0.9678 (2)0.0428 (8)0.910 (4)
O63A0.6518 (3)0.3854 (2)1.0577 (2)0.0886 (13)0.910 (4)
O64A0.6201 (3)0.27186 (18)0.9274 (2)0.0457 (8)0.910 (4)
C65A0.6987 (3)0.2013 (3)0.9922 (3)0.0504 (10)0.910 (4)
H65A0.65990.17021.04530.060*0.910 (4)
H65B0.77090.23631.02890.060*0.910 (4)
C66A0.7277 (4)0.1231 (3)0.9194 (3)0.0531 (11)0.910 (4)
H66A0.65550.08870.88450.080*0.910 (4)
H66B0.78210.07370.95930.080*0.910 (4)
H66C0.76460.15540.86660.080*0.910 (4)
C63B0.6057 (3)0.3615 (3)0.9678 (2)0.0428 (8)0.090 (4)
O63B0.7111 (8)0.3741 (18)1.006 (3)0.0886 (13)0.090 (4)
O64B0.5703 (17)0.2695 (9)0.932 (2)0.0457 (8)0.090 (4)
C65B0.656 (3)0.1887 (12)0.954 (2)0.0504 (10)0.090 (4)
H65C0.62620.13270.99170.060*0.090 (4)
H65D0.73050.21380.99830.060*0.090 (4)
C66B0.676 (4)0.153 (3)0.851 (3)0.0531 (11)0.090 (4)
H66D0.60070.14620.80170.080*0.090 (4)
H66E0.71670.08790.85960.080*0.090 (4)
H66F0.72500.20280.82320.080*0.090 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0286 (12)0.0271 (12)0.0199 (11)0.0041 (10)0.0034 (9)0.0003 (9)
C20.0297 (15)0.0240 (14)0.0235 (14)0.0023 (12)0.0045 (12)0.0009 (12)
N30.0327 (13)0.0269 (13)0.0222 (12)0.0076 (10)0.0025 (10)0.0013 (10)
C40.0221 (14)0.0259 (15)0.0245 (14)0.0005 (11)0.0046 (11)0.0004 (12)
C50.0228 (14)0.0249 (14)0.0232 (14)0.0000 (11)0.0052 (11)0.0031 (11)
C60.0206 (14)0.0291 (15)0.0249 (15)0.0004 (11)0.0048 (11)0.0005 (12)
N210.0430 (15)0.0309 (13)0.0195 (11)0.0152 (11)0.0003 (10)0.0015 (10)
N410.0276 (12)0.0265 (12)0.0246 (12)0.0034 (10)0.0031 (10)0.0040 (10)
C410.0253 (14)0.0233 (14)0.0240 (14)0.0050 (11)0.0009 (11)0.0006 (11)
C420.0267 (15)0.0307 (16)0.0331 (16)0.0061 (12)0.0075 (12)0.0019 (12)
C430.0367 (16)0.0362 (17)0.0266 (15)0.0091 (13)0.0105 (13)0.0046 (12)
C440.0391 (17)0.0377 (17)0.0243 (15)0.0139 (14)0.0002 (13)0.0037 (13)
C450.0302 (16)0.0321 (16)0.0312 (15)0.0004 (13)0.0010 (12)0.0043 (13)
C460.0294 (15)0.0266 (15)0.0280 (15)0.0018 (12)0.0048 (12)0.0001 (12)
C470.0405 (18)0.0343 (17)0.0331 (16)0.0081 (14)0.0035 (14)0.0055 (13)
C480.0319 (16)0.0305 (16)0.0330 (15)0.0135 (13)0.0027 (13)0.0035 (13)
C490.0287 (16)0.0281 (15)0.0303 (15)0.0040 (12)0.0040 (12)0.0052 (12)
C4100.0273 (15)0.0442 (18)0.0304 (16)0.0065 (13)0.0012 (12)0.0019 (13)
N510.0240 (12)0.0258 (13)0.0359 (13)0.0004 (10)0.0082 (10)0.0034 (11)
O510.0329 (11)0.0301 (11)0.0346 (11)0.0008 (9)0.0047 (9)0.0080 (9)
N610.0297 (13)0.0290 (13)0.0205 (12)0.0056 (10)0.0001 (10)0.0055 (10)
C610.0303 (15)0.0334 (16)0.0222 (14)0.0046 (13)0.0017 (11)0.0020 (12)
C620.0357 (17)0.0376 (17)0.0327 (16)0.0031 (14)0.0037 (13)0.0009 (13)
C63A0.0399 (18)0.052 (2)0.0331 (18)0.0025 (15)0.0012 (14)0.0020 (16)
O63A0.118 (3)0.095 (2)0.0351 (18)0.045 (2)0.0257 (18)0.0196 (16)
O64A0.0483 (18)0.0418 (14)0.0390 (13)0.0143 (12)0.0098 (15)0.0001 (11)
C65A0.042 (2)0.056 (2)0.047 (2)0.0163 (19)0.0065 (18)0.0112 (19)
C66A0.054 (2)0.043 (2)0.056 (3)0.0078 (18)0.003 (2)0.0004 (19)
C63B0.0399 (18)0.052 (2)0.0331 (18)0.0025 (15)0.0012 (14)0.0020 (16)
O63B0.118 (3)0.095 (2)0.0351 (18)0.045 (2)0.0257 (18)0.0196 (16)
O64B0.0483 (18)0.0418 (14)0.0390 (13)0.0143 (12)0.0098 (15)0.0001 (11)
C65B0.042 (2)0.056 (2)0.047 (2)0.0163 (19)0.0065 (18)0.0112 (19)
C66B0.054 (2)0.043 (2)0.056 (3)0.0078 (18)0.003 (2)0.0004 (19)
Geometric parameters (Å, º) top
N1—C61.331 (3)C47—H47B0.9900
N1—C21.370 (3)C48—C4101.530 (4)
C2—N211.331 (3)C48—C491.532 (4)
C2—N31.347 (3)C48—H481.0000
N3—C41.335 (3)C49—H49A0.9900
C4—N411.332 (3)C49—H49B0.9900
C4—C51.457 (4)C410—H10A0.9900
C5—N511.333 (3)C410—H10B0.9900
C5—C61.452 (4)N51—O511.290 (3)
C6—N611.333 (3)N61—C611.448 (3)
N21—H21A0.9504N61—H610.9143
N21—H21B0.9598C61—C621.532 (4)
N41—C411.483 (3)C61—H61A0.9900
N41—H410.9403C61—H61B0.9900
C41—C491.533 (4)C62—C63A1.490 (4)
C41—C421.534 (4)C62—H62A0.9900
C41—C461.538 (4)C62—H62B0.9900
C42—C431.534 (4)C63A—O63A1.223 (4)
C42—H42A0.9900C63A—O64A1.322 (4)
C42—H42B0.9900O64A—C65A1.448 (4)
C43—C441.530 (4)C65A—C66A1.487 (5)
C43—C471.532 (4)C65A—H65A0.9900
C43—H431.0000C65A—H65B0.9900
C44—C451.534 (4)C66A—H66A0.9800
C44—H44A0.9900C66A—H66B0.9800
C44—H44B0.9900C66A—H66C0.9800
C45—C4101.529 (4)O64B—C65B1.450 (6)
C45—C461.544 (4)C65B—C66B1.488 (7)
C45—H451.0000C65B—H65C0.9900
C46—H46A0.9900C65B—H65D0.9900
C46—H46B0.9900C66B—H66D0.9800
C47—C481.532 (4)C66B—H66E0.9800
C47—H47A0.9900C66B—H66F0.9800
C6—N1—C2115.3 (2)C43—C47—H47B109.8
N21—C2—N3115.8 (2)C48—C47—H47B109.8
N21—C2—N1115.6 (2)H47A—C47—H47B108.3
N3—C2—N1128.6 (2)C410—C48—C49109.1 (2)
C4—N3—C2116.7 (2)C410—C48—C47109.9 (2)
N41—C4—N3120.5 (2)C49—C48—C47109.4 (2)
N41—C4—C5118.2 (2)C410—C48—H48109.4
N3—C4—C5121.3 (2)C49—C48—H48109.4
N51—C5—C6115.5 (2)C47—C48—H48109.4
N51—C5—C4128.9 (2)C48—C49—C41110.0 (2)
C6—C5—C4115.5 (2)C48—C49—H49A109.7
N1—C6—N61119.5 (2)C41—C49—H49A109.7
N1—C6—C5122.5 (2)C48—C49—H49B109.7
N61—C6—C5117.9 (2)C41—C49—H49B109.7
C2—N21—H21A120.7H49A—C49—H49B108.2
C2—N21—H21B118.5C45—C410—C48109.5 (2)
H21A—N21—H21B117.4C45—C410—H10A109.8
C4—N41—C41127.5 (2)C48—C410—H10A109.8
C4—N41—H41112.8C45—C410—H10B109.8
C41—N41—H41119.5C48—C410—H10B109.8
N41—C41—C49106.8 (2)H10A—C410—H10B108.2
N41—C41—C42111.1 (2)O51—N51—C5119.2 (2)
C49—C41—C42108.9 (2)C6—N61—C61123.7 (2)
N41—C41—C46110.8 (2)C6—N61—H61117.3
C49—C41—C46108.9 (2)C61—N61—H61118.9
C42—C41—C46110.2 (2)N61—C61—C62112.0 (2)
C43—C42—C41109.4 (2)N61—C61—H61A109.2
C43—C42—H42A109.8C62—C61—H61A109.2
C41—C42—H42A109.8N61—C61—H61B109.2
C43—C42—H42B109.8C62—C61—H61B109.2
C41—C42—H42B109.8H61A—C61—H61B107.9
H42A—C42—H42B108.2C63A—C62—C61115.2 (3)
C44—C43—C47109.8 (2)C63A—C62—H62A108.5
C44—C43—C42109.3 (2)C61—C62—H62A108.5
C47—C43—C42109.5 (2)C63A—C62—H62B108.5
C44—C43—H43109.4C61—C62—H62B108.5
C47—C43—H43109.4H62A—C62—H62B107.5
C42—C43—H43109.4O63A—C63A—O64A123.1 (3)
C43—C44—C45109.8 (2)O63A—C63A—C62123.7 (3)
C43—C44—H44A109.7O64A—C63A—C62113.2 (3)
C45—C44—H44A109.7C63A—O64A—C65A117.5 (3)
C43—C44—H44B109.7O64A—C65A—C66A106.0 (3)
C45—C44—H44B109.7O64A—C65A—H65A110.5
H44A—C44—H44B108.2C66A—C65A—H65A110.5
C410—C45—C44110.1 (2)O64A—C65A—H65B110.5
C410—C45—C46109.3 (2)C66A—C65A—H65B110.5
C44—C45—C46108.8 (2)H65A—C65A—H65B108.7
C410—C45—H45109.5O64B—C65B—C66B106.6 (8)
C44—C45—H45109.5O64B—C65B—H65C110.4
C46—C45—H45109.5C66B—C65B—H65C110.4
C41—C46—C45109.1 (2)O64B—C65B—H65D110.4
C41—C46—H46A109.9C66B—C65B—H65D110.4
C45—C46—H46A109.9H65C—C65B—H65D108.6
C41—C46—H46B109.9C65B—C66B—H66D109.5
C45—C46—H46B109.9C65B—C66B—H66E109.5
H46A—C46—H46B108.3H66D—C66B—H66E109.5
C43—C47—C48109.2 (2)C65B—C66B—H66F109.5
C43—C47—H47A109.8H66D—C66B—H66F109.5
C48—C47—H47A109.8H66E—C66B—H66F109.5
C6—N1—C2—N21179.8 (2)N41—C41—C46—C45177.1 (2)
C6—N1—C2—N31.1 (4)C49—C41—C46—C4560.0 (3)
N21—C2—N3—C4179.6 (2)C42—C41—C46—C4559.4 (3)
N1—C2—N3—C41.7 (4)C410—C45—C46—C4160.5 (3)
C2—N3—C4—N41178.6 (2)C44—C45—C46—C4159.8 (3)
C2—N3—C4—C51.1 (4)C44—C43—C47—C4859.7 (3)
N41—C4—C5—N510.4 (4)C42—C43—C47—C4860.3 (3)
N3—C4—C5—N51179.8 (3)C43—C47—C48—C41060.1 (3)
N41—C4—C5—C6175.7 (2)C43—C47—C48—C4959.7 (3)
N3—C4—C5—C64.0 (4)C410—C48—C49—C4160.4 (3)
C2—N1—C6—N61176.1 (2)C47—C48—C49—C4160.0 (3)
C2—N1—C6—C52.4 (4)N41—C41—C49—C48180.0 (2)
N51—C5—C6—N1178.6 (2)C42—C41—C49—C4859.9 (3)
C4—C5—C6—N14.7 (4)C46—C41—C49—C4860.3 (3)
N51—C5—C6—N612.9 (3)C44—C45—C410—C4858.8 (3)
C4—C5—C6—N61173.8 (2)C46—C45—C410—C4860.7 (3)
N3—C4—N41—C413.3 (4)C49—C48—C410—C4560.4 (3)
C5—C4—N41—C41176.4 (2)C47—C48—C410—C4559.7 (3)
C4—N41—C41—C49176.6 (2)C6—C5—N51—O51176.5 (2)
C4—N41—C41—C4264.7 (3)C4—C5—N51—O510.4 (4)
C4—N41—C41—C4658.2 (3)N1—C6—N61—C617.6 (4)
N41—C41—C42—C43177.5 (2)C5—C6—N61—C61171.0 (2)
C49—C41—C42—C4360.1 (3)C6—N61—C61—C62149.6 (2)
C46—C41—C42—C4359.3 (3)N61—C61—C62—C63A75.0 (3)
C41—C42—C43—C4459.6 (3)C61—C62—C63A—O63A148.4 (4)
C41—C42—C43—C4760.7 (3)C61—C62—C63A—O64A32.0 (4)
C47—C43—C44—C4559.1 (3)O63A—C63A—O64A—C65A2.9 (5)
C42—C43—C44—C4561.1 (3)C62—C63A—O64A—C65A177.5 (3)
C43—C44—C45—C41058.7 (3)C63A—O64A—C65A—C66A162.7 (3)
C43—C44—C45—C4661.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N21—H21A···O51i0.952.133.081 (3)178
N21—H21A···N51i0.952.263.104 (3)147
N21—H21B···N1ii0.962.173.121 (3)170
N41—H41···O510.941.882.663 (3)139
N61—H61···O64A0.912.362.843 (3)113
N61—H61···O64B0.912.132.71 (2)120
N61—H61···N510.912.262.653 (3)105
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y+1, z+1.

Experimental details

(I)(II)
Crystal data
Chemical formulaC12H13N5O2C19H28N6O3
Mr259.27388.47
Crystal system, space groupTriclinic, P1Monoclinic, P21/c
Temperature (K)120120
a, b, c (Å)6.975 (2), 7.4704 (10), 12.161 (4)11.6250 (12), 13.2225 (11), 13.0172 (13)
α, β, γ (°)102.90 (2), 92.64 (3), 101.144 (19)90, 101.920 (8), 90
V3)603.4 (3)1957.7 (3)
Z24
Radiation typeMo KαMo Kα
µ (mm1)0.100.09
Crystal size (mm)0.31 × 0.17 × 0.140.40 × 0.16 × 0.16
Data collection
DiffractometerBruker Nonius KappaCCD area-detector
diffractometer
Bruker Nonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.960, 0.9860.946, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
12902, 2249, 1607 25767, 3639, 2325
Rint0.0790.069
(sin θ/λ)max1)0.6060.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.203, 1.07 0.059, 0.154, 1.02
No. of reflections22493639
No. of parameters174268
No. of restraints07
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.360.31, 0.31

Computer programs: COLLECT (Nonius, 1999), DIRAX/LSQ (Duisenberg et al., 2000), EVALCCD (Duisenberg et al., 2003), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Selected bond distances (Å) and torsion angles (°) for (I) and (II) top
Parameter(I)(II)
N1—C21.382 (4)1.370 (3)
C2—N31.332 (4)1.347 (3)
N3—C41.331 (4)1.335 (3)
C4—C51.460 (4)1.457 (4)
C5—C61.424 (4)1.452 (4)
C6—N11.303 (4)1.331 (3)
C2—N211.328 (4)1.331 (3)
C4—N411.332 (4)1.332 (3)
C5—N511.347 (4)1.333 (3)
N51—O511.273 (3)1.290 (3)
C6—O611.336 (3)
C6—N611.373 (3)
C4—C5—N51—O510.4 (5)0.4 (4)
C4—N41—C41—C42-173.0 (3)64.7 (3)
C4—N41—C41—C46-58.2 (3)
C4—N41—C41—C49-176.6 (2)
C5—C6—O61—C61-175.7 (3)
C5—C6—N61—C61-171.0 (2)
C6—N61—C61—C62149.6 (2)
N61—C61—C62—C63A75.0 (3)
C61—C62—C63A—O64A-32.0 (4)
C62—C63A—O64A—C65A177.(3)
C63A—O64A—C65A—C66A-162.7 (3)
N61—C61—C62—C63B75.0 (3)
C61—C62—C63B—O64B-57.0 (10)
C62—C63B—O64B—C65B153.5 (19)
C63A—O64B—C65B—C66B-116 (3)
Hydrogen bonds and short intramolecular contacts (Å, °) for (I) and (II) top
CompoundD—H···AD—HH···AD···AD—H···A
(I)N21—N21B···N51i1.011.982.990 (4)177
N41—H41···O510.881.872.584 (3)137
C46—H46···O51i0.952.423.143 (4)133
(II)N21—H21A···O51ii0.952.133.081 (3)178
N21—H21A···N51ii0.952.263.104 (3)147
N21—H21B···N1iii0.962.173.121 (3)170
N41—H41···O510.941.882.663 (3)139
N61—H61···O64A0.912.362.843 (3)113
N61—H61···O64B0.912.132.71 (2)120
N61—H61···N510.912.262.653 (3)105
Symmetry codes: (i) x, y - 1, z; (ii) x, -y + 1/2, z - 1/2; (iii) -x + 1, -y + 1, -z + 1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds