Download citation
Download citation
link to html
The structure of the title compound, [Cd2(C8H4O4)Cl2(C6H15NO3)]n, consists of one-dimensional chains in which each centrosymmetric tetra­nuclear Cd4Cl4O2 cluster is terminated by two chelating triethanol­amine (teaH3) ligands but linked to two adjacent clusters through four bridging benzene-1,4-dicarboxyl­ate (bdc) ligands. The tetra­nuclear Cd4Cl4O2 clusters are held together via bridging Cl and O atoms. Three directional hydrogen bonds from the multi-podal hy­droxy groups of the teaH3 ligand stabilize and extend the one-dimensional chains into a three-dimensional framework. All three hy­droxy groups of the teaH3 ligand form hydrogen bonds, illustrating the fact that the teaH3 ligand can serve as an excellent hydrogen-bond donor.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270112012668/sf3169sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112012668/sf3169Isup2.hkl
Contains datablock I

CCDC reference: 879434

Comment top

Recent advances in supramolecular assembly of coordination polymers have led to many organic–inorganic hybrid materials with interesting structures and desirable functions (Desiraju, 2007). It is now well established that the combination of coordination bonds and hydrogen bonds presents an ideal synthetic paradigm for the crystal engineering of crystalline materials (MacDonald et al., 2000). Triethanolamine (teaH3) is one member of the alkoxide family containing both amine and alcohol groups, and can serve as a versatile ligand that readily forms coordination complexes with almost all metal ions (Sen & Dotson, 1970). The multi-podal capabilities of the three ethanolic arms suggest that the teaH3 molecule is indeed an excellent candidate for hydrogen-bond donation, and endow the resultant complexes with great potential in supramolecular chemistry (Chen et al., 2009). Alternatively, the hydroxy H atoms of the teaH3 molecule may be deprotonated to give the triethanolaminate anion, which can act as both a bridging and a chelating ligand for synthesizing polynuclear species (Liu et al., 2008). The teaH3 molecule can also behave as a tri- (N,O,O') or tetradentate (N,O,O',O'') neutral ligand to chelate one metal ion, especially for metal ions with large ionic radii. It is known that the ability of the CdII ion to extend its coordination number to 7 enables the synthesis of seven-coordinated CdII complexes of teaH3 (Andac et al., 2001). Among Cd-containing complexes, polynuclear cadmium halides have been found to exhibit interesting photoluminescent properties (Dai et al., 2002) and to form a wide range of coordination complexes with variations promoted not only by the ligand characteristics, but also by the variable coordination number of the CdII centres. However, the successful incorporation of two types of ligand into such cadmium halides is rare (Liu et al., 2010, 2007). The analogous complexes based on the collaborative use of linear terephthalic acid (bdcH2) and multi-podal triethanolamine(teaH3) have not hitherto received any attention. Here, we have chosen the bdcH2 molecule as a bridging ligand and teaH3 as a terminal ligand to explore the crystal structure of the novel title coordination polymer, [Cd2(bdc)Cl2(teaH3)]n, (I), with an unusual hydrogen-bonded three-dimensional framework.

Single-crystal X-ray diffraction reveals that two independent CdII cations and Cl- anions, one teaH3 molecule and one bdc dianion are present in the asymmetric unit of (I). As shown in Figs. 1 and 2, (I) consists of a one-dimensional chain in which each tetranuclear Cd4Cl4O2 cluster is terminated by two chelating teaH3 molecules but linked to two adjacent clusters through four bridging bdc dianions. The tetranuclear Cd4Cl4O2 entity has an inversion centre and is held together via µ2-bridging Cl and O atoms. The CdII cations in the tetranuclear Cd4Cl4O2 cluster can are of two types. Each Cd1 centre [and its symmetry-related Cd1ii centre; symmetry code: (ii) -x + 1/2, -y + 1/2, -z] is seven-coordinate with a distorted monocapped trigonal prismatic coordination geometry, surrounded by three O atoms and one N atom from one teaH3 molecule, two O atoms from one carboxylate group and one µ-Cl- ion, while each Cd2 centre (and its symmetry-related equivalent) is bonded to three O atoms from two bdc dianions and three µ2-Cl- anions, displaying a distorted octahedral configuration. In the Cd1 coordination polyhedron, the three O atoms of the teaH3 ligand and one Cl- anion form the equatorial plane (O5—O6—O7—Cl1) of the Cd1 centre, while two O atoms from one carboxylate group are located in pseudo-axial positions and atom N1 occupies the axial position. For the Cd2 centre, atoms Cl2, Cl2ii and O2 are meridional, as are three other atoms [Cl1, O3i and O4i; symmetry code: (i) -x + 1, -y, -z].

The Cd—O distances are comparable with those observed for [Cd(bdc)(bpdo)(H2O)]n (bpdo is 4,4'-bipyridine N,N'-dioxide; Xu & Xie, 2010). It should be noted that the Cd—O bond distances [2.4045 (16) and 2.5792 (16) Å] involved in the µ2-O bridging interactions are somewhat longer than the other Cd—O bonds. The Cd—Cl bond lengths range from 2.5343 (8) to 2.6726 (13) Å and are in the normal range for cadmium halide complexes (Zhou et al., 2004). The bond angles around the two CdII centres have a very large range [53.49 (5)–169.31 (4)° for Cd1 and 55.79 (6)—165.31 (4)° for Cd2], indicating their significantly distorted coordination geometry. The closest Cd···Cd contact of 3.815 Å is much longer than in the metal (2.98 Å; Reference?).

The overall binding mode of the bdc ligand in the title complex can be assigned as unsymmetrical µ3-η2η1 connections to three metal centres. One carboxylate end is chelated to one metal centre in a bidentate chelating mode but the other end is coordinated to two CdII cations in a chelating-bridging manner. The two inversion-related bdc dianions are anti-parallel and link adjacent tetranuclear Cd4Cl4O2 clusters into a one-dimensional chain. It is noteworthy that the interplanar distance (3.474 Å) between parallel phenyl rings suggests the presence of ππ interaction between each pair of bdc dianions. This particular arrangement necessitates a bent conformation of the bdc linkers (mean deviation from the C1–C8 plane = 0.0409 Å) and a significant rotation of the two COO- groups (dihedral angles between the COO- and benzene planes = 27.9 and 15.1°).

The most interesting structural feature of (I) is the hydrogen-bonding performance of the three ethanolic arms of teaH3 in stabilizing the open three-dimensional framework. Although the teaH3 molecules serve as a tetradentate (N,O,O',O'') neutral ligand in the endo conformation, all hydroxy groups of the teaH3 ligand are involved in the formation of classical hydrogen bonds. One hydroxy group within the tetranuclear cluster and the Cl- anions form strong intrachain hydrogen bonds [O5···Cl2ii = 3.096 (2) Å] which further consolidate the tetranuclear Cd4Cl4O2 cluster (Fig. 2). The second hydrogen bond between one of the outer hydroxy groups and the carboxylate O atoms [O6···O4iii = 2.666 (2) Å; symmetry code: (iii) -x + 1, -y + 1, -z] extends the one-dimensional chains into two-dimensional layers (Fig. 3). Finally, the third hydroxy group is engaged in interlayer hydrogen bonding with the carboxylate O atoms [O7···O1iv = 2.667 (2) Å; symmetry code: (iv) -x + 1, y, -z + 1/2] to link each such layer into an open three-dimensional framework in a crossed manner (Fig. 4). It is interesting that, viewed down the crystallographic a axis, the alternate packing of one-dimensional chains displays beautiful sinusoidal ruffles with a period of 38.4 Å (= 2c) (Fig. 5).

The crystal structure of (I) thus clearly illustrates the important role of the teaH3 ligand in directing supramolecular assembly via directional hydrogen bonds from its multi-podal hydroxy groups.

Related literature top

For related literature, see: Andac et al. (2001); Chen et al. (2009); Dai et al. (2002); Desiraju (2007); Liu et al. (2007, 2008, 2010); MacDonald et al. (2000); Sen & Dotson (1970); Xu & Xie (2010); Zhou et al. (2004).

Experimental top

A mixture of CdCl2.2.5H2O (0.0297 g, 0.13 mmol) and bdcH2 (0.0221 g, 0.13 mmol) in methanol (10 ml) was stirred for 10 min, and then 4 drops of teaH3 was added to the mixture with further stirring for 20 min. The resulting solution was transferred to a 17 ml Teflon-lined stainless steel container and heated at 393 K for 24 h. After cooling to room temperature, yellow block-shaped crystals of (I) were collected in 86.5% yield, based on the initial quantity of CdCl2.2.5H2O.

Refinement top

All C-bound H atoms were refined using a riding model, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic H atoms, and with C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C) for CH2 groups. The hydroxy H atoms were located in a difference Fourier map and their positions were refined under the application of an O—H bond-length restraint of 0.90 (1) Å, with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the local coordination environment of the CdII ions in (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) -x + 1, -y, -z; (ii) -x + 1/2, -y + 1/2, -z.]
[Figure 2] Fig. 2. A view of the one-dimensional chain of (I), showing the strong intrachain O—H···Cl interactions (dashed lines) consolidating the tetranuclear Cd4Cl4O2 clusters. [Symmetry code: (ii) -x + 1/2, -y + 1/2, -z.]
[Figure 3] Fig. 3. The two-dimensional layer of (I) formed by strong interchain O—H···O interactions (dashed lines). [Symmetry code: (iii) -x + 1, -y + 1, -z.]
[Figure 4] Fig. 4. A packing diagram for (I), showing the unusual three-dimensional framework formed via strong O—H···O interactions (dashed lines) between crossed layers. (In the electronic version of the paper, three colours are used to show the different hydrogen bonds: blue for intrachain, red for interchain and yellow for interlayer.) [Symmetry codes: (ii) -x + 1/2, -y + 1/2, -z; (iv) -x + 1, y, -z + 1/2; (v) x, -y + 1, z + 1/2.]
[Figure 5] Fig. 5. A packing diagram for (I) with metallic polyhedra
Poly[(µ3-benzene-1,4-dicarboxylato)di-µ-chlorido- (triethanolamine)dicadmium(II)] top
Crystal data top
[Cd2(C8H4O4)Cl2(C6H15NO3)]F(000) = 2368
Mr = 609.00Dx = 2.071 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -c 2ycCell parameters from 14198 reflections
a = 23.251 (5) Åθ = 1.8–28.5°
b = 8.907 (5) ŵ = 2.49 mm1
c = 19.233 (5) ÅT = 293 K
β = 101.221 (5)°Block, yellow
V = 3907 (3) Å30.40 × 0.40 × 0.20 mm
Z = 8
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4821 independent reflections
Radiation source: fine-focus sealed tube4261 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ω scansθmax = 28.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2730
Tmin = 0.436, Tmax = 0.636k = 1111
13547 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.047H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0231P)2 + 1.6009P]
where P = (Fo2 + 2Fc2)/3
4821 reflections(Δ/σ)max = 0.001
244 parametersΔρmax = 0.31 e Å3
3 restraintsΔρmin = 0.62 e Å3
Crystal data top
[Cd2(C8H4O4)Cl2(C6H15NO3)]V = 3907 (3) Å3
Mr = 609.00Z = 8
Monoclinic, C2/cMo Kα radiation
a = 23.251 (5) ŵ = 2.49 mm1
b = 8.907 (5) ÅT = 293 K
c = 19.233 (5) Å0.40 × 0.40 × 0.20 mm
β = 101.221 (5)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4821 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4261 reflections with I > 2σ(I)
Tmin = 0.436, Tmax = 0.636Rint = 0.019
13547 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0213 restraints
wR(F2) = 0.047H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.31 e Å3
4821 reflectionsΔρmin = 0.62 e Å3
244 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.45636 (9)0.4129 (2)0.09660 (11)0.0287 (4)
C20.49931 (8)0.3117 (2)0.07158 (11)0.0269 (4)
C30.49185 (9)0.2775 (3)0.00011 (11)0.0330 (5)
H30.46150.32180.03210.040*
C40.52900 (9)0.1788 (3)0.02399 (11)0.0344 (5)
H40.52420.15840.07220.041*
C50.57364 (9)0.1094 (2)0.02336 (11)0.0294 (4)
C60.58157 (10)0.1443 (3)0.09514 (11)0.0363 (5)
H60.61170.09870.12710.044*
C70.54511 (10)0.2459 (3)0.11914 (12)0.0360 (5)
H70.55110.27030.16700.043*
C80.61093 (9)0.0088 (3)0.00113 (12)0.0317 (5)
C90.25792 (13)0.7131 (3)0.10179 (14)0.0562 (8)
H9A0.22220.67270.07330.067*
H9B0.25760.82100.09500.067*
C100.25932 (10)0.6789 (3)0.17824 (13)0.0459 (6)
H10A0.23010.74000.19480.055*
H10B0.24880.57440.18270.055*
C110.39632 (12)0.9000 (3)0.22971 (13)0.0456 (6)
H11A0.40181.00740.22590.055*
H11B0.41990.86660.27430.055*
C120.33243 (12)0.8679 (3)0.22959 (14)0.0451 (6)
H12A0.32280.90710.27300.054*
H12B0.30850.92070.19020.054*
C130.38053 (11)0.6198 (3)0.33519 (12)0.0468 (6)
H13A0.39440.71670.35460.056*
H13B0.38100.55070.37430.056*
C140.31975 (10)0.6344 (3)0.29337 (12)0.0451 (6)
H14A0.30230.53530.28590.054*
H14B0.29650.69250.32050.054*
N10.31739 (8)0.7071 (2)0.22393 (9)0.0313 (4)
O10.47267 (6)0.48765 (19)0.15310 (8)0.0379 (4)
O20.40496 (6)0.42171 (17)0.06169 (8)0.0324 (3)
O30.64129 (7)0.09341 (19)0.04325 (9)0.0436 (4)
O40.60972 (7)0.02424 (19)0.06708 (8)0.0395 (4)
O50.30721 (8)0.6506 (2)0.07873 (8)0.0456 (4)
O60.41577 (8)0.82625 (19)0.17254 (9)0.0406 (4)
O70.41747 (7)0.5658 (2)0.29025 (8)0.0434 (4)
Cl10.33344 (3)0.30705 (6)0.17663 (3)0.03921 (13)
Cl20.22968 (2)0.08518 (6)0.03986 (3)0.03193 (11)
Cd10.384088 (6)0.574018 (17)0.168115 (7)0.02777 (5)
Cd20.329506 (6)0.233430 (17)0.048503 (8)0.02788 (5)
HO10.2938 (11)0.584 (2)0.0450 (10)0.042*
HO20.4077 (11)0.891 (2)0.1369 (10)0.042*
HO30.4533 (6)0.537 (3)0.3112 (12)0.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0236 (9)0.0291 (11)0.0343 (10)0.0017 (9)0.0081 (8)0.0018 (9)
C20.0216 (9)0.0274 (10)0.0318 (10)0.0037 (8)0.0055 (8)0.0043 (9)
C30.0267 (10)0.0403 (13)0.0312 (10)0.0083 (10)0.0033 (8)0.0003 (10)
C40.0337 (11)0.0420 (13)0.0281 (10)0.0060 (10)0.0072 (8)0.0057 (10)
C50.0268 (10)0.0274 (10)0.0355 (10)0.0039 (9)0.0099 (8)0.0046 (9)
C60.0341 (11)0.0387 (13)0.0337 (11)0.0148 (10)0.0006 (9)0.0014 (10)
C70.0340 (11)0.0439 (13)0.0286 (10)0.0105 (10)0.0022 (8)0.0083 (10)
C80.0288 (10)0.0282 (11)0.0398 (11)0.0029 (9)0.0107 (9)0.0055 (10)
C90.0562 (16)0.0578 (17)0.0465 (14)0.0282 (15)0.0102 (12)0.0070 (13)
C100.0265 (11)0.0573 (17)0.0531 (14)0.0097 (12)0.0056 (10)0.0026 (13)
C110.0612 (16)0.0334 (13)0.0439 (13)0.0064 (12)0.0139 (12)0.0088 (11)
C120.0533 (15)0.0359 (13)0.0489 (14)0.0137 (12)0.0167 (12)0.0091 (11)
C130.0517 (14)0.0645 (17)0.0247 (10)0.0131 (14)0.0082 (10)0.0039 (11)
C140.0409 (13)0.0638 (17)0.0352 (11)0.0103 (13)0.0187 (10)0.0098 (12)
N10.0293 (9)0.0368 (10)0.0288 (8)0.0093 (8)0.0082 (7)0.0005 (8)
O10.0260 (7)0.0455 (10)0.0419 (8)0.0050 (7)0.0062 (6)0.0191 (8)
O20.0209 (7)0.0360 (9)0.0397 (8)0.0055 (6)0.0046 (6)0.0034 (7)
O30.0460 (9)0.0427 (10)0.0427 (9)0.0215 (8)0.0100 (7)0.0013 (8)
O40.0452 (9)0.0371 (9)0.0386 (8)0.0155 (8)0.0143 (7)0.0023 (7)
O50.0589 (11)0.0416 (10)0.0317 (8)0.0106 (9)0.0026 (8)0.0072 (7)
O60.0503 (10)0.0324 (9)0.0431 (9)0.0014 (8)0.0192 (8)0.0027 (7)
O70.0328 (8)0.0629 (12)0.0319 (8)0.0153 (8)0.0003 (6)0.0011 (8)
Cl10.0552 (3)0.0327 (3)0.0318 (2)0.0063 (3)0.0136 (2)0.0047 (2)
Cl20.0323 (2)0.0292 (3)0.0321 (2)0.0000 (2)0.00093 (19)0.0031 (2)
Cd10.02718 (8)0.02890 (9)0.02827 (8)0.00649 (6)0.00795 (6)0.00384 (6)
Cd20.02610 (8)0.02670 (8)0.02976 (8)0.00607 (6)0.00277 (6)0.00477 (6)
Geometric parameters (Å, º) top
C1—O21.254 (2)C12—H12A0.9700
C1—O11.268 (2)C12—H12B0.9700
C1—C21.493 (3)C13—O71.416 (3)
C2—C31.390 (3)C13—C141.490 (3)
C2—C71.391 (3)C13—H13A0.9700
C3—C41.372 (3)C13—H13B0.9700
C3—H30.9300C14—N11.476 (3)
C4—C51.386 (3)C14—H14A0.9700
C4—H40.9300C14—H14B0.9700
C5—C61.392 (3)N1—Cd12.3686 (17)
C5—C81.497 (3)O1—Cd12.2691 (15)
C6—C71.379 (3)O2—Cd22.4045 (16)
C6—H60.9300O2—Cd12.5792 (16)
C7—H70.9300O3—Cd2i2.3657 (17)
C8—O31.249 (3)O4—Cd2i2.3237 (18)
C8—O41.271 (3)O5—Cd12.3280 (17)
C9—O51.421 (3)O5—HO10.890 (10)
C9—C101.496 (4)O6—Cd12.361 (2)
C9—H9A0.9700O6—HO20.887 (10)
C9—H9B0.9700O7—Cd12.3273 (16)
C10—N11.482 (3)O7—HO30.889 (10)
C10—H10A0.9700Cl1—Cd22.5343 (8)
C10—H10B0.9700Cl1—Cd12.6726 (13)
C11—O61.428 (3)Cl2—Cd2ii2.5460 (8)
C11—C121.512 (4)Cl2—Cd22.6473 (8)
C11—H11A0.9700Cd2—O4i2.3236 (18)
C11—H11B0.9700Cd2—O3i2.3657 (17)
C12—N11.473 (3)Cd2—Cl2ii2.5460 (8)
O2—C1—O1121.39 (18)C12—N1—C10112.6 (2)
O2—C1—C2119.52 (18)C14—N1—C10109.35 (19)
O1—C1—C2119.09 (18)C12—N1—Cd1110.67 (13)
C3—C2—C7119.46 (19)C14—N1—Cd1106.16 (13)
C3—C2—C1119.34 (18)C10—N1—Cd1104.35 (13)
C7—C2—C1121.14 (18)C1—O1—Cd199.18 (12)
C4—C3—C2120.5 (2)C1—O2—Cd2127.77 (14)
C4—C3—H3119.8C1—O2—Cd185.12 (12)
C2—C3—H3119.8Cd2—O2—Cd1101.80 (6)
C3—C4—C5120.35 (19)C8—O3—Cd2i90.83 (13)
C3—C4—H4119.8C8—O4—Cd2i92.22 (13)
C5—C4—H4119.8C9—O5—Cd1115.75 (14)
C4—C5—C6119.34 (19)C9—O5—HO1107.4 (17)
C4—C5—C8120.83 (19)Cd1—O5—HO1117.0 (16)
C6—C5—C8119.73 (19)C11—O6—Cd1108.79 (14)
C7—C6—C5120.5 (2)C11—O6—HO2104.1 (17)
C7—C6—H6119.8Cd1—O6—HO2124.9 (17)
C5—C6—H6119.8C13—O7—Cd1118.85 (13)
C6—C7—C2119.9 (2)C13—O7—HO3116.5 (17)
C6—C7—H7120.1Cd1—O7—HO3124.5 (16)
C2—C7—H7120.1Cd2—Cl1—Cd195.95 (2)
O3—C8—O4121.09 (19)Cd2ii—Cl2—Cd294.52 (3)
O3—C8—C5119.62 (19)O1—Cd1—O789.14 (6)
O4—C8—C5119.3 (2)O1—Cd1—O5126.22 (6)
O3—C8—Cd2i61.52 (11)O7—Cd1—O5144.29 (6)
O4—C8—Cd2i59.63 (11)O1—Cd1—O692.44 (6)
C5—C8—Cd2i175.65 (15)O7—Cd1—O687.32 (6)
O5—C9—C10111.2 (2)O5—Cd1—O686.40 (7)
O5—C9—H9A109.4O1—Cd1—N1156.62 (6)
C10—C9—H9A109.4O7—Cd1—N171.19 (6)
O5—C9—H9B109.4O5—Cd1—N173.25 (6)
C10—C9—H9B109.4O6—Cd1—N174.61 (6)
H9A—C9—H9B108.0O1—Cd1—O253.49 (5)
N1—C10—C9113.0 (2)O7—Cd1—O2135.00 (6)
N1—C10—H10A109.0O5—Cd1—O278.70 (6)
C9—C10—H10A109.0O6—Cd1—O2115.06 (5)
N1—C10—H10B109.0N1—Cd1—O2149.75 (5)
C9—C10—H10B109.0O1—Cd1—Cl197.34 (5)
H10A—C10—H10B107.8O7—Cd1—Cl188.54 (5)
O6—C11—C12111.7 (2)O5—Cd1—Cl191.24 (5)
O6—C11—H11A109.3O6—Cd1—Cl1169.31 (4)
C12—C11—H11A109.3N1—Cd1—Cl194.72 (6)
O6—C11—H11B109.3O2—Cd1—Cl174.56 (4)
C12—C11—H11B109.3O4i—Cd2—O3i55.79 (6)
H11A—C11—H11B107.9O4i—Cd2—O297.68 (6)
N1—C12—C11113.8 (2)O3i—Cd2—O297.87 (6)
N1—C12—H12A108.8O4i—Cd2—Cl198.75 (4)
C11—C12—H12A108.8O3i—Cd2—Cl1154.21 (4)
N1—C12—H12B108.8O2—Cd2—Cl180.18 (4)
C11—C12—H12B108.8O4i—Cd2—Cl2ii147.67 (4)
H12A—C12—H12B107.7O3i—Cd2—Cl2ii91.89 (5)
O7—C13—C14108.94 (19)O2—Cd2—Cl2ii85.20 (5)
O7—C13—H13A109.9Cl1—Cd2—Cl2ii113.42 (3)
C14—C13—H13A109.9O4i—Cd2—Cl296.27 (5)
O7—C13—H13B109.9O3i—Cd2—Cl293.76 (5)
C14—C13—H13B109.9O2—Cd2—Cl2165.31 (4)
H13A—C13—H13B108.3Cl1—Cd2—Cl293.18 (2)
N1—C14—C13113.02 (19)Cl2ii—Cd2—Cl285.48 (3)
N1—C14—H14A109.0O4i—Cd2—C8i28.15 (6)
C13—C14—H14A109.0O3i—Cd2—C8i27.66 (6)
N1—C14—H14B109.0O2—Cd2—C8i98.12 (6)
C13—C14—H14B109.0Cl1—Cd2—C8i126.72 (5)
H14A—C14—H14B107.8Cl2ii—Cd2—C8i119.52 (5)
C12—N1—C14113.16 (19)Cl2—Cd2—C8i96.34 (6)
O2—C1—C2—C326.2 (3)C11—O6—Cd1—O598.61 (16)
O1—C1—C2—C3154.2 (2)C11—O6—Cd1—N125.00 (15)
O2—C1—C2—C7151.0 (2)C11—O6—Cd1—O2174.36 (14)
O1—C1—C2—C728.6 (3)C11—O6—Cd1—Cl121.1 (3)
C7—C2—C3—C40.5 (3)C12—N1—Cd1—O158.6 (2)
C1—C2—C3—C4176.7 (2)C14—N1—Cd1—O164.5 (2)
C2—C3—C4—C51.5 (4)C10—N1—Cd1—O1179.98 (17)
C3—C4—C5—C62.0 (3)C12—N1—Cd1—O792.73 (15)
C3—C4—C5—C8174.3 (2)C14—N1—Cd1—O730.43 (15)
C4—C5—C6—C70.6 (4)C10—N1—Cd1—O7145.91 (16)
C8—C5—C6—C7175.8 (2)C12—N1—Cd1—O590.56 (15)
C5—C6—C7—C21.4 (4)C14—N1—Cd1—O5146.28 (16)
C3—C2—C7—C61.9 (4)C10—N1—Cd1—O530.80 (15)
C1—C2—C7—C6175.3 (2)C12—N1—Cd1—O60.30 (14)
C4—C5—C8—O3163.6 (2)C14—N1—Cd1—O6122.86 (16)
C6—C5—C8—O312.7 (3)C10—N1—Cd1—O6121.65 (16)
C4—C5—C8—O414.2 (3)C12—N1—Cd1—O2113.29 (16)
C6—C5—C8—O4169.5 (2)C14—N1—Cd1—O2123.54 (16)
C4—C5—C8—Cd2i60 (2)C10—N1—Cd1—O28.1 (2)
C6—C5—C8—Cd2i117 (2)C12—N1—Cd1—Cl1179.57 (14)
O5—C9—C10—N146.8 (3)C14—N1—Cd1—Cl156.41 (15)
O6—C11—C12—N150.0 (3)C10—N1—Cd1—Cl159.07 (15)
O7—C13—C14—N145.5 (3)C1—O2—Cd1—O15.09 (12)
C11—C12—N1—C1494.1 (2)Cd2—O2—Cd1—O1132.69 (9)
C11—C12—N1—C10141.3 (2)C1—O2—Cd1—O734.86 (15)
C11—C12—N1—Cd124.9 (2)Cd2—O2—Cd1—O792.74 (8)
C13—C14—N1—C1269.5 (3)C1—O2—Cd1—O5158.93 (13)
C13—C14—N1—C10164.1 (2)Cd2—O2—Cd1—O573.46 (7)
C13—C14—N1—Cd152.0 (3)C1—O2—Cd1—O678.38 (13)
C9—C10—N1—C1268.1 (3)Cd2—O2—Cd1—O6154.02 (6)
C9—C10—N1—C14165.2 (2)C1—O2—Cd1—N1178.89 (13)
C9—C10—N1—Cd151.9 (2)Cd2—O2—Cd1—N151.29 (13)
O2—C1—O1—Cd19.9 (2)C1—O2—Cd1—Cl1106.59 (12)
C2—C1—O1—Cd1169.72 (16)Cd2—O2—Cd1—Cl121.01 (4)
O1—C1—O2—Cd2109.7 (2)Cd2—Cl1—Cd1—O168.42 (4)
C2—C1—O2—Cd269.8 (2)Cd2—Cl1—Cd1—O7157.37 (4)
O1—C1—O2—Cd18.6 (2)Cd2—Cl1—Cd1—O558.35 (5)
C2—C1—O2—Cd1170.99 (18)Cd2—Cl1—Cd1—O6135.4 (2)
O4—C8—O3—Cd2i2.6 (2)Cd2—Cl1—Cd1—N1131.64 (5)
C5—C8—O3—Cd2i175.19 (18)Cd2—Cl1—Cd1—O219.56 (3)
O3—C8—O4—Cd2i2.6 (2)C1—O2—Cd2—O4i26.35 (17)
C5—C8—O4—Cd2i175.15 (17)Cd1—O2—Cd2—O4i119.33 (5)
C10—C9—O5—Cd115.3 (3)C1—O2—Cd2—O3i82.70 (17)
C12—C11—O6—Cd147.1 (2)Cd1—O2—Cd2—O3i175.68 (5)
C14—C13—O7—Cd115.2 (3)C1—O2—Cd2—Cl171.26 (16)
C1—O1—Cd1—O7147.92 (14)Cd1—O2—Cd2—Cl121.71 (4)
C1—O1—Cd1—O537.48 (16)C1—O2—Cd2—Cl2ii173.95 (16)
C1—O1—Cd1—O6124.81 (14)Cd1—O2—Cd2—Cl2ii93.08 (5)
C1—O1—Cd1—N1179.98 (15)C1—O2—Cd2—Cl2135.26 (16)
C1—O1—Cd1—O25.08 (12)Cd1—O2—Cd2—Cl242.28 (17)
C1—O1—Cd1—Cl159.50 (13)C1—O2—Cd2—C8i54.77 (17)
C13—O7—Cd1—O1175.87 (19)Cd1—O2—Cd2—C8i147.75 (6)
C13—O7—Cd1—O53.3 (2)Cd1—Cl1—Cd2—O4i116.92 (5)
C13—O7—Cd1—O683.38 (19)Cd1—Cl1—Cd2—O3i108.35 (11)
C13—O7—Cd1—N18.72 (18)Cd1—Cl1—Cd2—O220.57 (4)
C13—O7—Cd1—O2153.06 (17)Cd1—Cl1—Cd2—Cl2ii59.78 (4)
C13—O7—Cd1—Cl186.76 (19)Cd1—Cl1—Cd2—Cl2146.234 (19)
C9—O5—Cd1—O1174.51 (17)Cd1—Cl1—Cd2—C8i113.43 (7)
C9—O5—Cd1—O73.8 (2)Cd2ii—Cl2—Cd2—O4i147.57 (4)
C9—O5—Cd1—O684.12 (19)Cd2ii—Cl2—Cd2—O3i91.60 (5)
C9—O5—Cd1—N19.11 (18)Cd2ii—Cl2—Cd2—O250.76 (15)
C9—O5—Cd1—O2159.43 (19)Cd2ii—Cl2—Cd2—Cl1113.26 (3)
C9—O5—Cd1—Cl185.44 (19)Cd2ii—Cl2—Cd2—Cl2ii0.0
C11—O6—Cd1—O1135.24 (15)Cd2ii—Cl2—Cd2—C8i119.25 (6)
C11—O6—Cd1—O746.21 (16)
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—HO1···Cl2ii0.89 (1)2.21 (1)3.096 (2)174 (2)
O6—HO2···O4iii0.89 (1)1.78 (1)2.666 (2)178 (3)
O7—HO3···O1iv0.89 (1)1.78 (1)2.667 (2)175 (2)
Symmetry codes: (ii) x+1/2, y+1/2, z; (iii) x+1, y+1, z; (iv) x+1, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Cd2(C8H4O4)Cl2(C6H15NO3)]
Mr609.00
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)23.251 (5), 8.907 (5), 19.233 (5)
β (°) 101.221 (5)
V3)3907 (3)
Z8
Radiation typeMo Kα
µ (mm1)2.49
Crystal size (mm)0.40 × 0.40 × 0.20
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.436, 0.636
No. of measured, independent and
observed [I > 2σ(I)] reflections
13547, 4821, 4261
Rint0.019
(sin θ/λ)max1)0.670
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.047, 1.03
No. of reflections4821
No. of parameters244
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.62

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL-Plus (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
N1—Cd12.3686 (17)O7—Cd12.3273 (16)
O1—Cd12.2691 (15)Cl1—Cd22.5343 (8)
O2—Cd22.4045 (16)Cl1—Cd12.6726 (13)
O2—Cd12.5792 (16)Cl2—Cd2ii2.5460 (8)
O3—Cd2i2.3657 (17)Cl2—Cd22.6473 (8)
O4—Cd2i2.3237 (18)Cd2—O4i2.3236 (18)
O5—Cd12.3280 (17)Cd2—O3i2.3657 (17)
O6—Cd12.361 (2)Cd2—Cl2ii2.5460 (8)
O1—Cd1—O789.14 (6)O6—Cd1—Cl1169.31 (4)
O1—Cd1—O5126.22 (6)N1—Cd1—Cl194.72 (6)
O7—Cd1—O5144.29 (6)O2—Cd1—Cl174.56 (4)
O1—Cd1—O692.44 (6)O4i—Cd2—O3i55.79 (6)
O7—Cd1—O687.32 (6)O4i—Cd2—O297.68 (6)
O5—Cd1—O686.40 (7)O3i—Cd2—O297.87 (6)
O1—Cd1—N1156.62 (6)O4i—Cd2—Cl198.75 (4)
O7—Cd1—N171.19 (6)O3i—Cd2—Cl1154.21 (4)
O5—Cd1—N173.25 (6)O2—Cd2—Cl180.18 (4)
O6—Cd1—N174.61 (6)O4i—Cd2—Cl2ii147.67 (4)
O1—Cd1—O253.49 (5)O3i—Cd2—Cl2ii91.89 (5)
O7—Cd1—O2135.00 (6)O2—Cd2—Cl2ii85.20 (5)
O5—Cd1—O278.70 (6)Cl1—Cd2—Cl2ii113.42 (3)
O6—Cd1—O2115.06 (5)O4i—Cd2—Cl296.27 (5)
N1—Cd1—O2149.75 (5)O3i—Cd2—Cl293.76 (5)
O1—Cd1—Cl197.34 (5)O2—Cd2—Cl2165.31 (4)
O7—Cd1—Cl188.54 (5)Cl1—Cd2—Cl293.18 (2)
O5—Cd1—Cl191.24 (5)Cl2ii—Cd2—Cl285.48 (3)
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—HO1···Cl2ii0.890 (10)2.209 (10)3.096 (2)174 (2)
O6—HO2···O4iii0.887 (10)1.779 (10)2.666 (2)178 (3)
O7—HO3···O1iv0.889 (10)1.780 (10)2.667 (2)175 (2)
Symmetry codes: (ii) x+1/2, y+1/2, z; (iii) x+1, y+1, z; (iv) x+1, y, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds