Download citation
Download citation
link to html
The title compounds, bis­([mu]-3,5-dichloro-2-oxidobenzoato)-[kappa]3O1,O2:O2;[kappa]3O2:O1,O2-bis­[(3,5-dichloro-2-hy­droxy­benzoic acid-[kappa]O1)(1,10-phenanthroline-[kappa]2N,N')copper(II)], [Cu2(C7H2Cl2O3)2(C7H4Cl2O3)2(C12H8N2)2], (I), and bis­([mu]-5-chloro-2-oxidobenzoato)-[kappa]3O1,O2:O1;[kappa]3O1:O1,O2-bis­[(5-chloro-2-hy­droxy­benzoic acid-[kappa]O1)(1,10-phenanthroline-[kappa]2N,N')copper(II)] ethanol monosolvate, [Cu2(C7H3ClO3)2(C7H5ClO3)2(C12H8N2)2]·C2H6O, (II), contain centrosymmetric dinuclear complex mol­ecules in which Cu2+ cations are surrounded by a chelating 1,10-phenanthroline ligand, a chelating 3,5-dichloro-2-oxidoben­zoate or 5-chloro-2-oxidobenzoate an­ionic ligand and a monodentate 3,5-dichloro-2-hydroxybenzoic acid or 5-chloro-2-hy­droxybenzoic acid ligand. The chelating benzoate ligand also bridges to the other Cu2+ ion in the molecule, but the O atom involved in the bridge is different in the two complexes, being the phenolate O atom in (I) and a carboxylate O atom in (II). The bridge completes a 4+1+1 axially elongated tetragonal-bipy­ram­idal arrangement about each Cu2+ cation. The complex mol­ecules of both compounds are linked into one-dimensional supra­molecular chains through O-H...O hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270112004532/sf3164sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112004532/sf3164Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112004532/sf3164IIsup3.hkl
Contains datablock II

CCDC references: 879427; 879428

Comment top

Many copper complexes with a variety of organic chelating ligands have been shown to possess biological activities including anti-inflammatory and anti-convulsant properties (Lemoine et al., 2002), cytotoxicity and antiviral activity (Ranford et al., 1993). Several copper(II) complexes acting as proteasome inhibitors capable of inducing programmed cell death (apoptosis) have been prepared and characterized. In these complexes the metal ion is coordinated to heteroatomic neutral ligands such as the 1,10-phenantroline ligand (Marzano et al.). It has been reported that the copper complex with 1,10-phenanthroline is able to induce the formation of free radicals which in turn degradate DNA under in vitro conditions. The mechanism of action of this complex is derived from the potential intercalation of planar phenanthroline into DNA and the in situ generation of free radicals, predominantly hydroxy radicals mediated by the presence of copper (Sigman, 1986; Sigman et al., 1993). In these aspects, copper complexes with the chelating 1,10-phenanthroline ligand can be used as anticancer agents (Tardito & Marchio, 2009; Tisato et al., 2010).

Salicylic acid (2-hydroxybenzoic acid; salH2) and its substituted derivatives can be coordinated as neutral molecular ligands or as anionic ligands with deprotonic carboxyl (salH-) or deprotonic carboxyl and hydroxy groups (sal2-), which can be coordinated as chelating and/or bridging ligands. In view of these results, in this preliminary contribution, we directed our attention to the preparation and structural characterization of potentially bioactive copper(II) 1,10-phenantroline complexes with anions of two derivatives of salicylic acid.

The structure of bis(µ-3,5-dichloro-2-oxidobenzoato)bis[(3,5-dichloro-2-hydroxybenzoic acid)(1,10-phenanthroline)copper(II)], (I) (Fig. 1), exhibits a centrosymmetric dinuclear molecular structure. Two Cu atoms are organized in a dimeric unit via bridging O atoms of the phenolic groups of 3,5-dichloro-2-oxidobenzoate anions [O3 and O3i; symmetry code: (i) -x+1, -y+1, -z+1]. Each Cu atom in the dimeric unit is hexacoordinated in the tetragonal bipyramid by O atoms of a phenolic group of bridging 3,5-dichloro-2-oxidobenzoate anions [Cu1—O1 = 1.906 (2) Å], an O atom of a carboxylic group from 3,5-dichloro-2-oxidobenzoate anions [Cu1—O3 = 1.882 (2) Å], two N atoms of 1,10-phenanthroline ligands [Cu1—N1 = 2.011 (3) Å and Cu1—N2 = 1.989 (3) Å] in the equatorial plane, two O atoms of the phenolic group of second bridging 3,5-dichloro-2-oxidobenzoate anions [Cu1—O3i = 2.715 (3) Å] and the carboxyl group of coordinated molecules of 3,5-dichloro-2-hydroxybenzoic acid [Cu1—O4 = 2.585 (3) Å] in apical positions. This complex represents the first example of a dimeric complex with bridging as well as chelating O atom of the phenolate group of sal2- anions. Interestingly, a three-atom carboxylate bridging ligand (Cu—O—C—O—Cu) in a dimeric copper(II) sal2- complex was recently reported by Weng et al. (2007).

The crystal structure of complex bis(µ-5-chloro-2-oxidobenzoato)bis[(5-chloro-2-hydroxybenzoic acid)(1,10-phenanthroline)copper(II)] ethanol monosolvate, (II) (Fig. 2), consists of centrosymmetric dimeric complex molecules and disordered ethanol solvent molecules (see Experimental). The Cu atom in the dimeric complex molecule is coordinated by two phenanthroline N atoms [Cu1—N1 = 2.001 (2) Å and Cu1—N2 = 2.005 (2) Å], two O atoms from 5-chloro-2-oxidobenzoate anions (phenolate and carboxylate groups) [Cu1—O1 = 1.904 (1) Å and Cu1—O3 = 1.880 (1) Å] in square-planar coordination and two apical positions are occupied by carboxyl O atoms from a coordinated molecule of 5-chloro-2-hydroxybenzoic acid [Cu1—O4 = 2.582 (2) Å] and from the bridging carboxylate group of a second 5-chloro-2-oxidobenzoate anion [Cu1—O1i = 2.984 (2) Å]. This Cu1—O1i bond length of 2.984 (2) Å in (II) is somewhat longer, although it is in the range found for copper(II) complexes with tetragonal–bipyramidal coordination around the Cu2+ ion (Melnik, Kabesova, Koman et al., 1998; Melnik, Kabesova, Macaskova et al., 1998) possesing Jahn–Teller distortions (Gazo et al., 1976).

The molecular structures of (I) and (II) revealed the existence of two alternative bridging coordinations of sal2- anions through bridging phenolic or carboxylic O atoms. Similarity in the binding mode of bridging sal2- ligands could be attributed to almost identical energy of both structural configurations. More insight into this phenomenon can be obtained from theoretical calculations. The Cu1···Cu1i distances of 3.3457 (8) Å for (I) with bridging carboxylate O atoms are close to the range of 3.15–3.31 Å found in dimeric copper(II) sal2- complexes with bridging phenolic O atoms (Lemoine et al., 1999, 2000, 2002; Fan et al., 2005; Hu et al. 2007; Nie et al., 2010; Palanisami et al., 2006; Geraghty et al., 1999; Wang & Okabe, 2004). On the other hand, dimeric complex (II) has a longer Cu1···Cu1i distance of 3.5709 (5) Å. We note that the Cu···Cu distance in the dimeric complex with a three-atom bridging sal2- ligand has been reported to be 4.93 Å (Wen et al., 2007). Both (I) and (II) are coordinated by six donor atoms and they represent the first two examples of copper(II) sal2- complexes with coordinated salicylic acid as a ligand, but all other known dimeric copper(II) sal2- complexes are coordinated by five atoms (two pyridine N atoms of 1,10-phenanthroline or 2,2'-bipyridine and three O atoms of phenolate and carboxylate groups of sal2- bridging anionic ligands or its derivatives). The Cu atoms in monomeric copper(II) sal2- complexes have a tetragonal–planar coordination environment formed by two pyridine N atoms and two O atoms of sal2- anions (Zhang et al., 2007a,b) in a tetragonal–pyramidal coordination environment forming the same atoms in a square plane and O or N atoms in axial positions from another ligand as water (Gao et al., 2009; Zhang et al., 2008; Yu et al., 2009) or pyridine (Wen et al., 2007), respectively. In the known complexes, the distances between the Cu atom and O atom from axial coordinated bridging sal2- ligands in dimeric complexes are in the range of 2.28–2.65 Å, but Cu–Lax bond distance in monomeric complexes are in a narrower range (2.26–2.35 Å).

The aromatic rings of benzoate, benzoic acid and 1,10-phenanthroline ligands of both complexes are stacked (Figs. 1 and 2). ππ stacking interactions (Janiak, 2000) are observed between the benzene ring of the sal2- anion and the benzene ring of salicylic acid ligand. The distances between two benzene rings are in the range 3.34–3.68 Å for (I) and 3.27–3.84 Å for (II). The second ππ stacking interactions (Janiak, 2000) are between the benzene ring of the sal2- anion and adjacent aromatic rings of 1,10-phenanthroline ligands at (-x+1, -y+1, -z+1), with the separation between the planes of the aromatic rings in the range 3.16–3.99 Å for (I) and 3.24–3.70 Å for (II).

The centroid–centroid distances in (I) are 3.732 (2) Å between the benzene ring (C14–C19) of the 3,5-dichloro-2-oxidobenzoate anion and the benzene ring (C21–C26) of the 3,5-dichloro-2-hydroxybenzoic acid molecule, and 3.837 (2) Å between the C14–C19 benzene ring and the benzene ring (C4–C7/C11/C12) of the 1,10-phenanthroline ligand in the molecule at (-x+1, -y+1, -z+1). The centroid–centroid in (II) are 3.8030 (13) Å between the benzene ring (C14–C19) of the 5-chloro-2-oxidobenzoate anion and the benzene ring (C21–C26) of the 5-chloro-2-hydroxybenzoic acid molecule, and 3.5754 (13) Å between the C14–C19 benzene ring and the N2/C6–C10 pyridine ring N2/C6–C10 of the 1,10-phenanthroline ligand in the molecule at (-x+1, -y+1, -z+1).

The crystal packings of (I) and (II) are shown in Figs. 3 and 4, respectively. The complex molecules of both compounds are connected through O5—H5O···O2ii hydrogen bonds [symmetry code: (ii) -x+2, -y+1, -z+1] between the carboxyl H atom of a coordinated 3,5-dichloro-2-hydroxybenzoic acid molecule or a 5-chloro-2-hydroxybenzoic acid molecule and the uncoordinated O atom of the carboxylate group of 3,5-dichloro-2-oxidobenzoate or 5-chloro-2-oxidobenzoate anion, into one-dimensional supramolecular band chains. The O5···O2ii distances are 2.489 (3) and 2.472 (2) Å, respectively, and the O5—H5O—O2ii angles for both complexes have a value of 165°. The disordered uncoordinated ethanol solvent molecules of (II) are connected through an O1S–H1S···O6 hydrogen bond to the hydroxy O atom of a coordinated 5-chloro-2-hydroxybenzoic acid molecule. The O1S···O6 distance is 2.811 (7) Å and the O1S–H1S–O6 angle is 159°. The crystal structure of (II) is observed also to have short Cl2···Cl2iii contacts (Desiraju, 1995) [symmetry code: (iii) -x+3, -y+1, -z] with an interatomic distance of 3.257 (2) Å.

In this contribution, we report the crystal structures of two copper(II)–1,10-phenantroline complexes with derivatives of salicylic acid. The structural study revealed dimeric complexes with hexacoordination around the Cu atom. Further work on the biological activity of the prepared complexes is in progress.

Related literature top

For related literature, see: Desiraju (1995); Fan & Zhu (2005); Gao et al. (2009); Gazo et al. (1976); Geraghty et al. (1999); Hu et al. (2007); Janiak (2000); Lemoine et al. (1999, 2000, 2002); Melnik, Kabesova, Koman et al. (1998); Melnik, Kabesova, Macaskova et al. (1998); Nie et al. (2010); Palanisami et al. (2006); Ranford et al. (1993); Sheldrick (2008); Sigman (1986); Sigman et al. (1993); Tardito & Marchio (2009); Tisato et al. (2010); Wang & Okabe (2004); Wen et al. (2007); Weng et al. (2007); Yu et al. (2009); Zhang et al. (2007a, 2007b, 2008).

Experimental top

The title copper complexes were prepared in a similar manner to methods described previously by Ranford et al. (1993). To the royal-blue solution formed from copper(II) acetate hydrate (0.200 g, 1 mmol) and 1,10-phenanthroline (0.182 g, 1.00 mmol) in ethanol (40 ml) was added 3,5-dichloro-2-hydroxybenzoic acid (0.207 g, 1 mmol) for (I) or 5-chloro-2-hydroxybenzoic acid (0.173 g, 1 mmol) for (II). The resulting mixture was stirred for 4 d and the resulting green products were filtered off and washed with ethanol. The green filtrates were left to stand at room temperature for about 2 weeks giving crystals suitable for X-ray analysis. The compositions of the main product and the corresponding crystals obtained from the green filtrates were checked with IR measurements and were found to be identical.

Refinement top

The 3,5-dichloro-2-hydroxybenzoic acid ligand of (I) has orientational disorder of the hydroxy group (O6/O7) and the site-occupation factors of the disordered parts are 0.807 (8) and 0.193 (8), respectively. The C—O distances involving these disordered hydroxy groups were restrained to 1.350 (1) Å, while the displacement parameters of the atoms at each end of these bonds were restrained to be similar (SIMU and DELU instructions in SHELXL97; Sheldrick, 2008).

The ethanol solvent molecule of (II) lies is disordered around an inversion centre. Distance restraints of 1.43 (1), 1.54 (1) and 2.38 (2) Å were applied to the O1S—C1S, C1S—C2S and O1S···C2S distances respectively, while the displacement parameters of the solvent atoms were restrained to be similar (SIMU and DELU commands in SHELXL97).

The aromatic and methylene H atoms were positioned with C—H = 0.93 and 0.97 Å, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C). The methyl H atoms were positioned with C—H = 0.98 Å and constrained to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C). The hydroxy/carboxylic acid H atoms were positioned with O—H = 0.82 Å and constrained to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C) using the AFIX 147 command for the nondisordered O–H group and AFIX 83 for the disordered O–H groups.

Computing details top

For both compounds, data collection: CrysAlis CCD (Agilent, 2011); cell refinement: CrysAlis RED (Agilent, 2011); data reduction: CrysAlis RED (Agilent, 2011). Program(s) used to solve structure: SIR97 (Altomare et al., 1999) for (I); SHELXS97 (Sheldrick, 2008) for (II). For both compounds, program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A perspective view of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A perspective view of (II), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 3] Fig. 3. The crystal structure of (I). H atoms of the aromatic rings have been omitted for clarity.
[Figure 4] Fig. 4. The crystal structure of (II). H atoms of the aromatic rings and ethyl groups have been omitted for clarity.
(I) bis(µ-3,5-dichloro-2-oxidobenzoato)- κ3O1,O2:O2; κ3O2:O1,O2- bis[(3,5-dichloro-2-hydroxybenzoic acid-κO1)(1,10- phenanthroline-κ2N,N')copper(II)] top
Crystal data top
[Cu2(C7H2Cl2O3)2(C12H8N2)2(C7H4Cl2O3)2]Z = 1
Mr = 1311.48F(000) = 658
Triclinic, P1Dx = 1.722 Mg m3
Hall symbol: -P1Mo Kα radiation, λ = 0.71069 Å
a = 9.2295 (2) ÅCell parameters from 4563 reflections
b = 11.6047 (3) Åθ = 4.2–26.4°
c = 12.9863 (3) ŵ = 1.33 mm1
α = 102.423 (2)°T = 293 K
β = 99.045 (2)°Prism, green
γ = 106.753 (2)°0.43 × 0.14 × 0.05 mm
V = 1264.44 (5) Å3
Data collection top
Gemini R CCD
diffractometer
5150 independent reflections
Radiation source: fine-focus sealed tube3886 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
Detector resolution: 10.4340 pixels mm-1θmax = 26.4°, θmin = 4.2°
ω scansh = 1111
Absorption correction: analytical
CrysAlis RED (Agilent, 2011)
k = 1414
Tmin = 0.598, Tmax = 0.936l = 1616
31426 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.160H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0989P)2 + 0.1443P]
where P = (Fo2 + 2Fc2)/3
5150 reflections(Δ/σ)max < 0.001
363 parametersΔρmax = 0.62 e Å3
16 restraintsΔρmin = 0.85 e Å3
Crystal data top
[Cu2(C7H2Cl2O3)2(C12H8N2)2(C7H4Cl2O3)2]γ = 106.753 (2)°
Mr = 1311.48V = 1264.44 (5) Å3
Triclinic, P1Z = 1
a = 9.2295 (2) ÅMo Kα radiation
b = 11.6047 (3) ŵ = 1.33 mm1
c = 12.9863 (3) ÅT = 293 K
α = 102.423 (2)°0.43 × 0.14 × 0.05 mm
β = 99.045 (2)°
Data collection top
Gemini R CCD
diffractometer
5150 independent reflections
Absorption correction: analytical
CrysAlis RED (Agilent, 2011)
3886 reflections with I > 2σ(I)
Tmin = 0.598, Tmax = 0.936Rint = 0.050
31426 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05316 restraints
wR(F2) = 0.160H-atom parameters constrained
S = 1.08Δρmax = 0.62 e Å3
5150 reflectionsΔρmin = 0.85 e Å3
363 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu0.60314 (4)0.40947 (3)0.53005 (3)0.04638 (18)
Cl10.55093 (13)0.67789 (11)0.83481 (9)0.0711 (3)
Cl21.09054 (14)1.02441 (9)0.84931 (9)0.0798 (4)
Cl30.7025 (3)0.5575 (3)1.06156 (15)0.1492 (8)
Cl41.2585 (3)0.84339 (15)1.03319 (13)0.1382 (7)
O10.7740 (3)0.5084 (2)0.48679 (19)0.0471 (6)
O20.9763 (3)0.6699 (2)0.49652 (18)0.0485 (6)
O30.5898 (3)0.5492 (2)0.6279 (2)0.0520 (6)
O40.7913 (3)0.3679 (2)0.6760 (2)0.0608 (7)
O51.0353 (3)0.4738 (3)0.6795 (2)0.0618 (7)
H5O1.01660.41990.62210.093*
O60.6882 (4)0.4162 (4)0.8478 (3)0.0838 (15)0.807 (8)
H6O0.68770.37740.78690.126*0.807 (8)
O71.1941 (11)0.6603 (16)0.8283 (10)0.083 (6)0.193 (8)
H7O1.17260.60720.77010.124*0.193 (8)
N10.4294 (3)0.2920 (3)0.5714 (3)0.0517 (7)
N20.5849 (3)0.2533 (3)0.4211 (2)0.0479 (7)
C10.3560 (4)0.3145 (4)0.6483 (4)0.0630 (10)
H10.38400.39610.69200.076*
C20.2381 (5)0.2212 (5)0.6669 (4)0.0798 (14)
H20.19000.24000.72310.096*
C30.1940 (5)0.1026 (5)0.6024 (4)0.0767 (13)
H30.11380.04020.61370.092*
C40.2676 (5)0.0727 (4)0.5191 (4)0.0669 (12)
C50.3864 (4)0.1725 (3)0.5076 (3)0.0530 (9)
C60.4694 (4)0.1516 (3)0.4254 (3)0.0514 (9)
C70.4320 (5)0.0316 (3)0.3559 (3)0.0608 (11)
C80.5189 (6)0.0213 (4)0.2780 (4)0.0742 (13)
H80.49840.05620.22940.089*
C90.6329 (5)0.1221 (4)0.2717 (4)0.0700 (12)
H90.68920.11390.21880.084*
C100.6646 (4)0.2382 (4)0.3454 (3)0.0570 (9)
H100.74380.30680.34150.068*
C110.3119 (6)0.0679 (4)0.3705 (5)0.0786 (15)
H110.28660.14810.32500.094*
C120.2354 (6)0.0496 (4)0.4467 (5)0.0814 (15)
H120.15850.11760.45400.098*
C130.8641 (4)0.6201 (3)0.5341 (3)0.0400 (7)
C140.8395 (3)0.6933 (3)0.6341 (2)0.0375 (7)
C150.7078 (4)0.6523 (3)0.6762 (3)0.0407 (7)
C160.7041 (4)0.7285 (3)0.7748 (3)0.0450 (8)
C170.8200 (5)0.8419 (3)0.8281 (3)0.0539 (9)
H170.81390.89060.89330.065*
C180.9439 (4)0.8812 (3)0.7831 (3)0.0508 (9)
C190.9560 (4)0.8096 (3)0.6887 (3)0.0452 (8)
H191.04170.83770.66020.054*
C200.9188 (4)0.4519 (3)0.7214 (3)0.0480 (8)
C210.9406 (4)0.5354 (3)0.8310 (3)0.0500 (8)
C220.8234 (4)0.5122 (3)0.8889 (3)0.0626 (10)
H220.73110.44550.85810.075*0.20
C230.8449 (7)0.5886 (6)0.9909 (4)0.0778 (13)
C240.9727 (8)0.6856 (5)1.0346 (4)0.0873 (16)
H240.98490.73631.10360.105*
C251.0910 (7)0.7138 (4)0.9786 (4)0.0811 (14)
C261.0740 (5)0.6359 (4)0.8768 (3)0.0589 (10)
H261.15290.65210.83990.071*0.80
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.0434 (3)0.0300 (2)0.0577 (3)0.00602 (17)0.01151 (19)0.00436 (18)
Cl10.0770 (7)0.0819 (7)0.0699 (7)0.0359 (6)0.0371 (5)0.0253 (6)
Cl20.0952 (8)0.0466 (6)0.0645 (7)0.0014 (5)0.0161 (6)0.0157 (5)
Cl30.1891 (19)0.223 (2)0.1045 (13)0.1281 (19)0.0858 (13)0.0678 (14)
Cl40.1851 (17)0.0797 (10)0.0812 (10)0.0053 (10)0.0326 (10)0.0177 (8)
O10.0504 (13)0.0313 (11)0.0485 (13)0.0052 (10)0.0129 (10)0.0013 (10)
O20.0550 (13)0.0360 (12)0.0440 (13)0.0034 (10)0.0169 (11)0.0017 (10)
O30.0448 (13)0.0384 (13)0.0658 (16)0.0091 (10)0.0179 (11)0.0034 (11)
O40.0617 (15)0.0469 (15)0.0605 (16)0.0071 (13)0.0116 (13)0.0047 (12)
O50.0580 (15)0.0620 (17)0.0465 (15)0.0075 (13)0.0139 (12)0.0072 (12)
O60.079 (3)0.102 (3)0.080 (3)0.033 (2)0.032 (2)0.032 (2)
O70.048 (8)0.080 (11)0.079 (11)0.006 (7)0.012 (6)0.004 (8)
N10.0420 (15)0.0419 (16)0.066 (2)0.0067 (13)0.0068 (14)0.0195 (14)
N20.0440 (15)0.0348 (15)0.0547 (18)0.0106 (12)0.0029 (13)0.0056 (13)
C10.057 (2)0.063 (2)0.072 (3)0.0167 (19)0.017 (2)0.028 (2)
C20.070 (3)0.085 (4)0.093 (3)0.019 (3)0.027 (2)0.048 (3)
C30.058 (2)0.068 (3)0.101 (4)0.003 (2)0.008 (2)0.048 (3)
C40.054 (2)0.051 (2)0.086 (3)0.0058 (18)0.011 (2)0.034 (2)
C50.0440 (18)0.0363 (19)0.069 (2)0.0062 (15)0.0096 (17)0.0215 (17)
C60.0453 (19)0.0310 (17)0.064 (2)0.0075 (14)0.0149 (17)0.0110 (16)
C70.063 (2)0.0368 (19)0.064 (3)0.0150 (17)0.020 (2)0.0024 (17)
C80.081 (3)0.043 (2)0.072 (3)0.023 (2)0.028 (2)0.011 (2)
C90.072 (3)0.058 (3)0.061 (2)0.028 (2)0.009 (2)0.012 (2)
C100.057 (2)0.046 (2)0.055 (2)0.0179 (17)0.0008 (18)0.0041 (17)
C110.082 (3)0.029 (2)0.090 (3)0.001 (2)0.030 (3)0.007 (2)
C120.067 (3)0.038 (2)0.110 (4)0.0082 (19)0.025 (3)0.030 (2)
C130.0421 (17)0.0318 (16)0.0415 (17)0.0105 (13)0.0047 (14)0.0066 (13)
C140.0404 (16)0.0297 (15)0.0376 (16)0.0097 (13)0.0035 (13)0.0066 (13)
C150.0464 (18)0.0327 (16)0.0452 (18)0.0175 (14)0.0087 (14)0.0107 (14)
C160.0533 (19)0.0443 (19)0.0444 (18)0.0221 (16)0.0152 (15)0.0158 (15)
C170.076 (2)0.048 (2)0.0362 (18)0.0270 (19)0.0093 (17)0.0014 (15)
C180.066 (2)0.0338 (17)0.0400 (18)0.0098 (16)0.0045 (16)0.0005 (14)
C190.0530 (19)0.0340 (17)0.0431 (18)0.0090 (14)0.0110 (15)0.0069 (14)
C200.060 (2)0.0396 (18)0.0450 (19)0.0187 (17)0.0111 (16)0.0104 (15)
C210.070 (2)0.047 (2)0.0382 (18)0.0299 (18)0.0076 (16)0.0117 (15)
C220.091 (3)0.071 (3)0.051 (2)0.052 (2)0.027 (2)0.029 (2)
C230.115 (4)0.092 (4)0.055 (3)0.066 (3)0.031 (3)0.027 (3)
C240.151 (5)0.087 (4)0.043 (2)0.071 (4)0.023 (3)0.015 (2)
C250.122 (4)0.053 (2)0.055 (3)0.036 (3)0.014 (3)0.003 (2)
C260.082 (3)0.049 (2)0.0410 (19)0.024 (2)0.0017 (18)0.0091 (16)
Geometric parameters (Å, º) top
Cu—O31.881 (2)C4—C121.443 (7)
Cu—O11.906 (2)C5—C61.428 (6)
Cu—N21.990 (3)C6—C71.399 (5)
Cu—N12.011 (3)C7—C81.392 (7)
Cu—O42.585 (3)C7—C111.421 (7)
Cu—O3i2.716 (3)C8—C91.357 (7)
Cl1—C161.737 (3)C8—H80.9300
Cl2—C181.748 (3)C9—C101.394 (5)
Cl3—C231.717 (5)C9—H90.9300
Cl4—C251.735 (5)C10—H100.9300
O1—C131.274 (4)C11—C121.319 (8)
O2—C131.257 (4)C11—H110.9300
O3—C151.312 (4)C12—H120.9300
O4—C201.247 (4)C13—C141.479 (4)
O5—C201.267 (4)C14—C151.410 (4)
O5—H5O0.8200C14—C191.412 (4)
O6—C221.3484 (10)C15—C161.402 (5)
O6—H6O0.8200C16—C171.386 (5)
O6—H220.4205C17—C181.372 (5)
O7—C261.3494 (10)C17—H170.9300
O7—H7O0.8200C18—C191.366 (5)
O7—H260.4240C19—H190.9300
N1—C11.314 (5)C20—C211.486 (5)
N1—C51.361 (5)C21—C261.369 (5)
N2—C101.329 (5)C21—C221.408 (5)
N2—C61.362 (4)C22—C231.375 (6)
C1—C21.390 (6)C22—H220.9300
C1—H10.9300C23—C241.316 (8)
C2—C31.355 (7)C24—C251.405 (8)
C2—H20.9300C24—H240.9300
C3—C41.399 (7)C25—C261.389 (6)
C3—H30.9300C26—H260.9300
C4—C51.400 (5)
O3—Cu—O193.00 (10)C8—C9—C10119.3 (5)
O3—Cu—N2171.97 (10)C8—C9—H9120.3
O1—Cu—N293.10 (11)C10—C9—H9120.3
O3—Cu—N191.71 (12)N2—C10—C9121.8 (4)
O1—Cu—N1174.85 (11)N2—C10—H10119.1
N2—Cu—N182.40 (13)C9—C10—H10119.1
O3—Cu—O493.04 (10)C12—C11—C7121.9 (4)
O1—Cu—O490.90 (9)C12—C11—H11119.1
N2—Cu—O492.09 (10)C7—C11—H11119.1
N1—Cu—O486.77 (10)C11—C12—C4121.9 (4)
O3—Cu—O3i88.44 (10)C11—C12—H12119.1
O1—Cu—O3i87.98 (9)C4—C12—H12119.1
N2—Cu—O3i86.56 (9)O2—C13—O1120.3 (3)
N1—Cu—O3i94.22 (10)O2—C13—C14118.7 (3)
O4—Cu—O3i178.20 (7)O1—C13—C14120.9 (3)
O3—Cu—Cui54.23 (8)C15—C14—C19119.6 (3)
O1—Cu—Cui90.05 (7)C15—C14—C13123.4 (3)
N2—Cu—Cui120.54 (8)C19—C14—C13117.0 (3)
N1—Cu—Cui94.39 (9)O3—C15—C16119.0 (3)
O4—Cu—Cui147.25 (6)O3—C15—C14123.9 (3)
O3i—Cu—Cui34.20 (5)C16—C15—C14117.1 (3)
C13—O1—Cu128.6 (2)C17—C16—C15122.7 (3)
C15—O3—Cu124.1 (2)C17—C16—Cl1118.2 (3)
C20—O4—Cu118.1 (2)C15—C16—Cl1119.1 (3)
C20—O5—H5O109.5C18—C17—C16118.8 (3)
C22—O6—H6O109.5C18—C17—H17120.6
H6O—O6—H22104.8C16—C17—H17120.6
C26—O7—H7O109.5C19—C18—C17121.2 (3)
H7O—O7—H26104.7C19—C18—Cl2119.5 (3)
C1—N1—C5118.2 (3)C17—C18—Cl2119.3 (3)
C1—N1—Cu129.8 (3)C18—C19—C14120.6 (3)
C5—N1—Cu112.0 (3)C18—C19—H19119.7
C10—N2—C6118.1 (3)C14—C19—H19119.7
C10—N2—Cu128.9 (2)O4—C20—O5124.1 (3)
C6—N2—Cu112.9 (2)O4—C20—C21120.2 (3)
N1—C1—C2122.5 (4)O5—C20—C21115.7 (3)
N1—C1—H1118.8C26—C21—C22119.1 (3)
C2—C1—H1118.8C26—C21—C20120.7 (3)
C3—C2—C1119.3 (5)C22—C21—C20120.2 (3)
C3—C2—H2120.4O6—C22—C23117.7 (4)
C1—C2—H2120.4O6—C22—C21122.2 (3)
C2—C3—C4120.9 (4)C23—C22—C21120.1 (4)
C2—C3—H3119.5C23—C22—H22119.9
C4—C3—H3119.5C21—C22—H22120.1
C3—C4—C5115.7 (4)C24—C23—C22120.8 (5)
C3—C4—C12126.7 (4)C24—C23—Cl3119.6 (4)
C5—C4—C12117.6 (5)C22—C23—Cl3119.6 (5)
N1—C5—C4123.5 (4)C23—C24—C25121.0 (4)
N1—C5—C6116.5 (3)C23—C24—H24119.5
C4—C5—C6120.0 (4)C25—C24—H24119.5
N2—C6—C7123.6 (4)C26—C25—C24119.3 (5)
N2—C6—C5116.1 (3)C26—C25—Cl4118.9 (4)
C7—C6—C5120.2 (3)C24—C25—Cl4121.8 (4)
C8—C7—C6115.7 (4)O7—C26—C21122.3 (7)
C8—C7—C11125.9 (4)O7—C26—C25117.9 (7)
C6—C7—C11118.4 (5)C21—C26—C25119.7 (4)
C9—C8—C7121.3 (4)C21—C26—H26120.1
C9—C8—H8119.3C25—C26—H26120.1
C7—C8—H8119.3
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5O···O2ii0.821.692.489 (3)166
O6—H6O···O40.821.852.577 (5)147
O7—H7O···O50.821.732.460 (14)147
Symmetry code: (ii) x+2, y+1, z+1.
(II) bis(µ-5-chloro-2-oxidobenzoato)- κ3O1,O2:O1; κ3O1:O1,O2- bis[(5-chloro-2-hydroxybenzoic acid-κO1)(1,10- phenanthroline-κ2N,N')copper(II)] ethanol monosolvate top
Crystal data top
[Cu2(C7H3ClO3)2(C12H8N2)2(C7H5ClO3)2]·C2H6OZ = 1
Mr = 1219.78F(000) = 620
Triclinic, P1Dx = 1.636 Mg m3
Hall symbol: -P1Mo Kα radiation, λ = 0.71069 Å
a = 7.9153 (2) ÅCell parameters from 18236 reflections
b = 11.1877 (3) Åθ = 4.1–26.4°
c = 15.0623 (3) ŵ = 1.15 mm1
α = 72.456 (2)°T = 293 K
β = 77.056 (2)°Prism, green
γ = 83.897 (2)°0.35 × 0.24 × 0.06 mm
V = 1238.39 (5) Å3
Data collection top
Gemini R CCD
diffractometer
5017 independent reflections
Radiation source: fine-focus sealed tube4055 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
Detector resolution: 10.4340 pixels mm-1θmax = 26.4°, θmin = 4.1°
ω scansh = 99
Absorption correction: analytical
CrysAlis RED (Agilent, 2011)
k = 1313
Tmin = 0.689, Tmax = 0.934l = 1818
20410 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0647P)2]
where P = (Fo2 + 2Fc2)/3
5017 reflections(Δ/σ)max = 0.001
363 parametersΔρmax = 0.33 e Å3
18 restraintsΔρmin = 0.30 e Å3
Crystal data top
[Cu2(C7H3ClO3)2(C12H8N2)2(C7H5ClO3)2]·C2H6Oγ = 83.897 (2)°
Mr = 1219.78V = 1238.39 (5) Å3
Triclinic, P1Z = 1
a = 7.9153 (2) ÅMo Kα radiation
b = 11.1877 (3) ŵ = 1.15 mm1
c = 15.0623 (3) ÅT = 293 K
α = 72.456 (2)°0.35 × 0.24 × 0.06 mm
β = 77.056 (2)°
Data collection top
Gemini R CCD
diffractometer
5017 independent reflections
Absorption correction: analytical
CrysAlis RED (Agilent, 2011)
4055 reflections with I > 2σ(I)
Tmin = 0.689, Tmax = 0.934Rint = 0.017
20410 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03218 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 1.06Δρmax = 0.33 e Å3
5017 reflectionsΔρmin = 0.30 e Å3
363 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.60102 (3)0.64268 (2)0.429213 (16)0.04527 (11)
Cl11.12917 (9)0.28867 (8)0.13591 (5)0.0871 (2)
Cl21.40961 (11)0.62994 (9)0.01940 (5)0.1027 (3)
O10.72749 (18)0.49146 (12)0.47797 (9)0.0476 (3)
O20.93467 (18)0.34518 (13)0.47207 (9)0.0470 (3)
O30.61736 (19)0.61406 (13)0.31077 (10)0.0521 (3)
O40.86634 (18)0.78018 (13)0.34870 (10)0.0542 (4)
O51.10786 (18)0.66041 (14)0.35906 (9)0.0508 (3)
H5O1.07600.65690.41540.076*
O60.7954 (2)0.88882 (16)0.18481 (12)0.0717 (5)
H6O0.78470.87160.24260.108*
N10.4458 (2)0.79650 (16)0.39957 (14)0.0533 (4)
N20.5634 (2)0.67961 (16)0.55460 (13)0.0483 (4)
C10.3915 (3)0.8522 (2)0.3187 (2)0.0667 (6)
H10.42730.81920.26750.080*
C20.2803 (3)0.9607 (3)0.3098 (3)0.0866 (9)
H20.24410.99930.25280.104*
C30.2263 (3)1.0085 (2)0.3854 (3)0.0895 (10)
H30.15351.08020.37960.107*
C40.2795 (3)0.9505 (2)0.4722 (2)0.0724 (8)
C50.3908 (3)0.8439 (2)0.47452 (19)0.0577 (6)
C60.4534 (3)0.78072 (19)0.55914 (17)0.0536 (5)
C70.4020 (3)0.8219 (2)0.6406 (2)0.0674 (7)
C80.4690 (4)0.7540 (3)0.7207 (2)0.0762 (8)
H80.43820.77750.77660.091*
C90.5799 (3)0.6531 (2)0.71583 (17)0.0669 (6)
H90.62520.60760.76860.080*
C100.6260 (3)0.6178 (2)0.63143 (15)0.0545 (5)
H100.70260.54920.62920.065*
C110.2309 (3)0.9916 (3)0.5554 (3)0.0922 (12)
H110.15841.06290.55410.111*
C120.2871 (4)0.9296 (3)0.6369 (3)0.0876 (10)
H120.25040.95780.69050.105*
C130.8343 (2)0.42912 (17)0.43089 (12)0.0380 (4)
C140.8425 (2)0.44870 (17)0.32900 (12)0.0376 (4)
C150.7339 (2)0.53784 (18)0.27668 (13)0.0414 (4)
C160.7534 (3)0.5456 (2)0.17909 (14)0.0529 (5)
H160.68440.60370.14280.063*
C170.8707 (3)0.4703 (2)0.13700 (14)0.0572 (6)
H170.88000.47680.07310.069*
C180.9760 (3)0.3838 (2)0.19014 (14)0.0532 (5)
C190.9624 (2)0.37297 (18)0.28400 (13)0.0439 (4)
H191.03350.31460.31870.053*
C201.0016 (2)0.73046 (17)0.31211 (13)0.0410 (4)
C211.0456 (2)0.75088 (17)0.20742 (13)0.0416 (4)
C220.9388 (3)0.82782 (19)0.14887 (15)0.0500 (5)
C230.9792 (3)0.8430 (2)0.05243 (16)0.0620 (6)
H230.90850.89490.01360.074*
C241.1226 (3)0.7824 (2)0.01309 (15)0.0650 (6)
H241.14830.79270.05210.078*
C251.2287 (3)0.7063 (2)0.06982 (15)0.0587 (6)
C261.1914 (3)0.6906 (2)0.16684 (14)0.0491 (5)
H261.26400.63960.20490.059*
O1S0.5347 (9)1.0564 (7)0.1129 (5)0.162 (2)0.50
H1S0.61001.00040.12260.242*0.50
C1S0.4284 (17)1.0289 (19)0.0570 (10)0.196 (7)0.50
H1S10.34061.09600.04540.235*0.50
H1S20.36940.95210.09270.235*0.50
C2S0.5266 (13)1.0154 (16)0.0361 (10)0.157 (6)0.50
H2S10.44900.99610.07020.236*0.50
H2S20.61310.94870.02520.236*0.50
H2S30.58181.09230.07290.236*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.04473 (16)0.04199 (16)0.05081 (17)0.00592 (10)0.00694 (11)0.02043 (11)
Cl10.0776 (4)0.1340 (6)0.0665 (4)0.0279 (4)0.0117 (3)0.0666 (4)
Cl20.0971 (6)0.1512 (7)0.0617 (4)0.0476 (5)0.0110 (4)0.0549 (4)
O10.0562 (8)0.0484 (7)0.0384 (7)0.0120 (6)0.0073 (6)0.0192 (6)
O20.0507 (8)0.0530 (8)0.0371 (7)0.0130 (6)0.0095 (6)0.0171 (6)
O30.0563 (9)0.0516 (8)0.0527 (8)0.0106 (7)0.0188 (7)0.0199 (7)
O40.0496 (8)0.0610 (9)0.0530 (8)0.0089 (7)0.0061 (6)0.0249 (7)
O50.0521 (8)0.0644 (8)0.0360 (7)0.0102 (7)0.0105 (6)0.0176 (6)
O60.0634 (10)0.0769 (11)0.0657 (10)0.0256 (9)0.0178 (8)0.0131 (9)
N10.0364 (9)0.0438 (9)0.0780 (12)0.0003 (7)0.0079 (8)0.0180 (9)
N20.0375 (9)0.0491 (9)0.0606 (10)0.0055 (7)0.0046 (7)0.0286 (8)
C10.0481 (13)0.0531 (13)0.0938 (18)0.0004 (10)0.0161 (12)0.0127 (12)
C20.0545 (15)0.0578 (15)0.134 (3)0.0043 (12)0.0284 (16)0.0034 (17)
C30.0412 (13)0.0474 (14)0.168 (3)0.0033 (11)0.0060 (17)0.0268 (18)
C40.0362 (12)0.0438 (12)0.132 (2)0.0016 (10)0.0004 (13)0.0292 (14)
C50.0312 (10)0.0435 (11)0.0979 (18)0.0072 (8)0.0082 (11)0.0332 (12)
C60.0363 (10)0.0471 (11)0.0793 (15)0.0093 (9)0.0088 (10)0.0332 (11)
C70.0475 (13)0.0593 (14)0.099 (2)0.0191 (11)0.0245 (13)0.0515 (14)
C80.0708 (17)0.0863 (19)0.0799 (18)0.0280 (15)0.0212 (14)0.0542 (15)
C90.0664 (15)0.0803 (16)0.0618 (14)0.0207 (13)0.0051 (11)0.0392 (12)
C100.0498 (12)0.0617 (13)0.0560 (12)0.0104 (10)0.0018 (10)0.0289 (10)
C110.0462 (15)0.0557 (16)0.174 (4)0.0058 (12)0.0259 (19)0.065 (2)
C120.0632 (17)0.0713 (18)0.133 (3)0.0119 (14)0.0258 (18)0.0660 (19)
C130.0385 (10)0.0396 (9)0.0364 (9)0.0038 (8)0.0028 (7)0.0146 (8)
C140.0371 (9)0.0407 (9)0.0360 (9)0.0057 (8)0.0038 (7)0.0139 (7)
C150.0425 (10)0.0442 (10)0.0391 (9)0.0077 (8)0.0081 (8)0.0126 (8)
C160.0550 (12)0.0595 (12)0.0436 (11)0.0059 (10)0.0154 (9)0.0086 (9)
C170.0574 (13)0.0839 (16)0.0335 (10)0.0098 (11)0.0044 (9)0.0228 (10)
C180.0485 (12)0.0722 (14)0.0434 (11)0.0035 (10)0.0011 (9)0.0291 (10)
C190.0426 (10)0.0529 (11)0.0392 (10)0.0002 (9)0.0058 (8)0.0199 (9)
C200.0418 (10)0.0406 (10)0.0424 (10)0.0033 (8)0.0065 (8)0.0156 (8)
C210.0448 (10)0.0405 (10)0.0404 (10)0.0027 (8)0.0091 (8)0.0126 (8)
C220.0487 (11)0.0471 (11)0.0525 (12)0.0003 (9)0.0136 (9)0.0101 (9)
C230.0661 (15)0.0667 (14)0.0484 (12)0.0001 (11)0.0209 (11)0.0035 (10)
C240.0727 (16)0.0834 (16)0.0383 (11)0.0067 (13)0.0119 (10)0.0149 (11)
C250.0609 (14)0.0720 (14)0.0452 (11)0.0064 (11)0.0077 (10)0.0250 (10)
C260.0501 (11)0.0568 (12)0.0418 (10)0.0059 (9)0.0105 (8)0.0179 (9)
O1S0.140 (5)0.173 (6)0.155 (5)0.021 (4)0.034 (4)0.028 (4)
C1S0.192 (14)0.291 (16)0.122 (8)0.066 (10)0.092 (9)0.065 (9)
C2S0.068 (6)0.246 (15)0.149 (9)0.061 (9)0.000 (7)0.041 (11)
Geometric parameters (Å, º) top
Cu1—O31.880 (1)C9—C101.404 (3)
Cu1—O11.904 (1)C9—H90.9300
Cu1—N12.001 (2)C10—H100.9300
Cu1—N22.005 (2)C11—C121.360 (5)
Cu1—O42.582 (2)C11—H110.9300
Cu1—O1i2.984 (2)C12—H120.9300
Cl1—C181.754 (2)C13—C141.471 (2)
Cl2—C251.733 (2)C14—C191.402 (3)
O1—C131.268 (2)C14—C151.415 (3)
O2—C131.268 (2)C15—C161.420 (3)
O3—C151.314 (2)C16—C171.366 (3)
O4—C201.246 (2)C16—H160.9300
O5—C201.270 (2)C17—C181.390 (3)
O5—H5O0.8200C17—H170.9300
O6—C221.353 (3)C18—C191.363 (3)
O6—H6O0.8200C19—H190.9300
N1—C11.332 (3)C20—C211.488 (3)
N1—C51.356 (3)C21—C261.388 (3)
N2—C101.328 (3)C21—C221.398 (3)
N2—C61.361 (3)C22—C231.377 (3)
C1—C21.412 (3)C23—C241.370 (4)
C1—H10.9300C23—H230.9300
C2—C31.367 (5)C24—C251.375 (3)
C2—H20.9300C24—H240.9300
C3—C41.408 (5)C25—C261.384 (3)
C3—H30.9300C26—H260.9300
C4—C51.401 (3)O1S—C1S1.428 (9)
C4—C111.423 (4)O1S—H1S0.8200
C5—C61.427 (4)C1S—C2S1.487 (8)
C6—C71.400 (3)C1S—H1S10.9700
C7—C81.401 (4)C1S—H1S20.9700
C7—C121.426 (4)C2S—H2S10.9600
C8—C91.364 (4)C2S—H2S20.9600
C8—H80.9300C2S—H2S30.9600
O3—Cu1—O193.78 (6)C12—C11—C4122.0 (3)
O3—Cu1—N193.84 (7)C12—C11—H11119.0
O1—Cu1—N1170.69 (6)C4—C11—H11119.0
O3—Cu1—N2175.14 (6)C11—C12—C7120.4 (3)
O1—Cu1—N290.15 (6)C11—C12—H12119.8
N1—Cu1—N281.98 (8)C7—C12—H12119.8
O3—Cu1—O486.37 (6)O1—C13—O2120.03 (16)
O1—Cu1—O496.68 (5)O1—C13—C14121.71 (16)
N1—Cu1—O489.12 (6)O2—C13—C14118.24 (16)
N2—Cu1—O496.02 (6)C19—C14—C15119.87 (16)
O3—Cu1—O1i95.42 (5)C19—C14—C13117.25 (16)
O1—Cu1—O1i88.88 (5)C15—C14—C13122.87 (16)
N1—Cu1—O1i85.09 (5)O3—C15—C14125.47 (16)
N2—Cu1—O1i81.78 (5)O3—C15—C16117.46 (17)
O4—Cu1—O1i174.04 (4)C14—C15—C16117.07 (18)
O3—Cu1—Cu1i96.56 (5)C17—C16—C15121.9 (2)
O1—Cu1—Cu1i56.67 (4)C17—C16—H16119.0
N1—Cu1—Cu1i117.03 (5)C15—C16—H16119.0
N2—Cu1—Cu1i83.22 (5)C16—C17—C18119.71 (18)
O4—Cu1—Cu1i153.28 (3)C16—C17—H17120.1
O1i—Cu1—Cu1i32.21 (2)C18—C17—H17120.1
C13—O1—Cu1127.41 (12)C19—C18—C17120.5 (2)
C15—O3—Cu1124.24 (12)C19—C18—Cl1119.61 (17)
C20—O4—Cu1117.98 (12)C17—C18—Cl1119.86 (15)
C20—O5—H5O109.5C18—C19—C14120.89 (19)
C22—O6—H6O109.5C18—C19—H19119.6
C1—N1—C5119.2 (2)C14—C19—H19119.6
C1—N1—Cu1128.16 (17)O4—C20—O5123.99 (17)
C5—N1—Cu1112.59 (15)O4—C20—C21119.94 (17)
C10—N2—C6118.00 (19)O5—C20—C21116.07 (16)
C10—N2—Cu1129.07 (14)C26—C21—C22119.04 (18)
C6—N2—Cu1112.90 (15)C26—C21—C20120.17 (17)
N1—C1—C2121.0 (3)C22—C21—C20120.77 (18)
N1—C1—H1119.5O6—C22—C23118.66 (18)
C2—C1—H1119.5O6—C22—C21121.39 (18)
C3—C2—C1119.5 (3)C23—C22—C21119.9 (2)
C3—C2—H2120.3C24—C23—C22120.6 (2)
C1—C2—H2120.3C24—C23—H23119.7
C2—C3—C4120.8 (2)C22—C23—H23119.7
C2—C3—H3119.6C23—C24—C25120.1 (2)
C4—C3—H3119.6C23—C24—H24120.0
C5—C4—C3115.9 (3)C25—C24—H24120.0
C5—C4—C11118.5 (3)C24—C25—C26120.3 (2)
C3—C4—C11125.6 (3)C24—C25—Cl2119.72 (17)
N1—C5—C4123.6 (3)C26—C25—Cl2119.99 (17)
N1—C5—C6116.83 (18)C25—C26—C21120.04 (19)
C4—C5—C6119.5 (2)C25—C26—H26120.0
N2—C6—C7123.4 (2)C21—C26—H26120.0
N2—C6—C5115.6 (2)C1S—O1S—H1S109.4
C7—C6—C5120.9 (2)O1S—C1S—C2S113.6 (10)
C6—C7—C8117.2 (2)O1S—C1S—H1S1108.9
C6—C7—C12118.5 (3)C2S—C1S—H1S1108.4
C8—C7—C12124.2 (3)O1S—C1S—H1S2109.0
C9—C8—C7119.2 (2)C2S—C1S—H1S2109.1
C9—C8—H8120.4H1S1—C1S—H1S2107.7
C7—C8—H8120.4C1S—C2S—H2S1109.9
C8—C9—C10120.3 (3)C1S—C2S—H2S2108.9
C8—C9—H9119.9H2S1—C2S—H2S2109.5
C10—C9—H9119.9C1S—C2S—H2S3109.6
N2—C10—C9121.9 (2)H2S1—C2S—H2S3109.5
N2—C10—H10119.1H2S2—C2S—H2S3109.5
C9—C10—H10119.1
O3—Cu1—O1—C1322.94 (16)N2—C6—C7—C80.0 (3)
N2—Cu1—O1—C13159.92 (16)C5—C6—C7—C8179.7 (2)
O4—Cu1—O1—C1363.83 (16)N2—C6—C7—C12179.6 (2)
O1i—Cu1—O1—C13118.31 (17)C5—C6—C7—C120.8 (3)
Cu1i—Cu1—O1—C13118.31 (17)C6—C7—C8—C90.3 (3)
O1—Cu1—O3—C1520.31 (15)C12—C7—C8—C9179.2 (2)
O4—Cu1—O3—C1576.16 (15)C7—C8—C9—C100.1 (3)
O1i—Cu1—O3—C15109.54 (15)C6—N2—C10—C90.9 (3)
Cu1i—Cu1—O3—C1577.17 (15)Cu1—N2—C10—C9176.91 (15)
O3—Cu1—O4—C2057.99 (14)C8—C9—C10—N20.5 (3)
O1—Cu1—O4—C2035.40 (14)C5—C4—C11—C120.9 (4)
N1—Cu1—O4—C20151.90 (14)C3—C4—C11—C12179.5 (3)
N2—Cu1—O4—C20126.26 (14)C4—C11—C12—C71.7 (4)
Cu1i—Cu1—O4—C2039.38 (18)C6—C7—C12—C110.8 (4)
O3—Cu1—N1—C13.11 (19)C8—C7—C12—C11178.7 (2)
N2—Cu1—N1—C1179.39 (19)Cu1—O1—C13—O2165.59 (13)
O4—Cu1—N1—C183.19 (19)Cu1—O1—C13—C1416.2 (3)
O1i—Cu1—N1—C198.24 (18)O1—C13—C14—C19178.56 (17)
Cu1i—Cu1—N1—C1102.48 (18)O2—C13—C14—C190.3 (3)
O3—Cu1—N1—C5175.50 (13)O1—C13—C14—C150.4 (3)
N2—Cu1—N1—C51.99 (13)O2—C13—C14—C15178.61 (17)
O4—Cu1—N1—C598.20 (13)Cu1—O3—C15—C1412.6 (3)
O1i—Cu1—N1—C580.38 (13)Cu1—O3—C15—C16167.09 (14)
Cu1i—Cu1—N1—C576.13 (14)C19—C14—C15—O3179.81 (17)
O1—Cu1—N2—C105.15 (18)C13—C14—C15—O31.3 (3)
O4—Cu1—N2—C1091.59 (18)C19—C14—C15—C160.1 (3)
O1i—Cu1—N2—C1094.00 (17)C13—C14—C15—C16178.96 (17)
Cu1i—Cu1—N2—C1061.53 (17)O3—C15—C16—C17179.82 (19)
O1—Cu1—N2—C6172.73 (14)C14—C15—C16—C170.4 (3)
N1—Cu1—N2—C62.27 (13)C15—C16—C17—C180.6 (3)
O4—Cu1—N2—C690.53 (13)C16—C17—C18—C190.5 (3)
O1i—Cu1—N2—C683.88 (13)C16—C17—C18—Cl1178.93 (17)
Cu1i—Cu1—N2—C6116.35 (13)C17—C18—C19—C140.1 (3)
C5—N1—C1—C21.1 (3)Cl1—C18—C19—C14179.27 (15)
Cu1—N1—C1—C2179.60 (16)C15—C14—C19—C180.1 (3)
N1—C1—C2—C30.6 (4)C13—C14—C19—C18178.88 (18)
C1—C2—C3—C40.3 (4)Cu1—O4—C20—O578.6 (2)
C2—C3—C4—C50.8 (4)Cu1—O4—C20—C21100.83 (17)
C2—C3—C4—C11179.7 (2)O4—C20—C21—C26176.68 (19)
C1—N1—C5—C40.6 (3)O5—C20—C21—C262.8 (3)
Cu1—N1—C5—C4179.32 (16)O4—C20—C21—C221.5 (3)
C1—N1—C5—C6179.83 (18)O5—C20—C21—C22179.07 (18)
Cu1—N1—C5—C61.4 (2)C26—C21—C22—O6179.91 (19)
C3—C4—C5—N10.3 (3)C20—C21—C22—O61.9 (3)
C11—C4—C5—N1179.93 (19)C26—C21—C22—C230.1 (3)
C3—C4—C5—C6178.9 (2)C20—C21—C22—C23178.29 (19)
C11—C4—C5—C60.7 (3)O6—C22—C23—C24179.6 (2)
C10—N2—C6—C70.6 (3)C21—C22—C23—C240.6 (4)
Cu1—N2—C6—C7177.50 (15)C22—C23—C24—C250.5 (4)
C10—N2—C6—C5179.70 (17)C23—C24—C25—C260.0 (4)
Cu1—N2—C6—C52.2 (2)C23—C24—C25—Cl2179.9 (2)
N1—C5—C6—N20.5 (3)C24—C25—C26—C210.5 (4)
C4—C5—C6—N2178.79 (17)Cl2—C25—C26—C21179.44 (17)
N1—C5—C6—C7179.18 (17)C22—C21—C26—C250.4 (3)
C4—C5—C6—C71.5 (3)C20—C21—C26—C25177.8 (2)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5O···O2ii0.821.672.472 (2)165
O6—H6O···O40.821.832.560 (2)147
O1S—H1S···O60.822.032.811 (7)159
Symmetry code: (ii) x+2, y+1, z+1.

Experimental details

(I)(II)
Crystal data
Chemical formula[Cu2(C7H2Cl2O3)2(C12H8N2)2(C7H4Cl2O3)2][Cu2(C7H3ClO3)2(C12H8N2)2(C7H5ClO3)2]·C2H6O
Mr1311.481219.78
Crystal system, space groupTriclinic, P1Triclinic, P1
Temperature (K)293293
a, b, c (Å)9.2295 (2), 11.6047 (3), 12.9863 (3)7.9153 (2), 11.1877 (3), 15.0623 (3)
α, β, γ (°)102.423 (2), 99.045 (2), 106.753 (2)72.456 (2), 77.056 (2), 83.897 (2)
V3)1264.44 (5)1238.39 (5)
Z11
Radiation typeMo KαMo Kα
µ (mm1)1.331.15
Crystal size (mm)0.43 × 0.14 × 0.050.35 × 0.24 × 0.06
Data collection
DiffractometerGemini R CCD
diffractometer
Gemini R CCD
diffractometer
Absorption correctionAnalytical
CrysAlis RED (Agilent, 2011)
Analytical
CrysAlis RED (Agilent, 2011)
Tmin, Tmax0.598, 0.9360.689, 0.934
No. of measured, independent and
observed [I > 2σ(I)] reflections
31426, 5150, 3886 20410, 5017, 4055
Rint0.0500.017
(sin θ/λ)max1)0.6250.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.160, 1.08 0.032, 0.096, 1.06
No. of reflections51505017
No. of parameters363363
No. of restraints1618
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.62, 0.850.33, 0.30

Computer programs: CrysAlis CCD (Agilent, 2011), CrysAlis RED (Agilent, 2011), SIR97 (Altomare et al., 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010).

Selected bond lengths (Å) for (I) top
Cu—O31.881 (2)Cu—N12.011 (3)
Cu—O11.906 (2)Cu—O42.585 (3)
Cu—N21.990 (3)Cu—O3i2.716 (3)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O5—H5O···O2ii0.821.692.489 (3)166
O6—H6O···O40.821.852.577 (5)147
O7—H7O···O50.821.732.460 (14)147
Symmetry code: (ii) x+2, y+1, z+1.
Selected bond lengths (Å) for (II) top
Cu1—O31.880 (1)Cu1—N22.005 (2)
Cu1—O11.904 (1)Cu1—O42.582 (2)
Cu1—N12.001 (2)Cu1—O1i2.984 (2)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O5—H5O···O2ii0.821.672.472 (2)165
O6—H6O···O40.821.832.560 (2)147
O1S—H1S···O60.822.032.811 (7)159
Symmetry code: (ii) x+2, y+1, z+1.
Geometrical parameters (Å, °) for ππ stacking interactions top
ComplexCgCga<(pln1–pln2)b
(I)c3.737.6
(I)d3.8416.9
(II)e3.8011.7
(II)f3.589.2
Notes: (a) centroid–centroid distance; (b) the angle between the planes of the aromatic rings; (c) 3,5-dichloro-2-oxidobenzoate–3,5-dichloro-2-hydroxybenzoic acid; (d) 3,5-dichloro-2-oxidobenzoate–1,10-phenanthroline (Cg is the centroid of the phenanthroline benzene ring); (e) 5-chloro-2-oxidobenzoate–5-chloro-2-hydroxybenzoic acid; (f) 5-chloro-2-oxidobenzoate–1,10-phenanthroline (Cg is the centroid of a phenanthroline pyridine ring).
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds