Download citation
Download citation
link to html
The title compound, [Cu2(SO4)2(C10H8N2)2(C2H6O2)2(H2O)2]n, contains two crystallographically unique CuII centres, each lying on a twofold axis and having a slightly distorted octa­hedral environment. One CuII centre is coordinated by two bridging 4,4'-bipyridine (4,4'-bipy) ligands, two sulfate anions and two aqua ligands. The second is surrounded by two 4,4'-bipy N atoms and four O atoms, two from bridging sulfate anions and two from ethane-1,2-diol ligands. The sulfate anion bridges adjacent CuII centres, leading to the formation of linear ...Cu1-Cu2-Cu1-Cu2... chains. Adjacent chains are further bridged by 4,4'-bipy ligands, which are also located on the twofold axis, resulting in a two-dimensional layered polymer. In the crystal structure, extensive O-H...O hydrogen-bonding inter­actions between water mol­ecules, ethane-1,2-diol mol­ecules and sulfate anions lead to the formation of a three-dimensional supra­molecular network structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270110052558/sf3145sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110052558/sf3145Isup2.hkl
Contains datablock I

CCDC reference: 762707

Comment top

The self-assembly of coordination polymers and the crystal engineering of metal–organic coordination frameworks have recently received much attention because of their interesting molecular topologies and potential applications as functional materials (Batten & Robson, 1998; Eddaoudi et al., 2001; Li et al., 2003; Dietzel et al., 2005; Liu et al., 2007; Zhang et al., 2010). It is still challenging to construct metal–organic coordination frameworks of mixed ligands with metal salts in crystal engineering. 4,4'-Bipyridine (4,4'-bipy) has been used as a bridging ligand, owing to its rod-like rigidity and length, and has been widely applied in constructing interesting coordination polymers (Tong et al., 1998; Lu et al., 1998; Kondo et al., 1999; Greve et al., 2003; Lah & Leban, 2006; Díaz de Vivar et al., 2007; Bo et al., 2008; Li et al., 2009; Xu et al., 2010; Wang et al., 2010; Guo et al., 2010). It is well known that hydrothermal (solvothermal) synthesis is an effective method for the construction of new metal–organic coordination polymers because it can provide ideal conditions for crystal growth, owing to the enhanced transport ability of solvents in superheated systems. We have focused on the synthesis of complexes with 4,4'-bipy as an auxiliary ligand, while retaining some of the solvent molecules capable of hydrogen bonding to form higher-dimensional supramolecular networks. The title compound, (I), a new three-dimensional supramolecular network with two-dimensional layers, was obtained via a solvothermal reaction.

Part of the layer structure of (I) is shown in Fig. 1. There are two types of crystallographically independent CuII centres, both on symmetry 2 with a slightly distorted octahedral CuN2O4 environment. Atom Cu1 is coordinated by two N atoms from bridging 4,4'-bipy ligands occupying the axial positions [Cu1—N3 = 2.016 (3) Å and Cu1—N4 = 1.986 (3) Å], two O atoms from two bridging sulfate anions [Cu1—O2 = 2.0640 (19) Å] and two O atoms from water molecules [Cu1—O1W = 2.323 (2) Å] occupying the equatorial sites (Table 1). Atoms Cu1, O2, O2A, O1W and O1Wi [symmetry code: (i) -x, y, -z + 3/2] are almost coplanar, the mean deviation from the plane being 0.0416 Å. The bond angles around each Cu1 centre are in the range 87.37 (5)–92.63 (5)° (Table 1). The coordination environment of each Cu2 centre is very similar to that of Cu1, with ethane-1,2-diol ligands replacing the water ligands. The corresponding bond angles around Cu2 lie in the range 84.67 (6)–95.33 (6)° (Table 1).

The sulfate anion acts as an O—S—O bridging link between two different CuII cations, giving rise to the formation of linear ···Cu1–O–SO2–O–Cu2–O–SO2–O··· chains running parallel to the a axis, the Cu1···Cu2 and Cu1···Cu1v [symmetry code: (v) -x + 1, y - 1, z] distances are 5.530 (1) and 11.060 (2) Å, respectively (Fig. 1). The dihedral angles between the two half-bipy rings coordinated to Cu1 and Cu2 are 82.254 (65) and 74.334 (80)°, respectively. The Cu1 and Cu2 centres of adjacent ···Cu1–O–SO2–O–Cu2–O–SO2–O··· chains are further cross-linked by the bridging 4,4'-bipy ligands, leading to the formation of linear ···Cu1–bipy–Cu2–bipy··· chains along the b axis, in which the Cu1···Cu2viii and Cu1···Cuvi [symmetry codes: (vi) x - 1/2, y - 1/2, z; (viii) x - 1/2, y + 1/2, z] separations are 11.093 (2) and 11.127 (2) Å, respectively (Fig. 2). Each bridging 4,4'-bipy ligand lies on a two-fold axis, with dihedral angles between the two pyridine rings of two adjacent independent 4,4'-bipy ligands of 7.94 (7) [4,4'-bipy A] and 15.47 (8)° [4,4'-bipy B] (Fig. 2). The ···M–O–SO2–O–M··· and ···M–bipy–M··· chains are almost orthogonal, leading to a layered structure (Fig. 2). Intermolecular O1W—H5C···O7 and O6—H6···O2 hydrogen bonds help to further stabilize the layered structure (Table 2).

In the crystal structure of (I), the two-dimensional polymeric layers are linked by classical hydrogen-bonding, namely O—H···O interactions involving the water molecules, sulfate anions and 1,2-ethanediol molecules, resulting in a three-dimensional supramolecular network (Table 2 and Fig. 3).

Related literature top

For related literature, see: Batten & Robson (1998); Bo et al. (2008); Díaz de Vivar, Baggio, Garland & Baggio (2007); Dietzel et al. (2005); Eddaoudi et al. (2001); Greve et al. (2003); Guo et al. (2010); Kondo et al. (1999); Lah & Leban (2006); Li et al. (2003, 2009); Liu et al. (2007); Lu et al. (1998); Tong et al. (1998); Wang et al. (2010); Xu et al. (2010); Zhang et al. (2010).

Experimental top

4,4'-Bipyridine (0.2 mmol), CuSO4.5H2O (0.1 mmol), ethane-1,2-diol (2.0 ml) and water (1.0 ml) were mixed and placed in a thick Pyrex tube, which was sealed and heated to 383 K for 72 h. After this time, the tube was allowed to cool to room temperature and blue prisms of (I) were obtained. Analysis found: C 36.41, H 4.05, N 7.08%; calculated for C24H32Cu2N4O14S2: C 36.32, H 3.93, N 6.74%.

Refinement top

The aromatic and methylene H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93 and 0.97 Å, respectively, and with Uiso(H) = 1.2Ueq(C). The hydroxy and water H atoms were located in a difference Fourier map and their positions were refined freely, but with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear (Rigaku, 2007); data reduction: CrystalClear (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Part of the structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 35% probability level. H atoms have been omitted for clarity. [Symmetry codes: (i) -x, y, -z + 3/2; (ii) -x + 1, y, -z + 3/2; (iii) x - 1, y, z; (iv) x + 1, y, z.]
[Figure 2] Fig. 2. The crystal structure of (I), viewed along the c axis. The C and uncoordinated O atoms of the ethane-1,2-diol ligands and H atoms have been omitted for clarity. [Symmetry codes: (v) x, y - 1, z; (vi) x - 1/2, y - 1/2, z; (viii) x - 1/2, y + 1/2, z.]
[Figure 3] Fig. 3. Hydrogen-bonding interactions between adjacent layers of (I), viewed along the a axis. Hydrogen bonds are represented by dashed lines and H atoms not involved in hydrogen bonds have been omitted for clarity.
Poly[diaquabis(µ-4,4'-bipyridine-κ2N:N')bis(ethane-1,2- diol)-di-µ-sulfato-dicopper(II)] top
Crystal data top
[Cu2(SO4)2(C10H8N2)2(C2H6O2)2(H2O)2]F(000) = 1624
Mr = 791.74Dx = 1.762 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C2ycCell parameters from 6932 reflections
a = 11.060 (2) Åθ = 3.3–27.5°
b = 22.220 (4) ŵ = 1.64 mm1
c = 12.208 (2) ÅT = 223 K
β = 95.87 (3)°Prism, blue
V = 2984.5 (10) Å30.65 × 0.20 × 0.18 mm
Z = 4
Data collection top
Rigaku Mercury CCD area-detector
diffractometer
3390 independent reflections
Radiation source: fine-focus sealed tube2730 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 28.5714 pixels mm-1θmax = 27.5°, θmin = 3.3°
ω scansh = 1410
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
k = 2825
Tmin = 0.823, Tmax = 1.000l = 1515
8511 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.0461P)2 + 1.4943P]
where P = (Fo2 + 2Fc2)/3
3390 reflections(Δ/σ)max = 0.002
225 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
[Cu2(SO4)2(C10H8N2)2(C2H6O2)2(H2O)2]V = 2984.5 (10) Å3
Mr = 791.74Z = 4
Monoclinic, C2/cMo Kα radiation
a = 11.060 (2) ŵ = 1.64 mm1
b = 22.220 (4) ÅT = 223 K
c = 12.208 (2) Å0.65 × 0.20 × 0.18 mm
β = 95.87 (3)°
Data collection top
Rigaku Mercury CCD area-detector
diffractometer
3390 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
2730 reflections with I > 2σ(I)
Tmin = 0.823, Tmax = 1.000Rint = 0.024
8511 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.52 e Å3
3390 reflectionsΔρmin = 0.40 e Å3
225 parameters
Special details top

Experimental. Collected data with 0.8 mm caliber collimator tube.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.00000.626444 (15)0.75000.01634 (12)
Cu20.50000.627198 (16)0.75000.01783 (12)
S10.26518 (6)0.60462 (3)0.88780 (5)0.02182 (15)
N10.50000.53688 (12)0.75000.0184 (6)
N20.50000.71808 (12)0.75000.0198 (6)
N30.00000.71719 (12)0.75000.0178 (6)
N40.00000.53708 (12)0.75000.0174 (6)
C80.0623 (2)0.81057 (10)0.8353 (2)0.0227 (5)
H8A0.10470.83050.89430.027*
C30.4288 (2)0.50574 (11)0.6752 (2)0.0273 (6)
H3A0.37890.52680.62250.033*
C60.50000.84460 (14)0.75000.0197 (7)
C90.0608 (2)0.74843 (10)0.8322 (2)0.0225 (5)
H9A0.10380.72730.88930.027*
C100.0764 (2)0.50599 (10)0.6931 (2)0.0219 (5)
H10A0.13040.52710.65380.026*
C50.4051 (3)0.81159 (11)0.7864 (2)0.0302 (6)
H5A0.33950.83140.81200.036*
C10.50000.41052 (14)0.75000.0180 (7)
C20.4262 (2)0.44350 (11)0.6730 (2)0.0257 (6)
H2A0.37490.42370.61960.031*
C40.4081 (2)0.74948 (11)0.7847 (2)0.0306 (6)
H4A0.34300.72850.80880.037*
C110.0784 (2)0.44386 (10)0.6904 (2)0.0223 (5)
H11A0.13200.42390.64890.027*
C70.00000.84347 (14)0.75000.0182 (7)
C120.00000.41118 (14)0.75000.0186 (7)
C140.2969 (3)0.60414 (14)0.4427 (2)0.0360 (7)
H14A0.28170.61800.36720.043*
H14B0.37190.58120.44970.043*
C130.3081 (3)0.65679 (12)0.5193 (3)0.0383 (7)
H13A0.37280.68300.50020.046*
H13B0.23290.67960.51210.046*
O20.18604 (16)0.62764 (7)0.78866 (14)0.0225 (4)
O10.38961 (17)0.62756 (7)0.87965 (16)0.0255 (4)
O30.26430 (19)0.53917 (8)0.88790 (18)0.0407 (5)
O1W0.0269 (2)0.63123 (9)0.56389 (16)0.0301 (4)
H5C0.072 (3)0.6098 (15)0.531 (3)0.045*
H5B0.044 (3)0.6278 (14)0.532 (3)0.045*
O40.22028 (18)0.62951 (9)0.98674 (16)0.0330 (5)
O70.19940 (19)0.56732 (9)0.46951 (18)0.0379 (5)
H7A0.205 (3)0.5346 (16)0.443 (3)0.057*
O60.3337 (2)0.63657 (10)0.62979 (18)0.0379 (5)
H60.271 (4)0.6373 (17)0.654 (3)0.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0162 (2)0.0099 (2)0.0228 (2)0.0000.00125 (16)0.000
Cu20.0189 (2)0.0099 (2)0.0246 (2)0.0000.00234 (16)0.000
S10.0209 (3)0.0173 (3)0.0267 (3)0.0019 (2)0.0005 (2)0.0041 (2)
N40.0182 (14)0.0121 (13)0.0215 (14)0.0000.0001 (11)0.000
N20.0203 (15)0.0128 (13)0.0267 (15)0.0000.0036 (12)0.000
N30.0200 (15)0.0117 (12)0.0217 (14)0.0000.0017 (11)0.000
N10.0209 (15)0.0114 (13)0.0234 (14)0.0000.0038 (12)0.000
C80.0271 (14)0.0177 (12)0.0219 (12)0.0017 (10)0.0054 (10)0.0014 (10)
C30.0328 (15)0.0184 (12)0.0284 (13)0.0007 (11)0.0081 (11)0.0028 (11)
C60.0230 (18)0.0132 (15)0.0224 (17)0.0000.0001 (14)0.000
C90.0251 (13)0.0169 (11)0.0243 (12)0.0004 (10)0.0036 (10)0.0023 (10)
C100.0210 (13)0.0174 (11)0.0280 (13)0.0005 (9)0.0058 (10)0.0013 (10)
C50.0282 (15)0.0163 (12)0.0491 (17)0.0017 (10)0.0183 (13)0.0002 (11)
C10.0198 (17)0.0135 (15)0.0208 (16)0.0000.0033 (13)0.000
C20.0307 (15)0.0184 (12)0.0260 (13)0.0004 (10)0.0068 (11)0.0009 (10)
C40.0281 (15)0.0164 (12)0.0497 (17)0.0019 (10)0.0161 (13)0.0001 (12)
C110.0246 (13)0.0169 (12)0.0263 (13)0.0019 (9)0.0076 (10)0.0016 (10)
C70.0215 (18)0.0107 (15)0.0229 (17)0.0000.0057 (13)0.000
C120.0201 (17)0.0158 (15)0.0198 (16)0.0000.0016 (13)0.000
C140.0358 (17)0.0429 (16)0.0307 (15)0.0051 (14)0.0104 (12)0.0041 (13)
C130.0341 (17)0.0277 (14)0.0551 (19)0.0028 (12)0.0139 (14)0.0080 (14)
O20.0200 (9)0.0223 (9)0.0250 (9)0.0015 (7)0.0014 (7)0.0042 (7)
O10.0206 (9)0.0213 (9)0.0343 (10)0.0012 (7)0.0005 (8)0.0029 (7)
O30.0403 (12)0.0181 (9)0.0613 (14)0.0056 (8)0.0066 (10)0.0107 (9)
O1W0.0283 (11)0.0319 (10)0.0298 (11)0.0038 (8)0.0023 (9)0.0066 (8)
O40.0253 (10)0.0499 (13)0.0234 (9)0.0033 (8)0.0007 (8)0.0013 (8)
O70.0378 (12)0.0308 (10)0.0467 (12)0.0016 (9)0.0116 (10)0.0146 (9)
O60.0259 (11)0.0503 (12)0.0392 (12)0.0070 (10)0.0111 (9)0.0131 (10)
Geometric parameters (Å, º) top
Cu1—N32.016 (3)C6—C5ii1.390 (3)
Cu1—N41.986 (3)C6—C12iii1.479 (5)
Cu1—O1W2.324 (2)C9—H9A0.9300
Cu1—O22.0637 (18)C10—C111.381 (3)
Cu1—O2i2.0637 (18)C10—H10A0.9300
Cu2—N12.007 (3)C5—C41.381 (3)
Cu2—N22.019 (3)C5—H5A0.9300
Cu2—O12.095 (2)C1—C2ii1.389 (3)
Cu2—O62.242 (2)C1—C21.389 (3)
Cu1—O1Wi2.324 (2)C1—C7iv1.490 (5)
Cu2—O1ii2.095 (2)C2—H2A0.9300
Cu2—O6ii2.242 (2)C4—H4A0.9300
S1—O11.4805 (19)C11—C121.392 (3)
S1—O21.5085 (19)C11—H11A0.9300
S1—O31.4544 (19)C7—C8i1.395 (3)
S1—O41.461 (2)C7—C1v1.490 (5)
N4—C10i1.340 (3)C12—C11i1.392 (3)
N4—C101.340 (3)C12—C6vi1.479 (5)
N2—C41.337 (3)C14—O71.418 (4)
N2—C4ii1.337 (3)C14—C131.495 (4)
N3—C91.343 (3)C14—H14A0.9700
N3—C9i1.343 (3)C14—H14B0.9700
N1—C3ii1.336 (3)C13—O61.423 (4)
N1—C31.336 (3)C13—H13A0.9700
C8—C91.381 (3)C13—H13B0.9700
C8—C71.395 (3)O1W—H5C0.83 (3)
C8—H8A0.9300O1W—H5B0.84 (4)
C3—C21.383 (3)O7—H7A0.80 (4)
C3—H3A0.9300O6—H60.78 (4)
C6—C51.390 (3)
N3—Cu1—N4180.000 (1)C2—C3—H3A118.6
N3—Cu1—O1W87.37 (5)C5—C6—C5ii116.3 (3)
N3—Cu1—O289.26 (4)C5—C6—C12iii121.85 (15)
N4—Cu1—O1W92.63 (5)C5ii—C6—C12iii121.85 (15)
N4—Cu1—O290.74 (4)N3—C9—C8122.8 (2)
O1Wi—Cu1—O1W174.75 (10)N3—C9—H9A118.6
O1W—Cu1—O289.91 (8)C8—C9—H9A118.6
O2i—Cu1—O2178.53 (9)N4—C10—C11122.7 (2)
N1—Cu2—N2180.000 (1)N4—C10—H10A118.6
N1—Cu2—O190.22 (4)C11—C10—H10A118.6
N1—Cu2—O695.33 (6)C4—C5—C6120.2 (2)
N2—Cu2—O189.78 (4)C4—C5—H5A119.9
N2—Cu2—O684.67 (6)C6—C5—H5A119.9
O1—Cu2—O1ii179.55 (9)C2ii—C1—C2116.3 (3)
O1—Cu2—O689.53 (8)C2ii—C1—C7iv121.83 (15)
O6ii—Cu2—O6169.34 (12)C2—C1—C7iv121.83 (15)
N4—Cu1—O2i90.74 (4)C3—C2—C1120.3 (2)
N3—Cu1—O2i89.26 (4)C3—C2—H2A119.9
N4—Cu1—O1Wi92.63 (5)C1—C2—H2A119.9
N3—Cu1—O1Wi87.37 (5)N2—C4—C5123.1 (2)
O2i—Cu1—O1Wi89.91 (8)N2—C4—H4A118.5
O2—Cu1—O1Wi90.02 (8)C5—C4—H4A118.5
O2i—Cu1—O1W90.02 (8)C10—C11—C12119.8 (2)
N1—Cu2—O1ii90.22 (4)C10—C11—H11A120.1
N2—Cu2—O1ii89.78 (4)C12—C11—H11A120.1
N1—Cu2—O6ii95.33 (6)C8i—C7—C8116.8 (3)
N2—Cu2—O6ii84.67 (6)C8i—C7—C1v121.60 (15)
O1—Cu2—O6ii90.43 (8)C8—C7—C1v121.60 (15)
O1ii—Cu2—O6ii89.53 (8)C11i—C12—C11117.1 (3)
O1ii—Cu2—O690.43 (8)C11i—C12—C6vi121.44 (15)
O3—S1—O4112.03 (13)C11—C12—C6vi121.44 (15)
O3—S1—O1110.54 (11)O7—C14—C13108.9 (2)
O4—S1—O1108.79 (11)O7—C14—H14A109.9
O3—S1—O2109.66 (11)C13—C14—H14A109.9
O4—S1—O2108.45 (11)O7—C14—H14B109.9
O1—S1—O2107.24 (11)C13—C14—H14B109.9
C10i—N4—C10117.9 (3)H14A—C14—H14B108.3
C10i—N4—Cu1121.04 (14)O6—C13—C14110.0 (2)
C10—N4—Cu1121.04 (14)O6—C13—H13A109.7
C4—N2—C4ii117.1 (3)C14—C13—H13A109.7
C4—N2—Cu2121.45 (15)O6—C13—H13B109.7
C4ii—N2—Cu2121.45 (15)C14—C13—H13B109.7
C9—N3—C9i117.7 (3)H13A—C13—H13B108.2
C9—N3—Cu1121.13 (14)S1—O2—Cu1131.47 (11)
C9i—N3—Cu1121.13 (14)S1—O1—Cu2131.82 (11)
C3ii—N1—C3117.6 (3)Cu1—O1W—H5C127 (2)
C3ii—N1—Cu2121.20 (14)Cu1—O1W—H5B104 (2)
C3—N1—Cu2121.20 (14)H5C—O1W—H5B108 (3)
C9—C8—C7120.0 (2)C14—O7—H7A110 (3)
C9—C8—H8A120.0C13—O6—Cu2136.10 (18)
C7—C8—H8A120.0C13—O6—H6104 (3)
N1—C3—C2122.8 (2)Cu2—O6—H6117 (3)
N1—C3—H3A118.6
O2i—Cu1—N4—C10i50.16 (13)C10i—N4—C10—C110.53 (18)
O2—Cu1—N4—C10i129.84 (13)Cu1—N4—C10—C11179.47 (18)
O1Wi—Cu1—N4—C10i39.78 (13)C5ii—C6—C5—C40.3 (2)
O1W—Cu1—N4—C10i140.22 (13)C12iii—C6—C5—C4179.7 (2)
O2i—Cu1—N4—C10129.84 (13)N1—C3—C2—C10.4 (4)
O2—Cu1—N4—C1050.16 (13)C2ii—C1—C2—C30.17 (19)
O1Wi—Cu1—N4—C10140.22 (13)C7iv—C1—C2—C3179.83 (19)
O1W—Cu1—N4—C1039.78 (13)C4ii—N2—C4—C50.3 (2)
O1—Cu2—N2—C427.03 (16)Cu2—N2—C4—C5179.7 (2)
O1ii—Cu2—N2—C4152.97 (16)C6—C5—C4—N20.7 (4)
O6ii—Cu2—N2—C4117.49 (16)N4—C10—C11—C121.1 (3)
O6—Cu2—N2—C462.51 (16)C9—C8—C7—C8i0.41 (17)
O1—Cu2—N2—C4ii152.97 (16)C9—C8—C7—C1v179.59 (18)
O1ii—Cu2—N2—C4ii27.03 (16)C10—C11—C12—C11i0.50 (16)
O6ii—Cu2—N2—C4ii62.51 (16)C10—C11—C12—C6vi179.50 (17)
O6—Cu2—N2—C4ii117.49 (16)O7—C14—C13—O661.2 (3)
O2i—Cu1—N3—C9132.91 (14)O3—S1—O2—Cu169.94 (17)
O2—Cu1—N3—C947.09 (14)O4—S1—O2—Cu152.68 (16)
O1Wi—Cu1—N3—C942.96 (14)O1—S1—O2—Cu1170.00 (12)
O1W—Cu1—N3—C9137.04 (14)N4—Cu1—O2—S162.36 (13)
O2i—Cu1—N3—C9i47.09 (14)N3—Cu1—O2—S1117.64 (13)
O2—Cu1—N3—C9i132.91 (14)O1Wi—Cu1—O2—S130.27 (14)
O1Wi—Cu1—N3—C9i137.04 (14)O1W—Cu1—O2—S1154.98 (14)
O1W—Cu1—N3—C9i42.96 (14)O3—S1—O1—Cu270.52 (17)
O1—Cu2—N1—C3ii78.68 (15)O4—S1—O1—Cu2166.08 (13)
O1ii—Cu2—N1—C3ii101.32 (15)O2—S1—O1—Cu248.97 (16)
O6ii—Cu2—N1—C3ii11.77 (16)N1—Cu2—O1—S162.25 (13)
O6—Cu2—N1—C3ii168.23 (16)N2—Cu2—O1—S1117.75 (13)
O1—Cu2—N1—C3101.32 (15)O6ii—Cu2—O1—S1157.58 (14)
O1ii—Cu2—N1—C378.68 (15)O6—Cu2—O1—S133.08 (14)
O6ii—Cu2—N1—C3168.23 (16)C14—C13—O6—Cu298.9 (3)
O6—Cu2—N1—C311.77 (16)N1—Cu2—O6—C13111.1 (3)
C3ii—N1—C3—C20.2 (2)N2—Cu2—O6—C1368.9 (3)
Cu2—N1—C3—C2179.8 (2)O1—Cu2—O6—C13158.7 (3)
C9i—N3—C9—C80.43 (19)O1ii—Cu2—O6—C1320.9 (3)
Cu1—N3—C9—C8179.57 (19)O6ii—Cu2—O6—C1368.9 (3)
C7—C8—C9—N30.9 (4)
Symmetry codes: (i) x, y, z+3/2; (ii) x+1, y, z+3/2; (iii) x+1/2, y+1/2, z; (iv) x+1/2, y1/2, z; (v) x1/2, y+1/2, z; (vi) x1/2, y1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H5B···O4i0.84 (4)1.94 (4)2.741 (3)159 (3)
O7—H7A···O3vii0.80 (4)1.92 (4)2.693 (3)164 (4)
O1W—H5C···O70.83 (3)1.91 (4)2.726 (3)170 (3)
O6—H6···O20.78 (4)1.99 (4)2.668 (3)145 (4)
Symmetry codes: (i) x, y, z+3/2; (vii) x, y+1, z1/2.

Experimental details

Crystal data
Chemical formula[Cu2(SO4)2(C10H8N2)2(C2H6O2)2(H2O)2]
Mr791.74
Crystal system, space groupMonoclinic, C2/c
Temperature (K)223
a, b, c (Å)11.060 (2), 22.220 (4), 12.208 (2)
β (°) 95.87 (3)
V3)2984.5 (10)
Z4
Radiation typeMo Kα
µ (mm1)1.64
Crystal size (mm)0.65 × 0.20 × 0.18
Data collection
DiffractometerRigaku Mercury CCD area-detector
diffractometer
Absorption correctionMulti-scan
(REQAB; Jacobson, 1998)
Tmin, Tmax0.823, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
8511, 3390, 2730
Rint0.024
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.094, 1.10
No. of reflections3390
No. of parameters225
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.52, 0.40

Computer programs: CrystalClear (Rigaku, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Cu1—N32.016 (3)Cu2—O12.095 (2)
Cu1—N41.986 (3)Cu2—O62.242 (2)
Cu1—O1W2.324 (2)S1—O11.4805 (19)
Cu1—O22.0637 (18)S1—O21.5085 (19)
Cu2—N12.007 (3)S1—O31.4544 (19)
Cu2—N22.019 (3)S1—O41.461 (2)
N3—Cu1—N4180.000 (1)N1—Cu2—N2180.000 (1)
N3—Cu1—O1W87.37 (5)N1—Cu2—O190.22 (4)
N3—Cu1—O289.26 (4)N1—Cu2—O695.33 (6)
N4—Cu1—O1W92.63 (5)N2—Cu2—O189.78 (4)
N4—Cu1—O290.74 (4)N2—Cu2—O684.67 (6)
O1Wi—Cu1—O1W174.75 (10)O1—Cu2—O1ii179.55 (9)
O1W—Cu1—O289.91 (8)O1—Cu2—O689.53 (8)
O2i—Cu1—O2178.53 (9)O6ii—Cu2—O6169.34 (12)
Symmetry codes: (i) x, y, z+3/2; (ii) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H5B···O4i0.84 (4)1.94 (4)2.741 (3)159 (3)
O7—H7A···O3iii0.80 (4)1.92 (4)2.693 (3)164 (4)
O1W—H5C···O70.83 (3)1.91 (4)2.726 (3)170 (3)
O6—H6···O20.78 (4)1.99 (4)2.668 (3)145 (4)
Symmetry codes: (i) x, y, z+3/2; (iii) x, y+1, z1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds