Download citation
Download citation
link to html
The 1:1 proton-transfer compounds of L-tartaric acid with 3-amino­pyridine [3-amino­pyridinium hydrogen (2R,3R)-tartrate dihydrate, C5H7N2+·C4H5O6-·2H2O, (I)], pyridine-3-carboxylic acid (nicotinic acid) [anhydrous 3-carboxy­pyridinium hydrogen (2R,3R)-tartrate, C6H6NO2+·C4H5O6-, (II)] and pyridine-2-carboxylic acid [2-carboxy­pyridinium hydrogen (2R,3R)-tartrate monohydrate, C6H6NO2+·C4H5O6-·H2O, (III)] have been determined. In (I) and (II), there is a direct pyridinium-carboxyl N+-H...O hydrogen-bonding inter­action, four-centred in (II), giving conjoint cyclic R12(5) associations. In contrast, the N-H...O association in (III) is with a water O-atom acceptor, which provides links to separate tartrate anions through Ohydroxy acceptors. All three compounds have the head-to-tail C(7) hydrogen-bonded chain substructures commonly associated with 1:1 proton-transfer hydrogen tartrate salts. These chains are extended into two-dimensional sheets which, in hydrates (I) and (III) additionally involve the solvent water mol­ecules. Three-dimensional hydrogen-bonded structures are generated via crosslinking through the associative functional groups of the substituted pyridinium cations. In the sheet struture of (I), both water mol­ecules act as donors and acceptors in inter­actions with separate carboxyl and hydr­oxy O-atom acceptors of the primary tartrate chains, closing conjoint cyclic R44(8), R34(11) and R33(12) associations. Also, in (II) and (III) there are strong cation carboxyl-carboxyl O-H...O hydrogen bonds [O...O = 2.5387 (17) Å in (II) and 2.441 (3) Å in (III)], which in (II) form part of a cyclic R22(6) inter-sheet association. This series of heteroaromatic Lewis base-hydrogen L-tartrate salts provides further examples of mol­ecular assembly facilitated by the presence of the classical two-dimensional hydrogen-bonded hydrogen tartrate or hydrogen tartrate-water sheet substructures which are expanded into three-dimensional frameworks via peripheral cation bifunctional substituent-group crosslinking inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270109049154/sf3121sup1.cif
Contains datablocks global, I, II, III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109049154/sf3121Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109049154/sf3121IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109049154/sf3121IIIsup4.hkl
Contains datablock III

CCDC references: 765461; 765462; 765463

Comment top

The use of common L-tartaric acid for the production of crystalline salts suitable for the single-crystal characterization of Lewis bases has been employed extensively. Such salts, particularly the 1:1 hydrogen L-tartrates, have been employed as biologically compatibile pharmaceuticals, as well as achiral materials with potential for nonlinear optical applications (Aakeröy et al., 1992; Kadirvelraj et al., 1998). However, the known structures of the hydrogen L-tartrate salts of the associative-group substituted monocyclic heteroaromatic base pyridine are not common. These include the 1:1 proton-transfer salts with the substituted pyridines 3-hydroxypyridine (Tafeenko et al., 1990), 3-methoxypyridine (Renuka et al., 1995), 2-amino-5-nitropyridine (Watanabe et al., 1993; Zyss et al., 1993), 3,4-diaminopyridine (Koleva et al., 2008), 4-(N,N-dimethylamino)pyridine (Pecaut, 1993; Parthasarathi et al., 1993; Manivannan et al., 2006), 4-carboxypyridine (isonicotinic acid) (Athimoolam & Natarajan, 2007a), 3-(aminocarboxy)pyridine (nicotinamide) (Athimoolam & Natarajan, 2007b) and 4-(aminocarboxy)pyridine (isonicotinamide) (Bhogala et al., 2005). In the structures of the majority of the anhydrous hydrogen tartrates (Aakeröy et al., 1992; Aakeröy & Hitchcock, 1993), homomeric C11(7) [or C(7)] (Etter et al., 1990) head-to-tail carboxylic acid–carboxylate hydrogen-bonding associations form primary chain substructures. These are extended into two-dimensional sheets and then, in the majority of examples, further extended into three-dimensional framework structures. The cation species, or the solvent water molecules in the hydrated salts, are often involved in the formation of these two-dimensional sheet structures. The presence of associative functional group substituents on the pyridinium cation promotes the formation of the framework structures. In some cases, e.g. the isonicotinic acid salt (Athimoolam & Natarajan, 2007a), where there are two independent hydrogen tartrate residues in the asymmetric unit, these anions form inter-associated duplex C11(7)-linked chains and sheet structures, as well as three-dimensional framework structures.

Considering this background, it was surprising that the structures of the 1:1 proton-transfer hydrogen L-tartrate salts of the analogous 3-carboxypyridine (nicotinic acid) or 2-carboxypyridine (picolinic acid) were not known. We therefore carried out 1:1 stoichiometric reactions of L-tartaric acid with a number of interactive-group substituted pyridines, with the intention of obtaining crystalline compounds suitable for X-ray analysis to enable examination of the hydrogen-bonding systems present. Crystalline compounds were obtained with the salts from the reactions of 3-aminopyridine, nicotinic acid and picolinic acid, from aqueous ethanol or propan-2-ol solvent systems, namely 3-aminopyridinium hydrogen (2R,3R)-tartrate dihydrate, C5H7N2+.C4H5O6-.2H2O, (I), anhydrous 3-carboxypyridinium hydrogen (2R,3R)-tartrate, C6H6N O2+.C4H5O6-, (II), and 2-carboxypyridinium hydrogen (2R,3R)-tartrate monohydrate, C6H6NO2+.C4H5O6-.H2O, (III), and their structures are reported here.

In compounds (I)–(III) (Figs. 1–3), not unexpectedly, the hetero-N atom of the base is protonated and forms direct N+—H···O hydrogen-bonding interactions (Tables 1–3). However, unlike the structures of both (I) and (II) where the interaction is with a carboxyl O acceptor, in (III) one of the solvent water molecules becomes the acceptor. This is probably due to steric factors associated with the ortho-related carboxy group. In all three structures the hydrogen tartrate anions form the common primary C11(7) hydrogen-bonded chain substructures, two-dimensional sheets and overall three-dimensional framework structures (Figs. 4–8). Because of the presence of solvent water molecules in (I) and (III), the three-dimensional makeup is sufficiently different for all three compounds to be considered separately.

With the structure of the 3-aminopyridinium dihydrate salt, (I) (Fig. 1), the primary head-to-tail hydrogen tartrate anion chains form along the a-axis direction in the unit cell and are extended into two-dimensional sheet structures through hydrogen-bonding interactions involving the two solvent water molecules (O1W and O2W) (Fig. 4). These interactions (Table 1) include the hydroxy groups acting as both donors and acceptors with both water molecules, closing conjoint R44(8), R34(11) and R33(12) cyclic associations. Extension into a three-dimensional framework involves both functional groups of the 3-aminopyridinium cation, which form links across the c cell direction with their aromatic rings layering down a, giving some ring overlap with weak ππ interactions [ring centroid separation 3.719 (2) Å].

In the structure of the anhydrous compound, (II), with nicotinic acid, the primary hydrogen tartrate sheet structure forms through hydroxy O—H···O(carboxyl) interchain cyclic associations [graph sets R22(11) and R44(19); Fig. 6]. The pyridinium N+—H group is involved in a four-centre cation–anion hydrogen-bonding association with a carboxylate O atom and two hydroxy O-atom acceptors of the anion (Fig. 2), enclosing two conjoint cyclic R12(5) interactions. The two hydroxy H atoms and the two carboxylic acid H-atom donors (one from the anion and the other from the cation) are involved in hydrogen-bonding interactions (Table 2), expanding the primary hydrogen tartrate sheets into the three-dimensional framework structure through cation crosslinks (Fig 7). The cation carboxylic acid O—H.. O(carboxyl) (anion) hydrogen bond is strong [O—H···O = 2.5387 (17) Å] and forms a cyclic R22(6) association linking separate tartrate residues in the chains via carboxyl and hydroxy groups.

In the monohydrate picolinate structure, (III), the solvent water molecule (O1W), which acts as an acceptor for the pyridinium H atom, also provides a three-centre bridge between the primary hydrogen tartrate anion chain substructures through separate hydroxy groups (Fig. 8). These tartrate chains extend down the b cell direction of the unit cell. The bifunctional 2-carboxypyridinium cations provide the crosslinks between the sheets, across the c cell direction. Additional peripheral hydrogen-bonding associations (Table 3), including a strong cation carboxylic acid O—H···O(carboxylate) (anion) hydrogen bond [O···O = 2.441 (3) Å], give the three-dimensional structure (Fig. 9). The picolinate cation has an intramolecular hydrogen bond [N···O = 2.682 (3) Å] between the pyridinium H atom and an O acceptor of the cis-related carboxylic acid group, which essentially maintains molecular planarity [torsion angle N1—C2—C7—O72 = 175.9 (3)°].

The accepted (2R,3R) absolute configuration for the L-tartrate residues in compounds (I)–(III) (Bijvoet et al., 1951; Lutz & Schreurs, 2008) was assumed and these anions adopt the common extended hydrogen tartrate conformation. The intramolecular hydroxy O—H···O(carboxyl) hydrogen bond, which is common in hydrogen L-tartrates, is also found in the hydrated compounds (I) [O21—H···O12] and (III) [O31—H···O41], but is absent in the anhydrous compound, (II). Despite this, there are no significant conformational differences in the three hydrogen tartrate anions, the characteristic O21—C21—C31—O31 torsion angles being -70.5 (2)° in (I), -65.11 (17)° in (II) and -63.5 (3)° in (III), which compare with the values of -65.1 (4) and -73.5 (4)° in the two independent anions in the asymmetric unit of 4-carboxyanilinium hydrogen L-tartrate (Athimoolam & Natarajan, 2007a), and -74.3 (3)° in the unsubstituted pyridinium hydrogen L-tartrate (Suresh et al., 2006).

This series of monocyclic heteroaromatic Lewis base–hydrogen L-tartrate salts provides further examples of molecular assembly facilitated by the presence of the classical C11(7) hydrogen-bonded head-to-tail hydrogen tartrate chains. These chains are expanded into two-dimensional sheets, which may also contain solvent water molecules. Three-dimensional frameworks result from inter-sheet crosslinking through the interactive bifunctional substituent group of the pyridinium cations.

Experimental top

Compounds (I)–(III) were synthesized by heating together for 10 min under reflux L-tartaric acid (1 mmol) and, respectively, 3-aminopyridine, pyridine-3-carboxylic acid (nicotinic acid) and pyridine-2-carboxylic acid (picolinic acid) (1 mmol) in either 50% ethanol–water (50 ml) for (I) or 50% propan-2-ol–water (50 ml) for (I) [(II)?] and (III). After partial room-temperature evaporation of the solvents, all compounds gave hard colourless crystals: prisms for (I) (m.p. 371–373 K), blocks for (II) (m.p. 470–471 K) or plates for (III) (m.p. 393 K).

Refinement top

H atoms potentially involved in hydrogen-bonding interactions were located by difference methods and their positional and isotropic displacement parameters were refined. Other H atoms were included at calculated positions, with C—H (aromatic) = 0.93 Å and C—H (aliphatic) = 0.98 Å, and treated as riding, with Uiso(H) = 1.2Ueq(C). The absolute configuration determined for the parent L-(+)-tartaric acid, (2R,3R) (Bijvoet et al., 1951; Lutz & Schreurs, 2008), was invoked in all cases. Friedel pairs were averaged in all data sets used in the final refinements, but unacceptable though meaningless values were obtained for the absolute structure parameters (Flack, 1983) determined from complete data sets for these light-atom structures. It should also be noted that with (I) the structure was refined using diffraction data re-acquired at 200 K, necessitated because of the very large displacement parameters for all atoms in the structure obtained from room-temperature data. This problem is still apparent but considerably lessened in the low-temperature structure reported here. With (II) and (III), the problem was not significant and room-temperature data were used.

Computing details top

For all compounds, data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 1999); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular configuration and atom-numbering scheme for the 3-aminopyridinium cation, the hydrogen L-tartrate anion and the two solvent water molecules of (I). Displacement ellipsoids are drawn at the 40% probability level and H atoms are shown as small spheres of arbitrary radii. Dashed lines indicate hydrogen bonds.
[Figure 2] Fig. 2. The molecular configuration and atom-numbering scheme for the 3-carboxypyridinium cation and the hydrogen L-tartrate anion of (II). Displacement ellipsoids are drawn at the 40% probability level and H atoms are shown as small spheres of arbitrary radii. Dashed lines indicate hydrogen bonds.
[Figure 3] Fig. 3. The molecular configuration and atom-numbering scheme for the 2-carboxypyridinium cation, the hydrogen L-tartrate anion and the solvent water molecule of (III). Displacement ellipsoids are drawn at the 40% probability level and H atoms are shown as small spheres of arbitrary radii. Dashed lines indicate hydrogen bonds.
[Figure 4] Fig. 4. A view of the C11(7) head-to-tail hydrogen-bonded chains of hydrogen tartrate anions in (I) and their extension into two-dimensional sheets through the two solvent water molecules. H atoms not involved in hydrogen bonding and the 3-amininopyridinium cations have been omitted for clarity. Hydrogen bonds are shown as dashed lines. (For symmetry codes, see Table 1.)
[Figure 5] Fig. 5. The three-dimensional extension of the hydrogen tartrate–water sheet substructures in (I) via the substituted pyridinium cations, viewed down the a cell direction. H atoms not involved in hydrogen bonding have been omitted for clarity.
[Figure 6] Fig. 6. A view of the homomeric hydrogen-bonded two-dimensional sheet substructure in (II), comprising hydrogen tartrate anions only. H atoms not involved in hydrogen bonding and the 3-carboxypyridinium cations have been omitted for clarity. Hydrogen bonds are shown as dashed lines. (For symmetry codes, see Table 2.)
[Figure 7] Fig. 7. A perspective view of the packing of the three-dimensional structure of (II) in the unit cell, showing the peripheral extension of the primary sheet substructures across the c cell direction via the 3-carboxypyridinium cations. H atoms not involved in hydrogen bonding have been omitted for clarity. Hydrogen bonds are shown as dashed lines. (For symmetry codes, see Table 2.)
[Figure 8] Fig. 8. A view of the hydrogen-bonded two-dimensional chains of hydrogen tartrate anions in (III) and their extension into two-dimensional sheets via the solvent water molecule. H atoms not involved in hydrogen bonding and the 2-carboxypyridinium cations have been omitted for clarity. Hydrogen bonds are shown as dashed lines. (For symmetry codes, see Table 3.)
[Figure 9] Fig. 9. A perspective view of the packing of the three-dimensional structure of (III) in the unit cell, showing the extension of the sheet substructures across the c cell direction via the 2-carboxypyridinium cations. H atoms not involved in hydrogen bonding have been omitted for clarity. Hydrogen bonds are shown as dashed lines. (For symmetry codes, see Table 3.)
(I) 3-aminopyridinium hydrogen (2R,3R)-tartrate dihydrate top
Crystal data top
C5H7N2+·C4H5O6·2H2ODx = 1.447 Mg m3
Mr = 280.24Melting point = 371–372 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1717 reflections
a = 7.3073 (12) Åθ = 3.1–28.9°
b = 12.1065 (13) ŵ = 0.13 mm1
c = 14.541 (2) ÅT = 200 K
V = 1286.4 (3) Å3Block, colourless
Z = 40.35 × 0.25 × 0.20 mm
F(000) = 592
Data collection top
Oxford Gemini-S CCD area-detector
diffractometer
1434 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray sourceRint = 0.039
Graphite monochromatorθmax = 29.0°, θmin = 3.1°
ω scansh = 89
4764 measured reflectionsk = 1015
1722 independent reflectionsl = 1911
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0638P)2]
where P = (Fo2 + 2Fc2)/3
1722 reflections(Δ/σ)max < 0.001
212 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.20 e Å3
0 constraints
Crystal data top
C5H7N2+·C4H5O6·2H2OV = 1286.4 (3) Å3
Mr = 280.24Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.3073 (12) ŵ = 0.13 mm1
b = 12.1065 (13) ÅT = 200 K
c = 14.541 (2) Å0.35 × 0.25 × 0.20 mm
Data collection top
Oxford Gemini-S CCD area-detector
diffractometer
1434 reflections with I > 2σ(I)
4764 measured reflectionsRint = 0.039
1722 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.25 e Å3
1722 reflectionsΔρmin = 0.20 e Å3
212 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O110.5557 (2)0.85792 (14)0.42493 (11)0.0301 (5)
O120.5671 (2)0.70447 (15)0.33953 (16)0.0500 (7)
O210.2106 (3)0.68246 (15)0.33108 (18)0.0535 (7)
O310.2727 (2)0.90477 (14)0.26306 (11)0.0340 (5)
O410.0871 (2)0.86440 (14)0.26665 (11)0.0316 (5)
O420.0976 (2)0.86902 (14)0.41985 (11)0.0313 (5)
C110.4836 (3)0.77476 (18)0.38086 (15)0.0280 (6)
C210.2758 (3)0.77115 (18)0.38417 (17)0.0297 (6)
C310.1941 (3)0.87976 (16)0.34977 (15)0.0243 (6)
C410.0141 (3)0.86949 (15)0.34387 (14)0.0237 (5)
N10.0189 (4)0.8063 (2)0.09496 (18)0.0489 (8)
N30.0277 (5)0.5575 (2)0.04172 (18)0.0616 (11)
C20.0252 (4)0.6988 (3)0.07347 (18)0.0477 (9)
C30.0268 (4)0.6656 (2)0.01831 (17)0.0423 (8)
C40.0209 (5)0.7491 (2)0.08446 (19)0.0466 (9)
C50.0146 (5)0.8588 (2)0.0588 (2)0.0519 (9)
C60.0139 (5)0.8867 (3)0.0331 (2)0.0532 (9)
O1W0.3802 (3)0.49623 (16)0.26518 (14)0.0401 (6)
O2W0.1220 (3)0.58882 (18)0.2981 (2)0.0718 (9)
H110.691 (7)0.860 (4)0.420 (3)0.068 (14)*
H210.237600.759900.448100.0360*
H21A0.277 (5)0.637 (3)0.318 (2)0.063 (11)*
H310.225100.938700.393300.0290*
H31A0.220 (5)0.961 (3)0.238 (2)0.053 (9)*
H10.012 (5)0.818 (3)0.148 (3)0.061 (10)*
H20.028600.646100.120000.0570*
H3A0.051 (6)0.501 (3)0.007 (3)0.075 (11)*
H3B0.032 (5)0.541 (3)0.100 (2)0.055 (9)*
H40.021200.730600.146500.0560*
H50.010900.913700.103400.0620*
H60.010000.960300.051300.0640*
H11W0.296 (5)0.448 (3)0.252 (2)0.049 (8)*
H12W0.470 (7)0.476 (3)0.246 (3)0.074 (13)*
H21W0.193 (6)0.638 (4)0.305 (3)0.086 (11)*
H22W0.014 (8)0.615 (5)0.306 (3)0.097 (15)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O110.0187 (8)0.0367 (8)0.0349 (8)0.0008 (7)0.0014 (7)0.0008 (7)
O120.0205 (9)0.0405 (9)0.0889 (15)0.0018 (7)0.0011 (10)0.0197 (10)
O210.0198 (9)0.0293 (9)0.1113 (18)0.0006 (7)0.0041 (11)0.0182 (10)
O310.0210 (8)0.0433 (9)0.0378 (9)0.0042 (7)0.0054 (7)0.0123 (7)
O410.0213 (8)0.0437 (9)0.0297 (8)0.0041 (7)0.0019 (7)0.0016 (7)
O420.0181 (8)0.0447 (9)0.0312 (8)0.0007 (7)0.0018 (7)0.0039 (7)
C110.0207 (10)0.0268 (10)0.0366 (11)0.0036 (9)0.0004 (10)0.0072 (9)
C210.0174 (10)0.0294 (11)0.0424 (12)0.0015 (9)0.0011 (10)0.0064 (9)
C310.0177 (10)0.0261 (9)0.0292 (10)0.0002 (8)0.0008 (9)0.0001 (9)
C410.0198 (10)0.0210 (8)0.0302 (10)0.0020 (8)0.0003 (9)0.0015 (8)
N10.0378 (14)0.0706 (16)0.0382 (12)0.0029 (12)0.0023 (11)0.0178 (12)
N30.101 (3)0.0460 (12)0.0379 (12)0.0078 (15)0.0015 (16)0.0075 (11)
C20.0478 (18)0.0613 (17)0.0339 (12)0.0004 (14)0.0021 (13)0.0039 (12)
C30.0409 (16)0.0494 (14)0.0367 (12)0.0004 (13)0.0001 (12)0.0021 (11)
C40.0576 (19)0.0487 (14)0.0335 (11)0.0035 (13)0.0002 (14)0.0013 (11)
C50.0570 (19)0.0510 (15)0.0477 (14)0.0021 (16)0.0016 (15)0.0008 (12)
C60.0503 (18)0.0535 (15)0.0557 (16)0.0051 (15)0.0006 (16)0.0110 (14)
O1W0.0257 (10)0.0411 (9)0.0536 (11)0.0011 (9)0.0003 (9)0.0175 (9)
O2W0.0249 (11)0.0446 (12)0.146 (2)0.0014 (9)0.0014 (14)0.0451 (13)
Geometric parameters (Å, º) top
O11—C111.305 (3)N1—H10.79 (4)
O12—C111.207 (3)N3—H3B0.87 (3)
O21—C211.406 (3)N3—H3A1.00 (4)
O31—C311.418 (3)C11—C211.520 (3)
O41—C411.245 (3)C21—C311.528 (3)
O42—C411.262 (3)C31—C411.529 (3)
O11—H110.99 (5)C21—H210.9800
O21—H21A0.76 (4)C31—H310.9800
O31—H31A0.86 (4)C2—C31.394 (4)
O1W—H11W0.87 (4)C3—C41.396 (4)
O1W—H12W0.75 (5)C4—C51.380 (3)
O2W—H21W0.80 (5)C5—C61.378 (4)
O2W—H22W0.86 (6)C2—H20.9300
N1—C21.339 (4)C4—H40.9300
N1—C61.326 (4)C5—H50.9300
N3—C31.352 (3)C6—H60.9300
C11—O11—H11113 (3)O41—C41—O42125.6 (2)
C21—O21—H21A118 (3)O21—C21—H21109.00
C31—O31—H31A111 (2)C11—C21—H21109.00
H11W—O1W—H12W108 (4)C31—C21—H21109.00
H21W—O2W—H22W108 (5)O31—C31—H31109.00
C2—N1—C6123.8 (3)C41—C31—H31109.00
C6—N1—H1122 (3)C21—C31—H31109.00
C2—N1—H1114 (3)N1—C2—C3120.3 (3)
C3—N3—H3A119 (2)N3—C3—C2121.3 (3)
H3A—N3—H3B122 (3)N3—C3—C4121.8 (2)
C3—N3—H3B118 (2)C2—C3—C4116.8 (2)
O12—C11—C21120.0 (2)C3—C4—C5120.8 (3)
O11—C11—O12125.8 (2)C4—C5—C6119.9 (3)
O11—C11—C21114.21 (18)N1—C6—C5118.5 (3)
O21—C21—C31110.19 (19)N1—C2—H2120.00
C11—C21—C31110.81 (18)C3—C2—H2120.00
O21—C21—C11110.07 (19)C5—C4—H4120.00
C21—C31—C41109.70 (16)C3—C4—H4120.00
O31—C31—C21108.45 (17)C4—C5—H5120.00
O31—C31—C41111.75 (17)C6—C5—H5120.00
O41—C41—C31118.76 (18)C5—C6—H6121.00
O42—C41—C31115.62 (18)N1—C6—H6121.00
C2—N1—C6—C50.2 (5)O31—C31—C41—O4112.1 (2)
C6—N1—C2—C30.0 (5)C21—C31—C41—O4273.1 (2)
O11—C11—C21—O21177.0 (2)O31—C31—C41—O42166.62 (17)
O12—C11—C21—C31124.9 (2)C21—C31—C41—O41108.2 (2)
O11—C11—C21—C3154.8 (3)N1—C2—C3—C40.2 (4)
O12—C11—C21—O212.8 (3)N1—C2—C3—N3178.0 (3)
C11—C21—C31—O3151.6 (2)N3—C3—C4—C5178.1 (3)
C11—C21—C31—C41173.86 (18)C2—C3—C4—C50.3 (5)
O21—C21—C31—C4151.8 (2)C3—C4—C5—C60.1 (5)
O21—C21—C31—O3170.5 (2)C4—C5—C6—N10.2 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O410.79 (4)1.95 (4)2.707 (3)161 (4)
N3—H3A···O42i1.00 (4)1.95 (4)2.934 (3)168 (4)
N3—H3B···O1Wii0.87 (3)2.11 (3)2.960 (3)164 (3)
O11—H11···O42iii0.99 (5)1.55 (5)2.538 (2)175 (2)
O21—H21A···O1W0.76 (4)2.02 (4)2.745 (3)162 (4)
O21—H21A···O120.76 (4)2.29 (4)2.622 (3)107 (3)
O31—H31A···O2Wiv0.86 (4)1.78 (4)2.640 (3)171 (3)
O1W—H11W···O41i0.87 (4)1.85 (4)2.711 (3)169 (3)
O1W—H12W···O31v0.75 (5)2.07 (5)2.798 (3)162 (5)
O2W—H21W···O12vi0.80 (5)1.99 (4)2.736 (3)155 (4)
O2W—H22W···O210.86 (6)1.87 (6)2.724 (3)174 (3)
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x+1/2, y+1, z1/2; (iii) x+1, y, z; (iv) x, y+1/2, z+1/2; (v) x+1, y1/2, z+1/2; (vi) x1, y, z.
(II) 3-carboxypyridinium hydrogen (2R,3R)-tartrate top
Crystal data top
C6H6NO2+·C4H5O6Dx = 1.638 Mg m3
Mr = 273.20Melting point = 470–471 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3162 reflections
a = 6.5792 (2) Åθ = 3.2–28.5°
b = 7.7637 (2) ŵ = 0.15 mm1
c = 21.6830 (5) ÅT = 297 K
V = 1107.55 (5) Å3Block, colourless
Z = 40.40 × 0.40 × 0.30 mm
F(000) = 568
Data collection top
Oxford Gemini-S Ultra CCD area-detector
diffractometer
1317 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray sourceRint = 0.020
Graphite monochromatorθmax = 28.7°, θmin = 3.2°
ω scansh = 88
5552 measured reflectionsk = 610
1537 independent reflectionsl = 2828
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.066H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0397P)2]
where P = (Fo2 + 2Fc2)/3
1537 reflections(Δ/σ)max = 0.002
192 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C6H6NO2+·C4H5O6V = 1107.55 (5) Å3
Mr = 273.20Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.5792 (2) ŵ = 0.15 mm1
b = 7.7637 (2) ÅT = 297 K
c = 21.6830 (5) Å0.40 × 0.40 × 0.30 mm
Data collection top
Oxford Gemini-S Ultra CCD area-detector
diffractometer
1317 reflections with I > 2σ(I)
5552 measured reflectionsRint = 0.020
1537 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.066H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.16 e Å3
1537 reflectionsΔρmin = 0.16 e Å3
192 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O110.6742 (2)0.15971 (17)0.03744 (6)0.0376 (5)
O120.7555 (2)0.22385 (16)0.13467 (6)0.0408 (5)
O210.9124 (2)0.52781 (17)0.09742 (6)0.0294 (4)
O310.4801 (2)0.53849 (18)0.10680 (6)0.0311 (4)
O410.6248 (2)0.84011 (15)0.06913 (5)0.0349 (5)
O420.66173 (19)0.75197 (15)0.02806 (5)0.0286 (4)
C110.7361 (3)0.2634 (2)0.08147 (8)0.0258 (5)
C210.7797 (3)0.4425 (2)0.05612 (7)0.0236 (5)
C310.5792 (3)0.5418 (2)0.04895 (8)0.0241 (5)
C410.6244 (3)0.7273 (2)0.02875 (8)0.0229 (5)
O710.7577 (3)0.31198 (16)0.32594 (6)0.0493 (6)
O720.8220 (3)0.50398 (17)0.39924 (6)0.0441 (5)
N10.7280 (3)0.7089 (2)0.19859 (7)0.0460 (6)
C20.7403 (4)0.5767 (2)0.23779 (9)0.0395 (6)
C30.7689 (3)0.6084 (2)0.29942 (7)0.0262 (5)
C40.7844 (3)0.7769 (2)0.31907 (8)0.0311 (6)
C50.7702 (3)0.9095 (2)0.27691 (8)0.0370 (6)
C60.7419 (3)0.8722 (2)0.21607 (8)0.0382 (7)
C70.7825 (3)0.4584 (2)0.34307 (8)0.0305 (5)
H110.648 (4)0.052 (4)0.0516 (12)0.074 (8)*
H210.845600.432100.015800.0280*
H21A0.992 (5)0.600 (4)0.0762 (11)0.068 (8)*
H310.493900.485100.017900.0290*
H31A0.386 (5)0.617 (4)0.1071 (13)0.077 (9)*
H10.694 (4)0.687 (3)0.1598 (13)0.061 (8)*
H20.729500.464200.223400.0470*
H40.804400.801000.360600.0370*
H50.779901.023400.289900.0440*
H60.732400.960300.187100.0460*
H720.825 (5)0.402 (4)0.4263 (11)0.080 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O110.0598 (10)0.0169 (6)0.0361 (7)0.0057 (6)0.0080 (7)0.0002 (6)
O120.0664 (10)0.0257 (7)0.0302 (7)0.0042 (7)0.0044 (7)0.0078 (5)
O210.0308 (7)0.0251 (7)0.0322 (7)0.0056 (6)0.0044 (6)0.0018 (6)
O310.0322 (7)0.0240 (7)0.0370 (7)0.0025 (6)0.0110 (6)0.0036 (6)
O410.0569 (10)0.0173 (6)0.0304 (7)0.0048 (7)0.0007 (7)0.0022 (5)
O420.0411 (7)0.0206 (6)0.0242 (6)0.0020 (6)0.0004 (6)0.0028 (5)
C110.0297 (9)0.0190 (8)0.0286 (9)0.0025 (8)0.0023 (8)0.0006 (7)
C210.0291 (9)0.0176 (8)0.0241 (8)0.0002 (8)0.0016 (7)0.0017 (6)
C310.0305 (9)0.0182 (8)0.0237 (8)0.0036 (8)0.0033 (7)0.0009 (7)
C410.0263 (8)0.0164 (8)0.0260 (9)0.0013 (7)0.0023 (8)0.0017 (7)
O710.0840 (13)0.0233 (7)0.0405 (8)0.0044 (8)0.0022 (8)0.0038 (6)
O720.0757 (11)0.0279 (7)0.0288 (7)0.0064 (7)0.0066 (7)0.0029 (6)
N10.0750 (14)0.0416 (10)0.0213 (8)0.0077 (10)0.0034 (9)0.0015 (7)
C20.0568 (14)0.0285 (9)0.0332 (10)0.0076 (11)0.0020 (10)0.0064 (8)
C30.0295 (9)0.0241 (8)0.0249 (8)0.0002 (8)0.0021 (8)0.0021 (7)
C40.0416 (11)0.0260 (9)0.0256 (9)0.0003 (9)0.0004 (8)0.0045 (7)
C50.0521 (13)0.0243 (9)0.0346 (10)0.0024 (10)0.0039 (9)0.0004 (8)
C60.0493 (13)0.0331 (11)0.0322 (10)0.0021 (10)0.0018 (10)0.0089 (8)
C70.0367 (10)0.0243 (9)0.0304 (9)0.0009 (9)0.0029 (8)0.0014 (8)
Geometric parameters (Å, º) top
O11—C111.314 (2)C11—C211.522 (2)
O12—C111.201 (2)C21—C311.536 (3)
O21—C211.415 (2)C31—C411.534 (2)
O31—C311.414 (2)C21—H210.9800
O41—C411.238 (2)C31—H310.9800
O42—C411.271 (2)C2—C31.372 (2)
O11—H110.91 (3)C3—C41.380 (2)
O21—H21A0.89 (3)C3—C71.503 (2)
O31—H31A0.87 (3)C4—C51.380 (2)
O71—C71.207 (2)C5—C61.363 (2)
O72—C71.295 (2)C2—H20.9300
O72—H720.99 (3)C4—H40.9300
N1—C21.335 (2)C5—H50.9300
N1—C61.326 (2)C6—H60.9300
N1—H10.89 (3)
C11—O11—H11112.2 (17)C41—C31—H31110.00
C21—O21—H21A109.2 (17)O31—C31—H31110.00
C31—O31—H31A108.8 (19)C21—C31—H31110.00
C7—O72—H72110.2 (16)N1—C2—C3119.38 (15)
C2—N1—C6123.28 (16)C2—C3—C4118.76 (15)
C2—N1—H1118.2 (15)C2—C3—C7118.85 (14)
C6—N1—H1118.1 (15)C4—C3—C7122.39 (14)
O12—C11—C21124.09 (15)C3—C4—C5119.86 (16)
O11—C11—O12125.07 (15)C4—C5—C6119.46 (15)
O11—C11—C21110.84 (14)N1—C6—C5119.27 (15)
O21—C21—C31111.04 (13)O71—C7—O72125.03 (16)
C11—C21—C31109.46 (15)O71—C7—C3121.86 (16)
O21—C21—C11108.37 (13)O72—C7—C3113.11 (14)
C21—C31—C41109.49 (15)N1—C2—H2120.00
O31—C31—C21107.29 (13)C3—C2—H2120.00
O31—C31—C41111.08 (14)C3—C4—H4120.00
O41—C41—O42125.34 (15)C5—C4—H4120.00
O41—C41—C31117.54 (15)C4—C5—H5120.00
O42—C41—C31117.11 (14)C6—C5—H5120.00
C11—C21—H21109.00N1—C6—H6120.00
O21—C21—H21109.00C5—C6—H6120.00
C31—C21—H21109.00
C2—N1—C6—C50.0 (3)O31—C31—C41—O42161.59 (16)
C6—N1—C2—C30.1 (4)O31—C31—C41—O4119.5 (2)
O11—C11—C21—O21158.61 (15)N1—C2—C3—C7180.0 (2)
O12—C11—C21—C3199.6 (2)N1—C2—C3—C40.1 (3)
O12—C11—C21—O2121.6 (3)C2—C3—C4—C50.3 (3)
O11—C11—C21—C3180.15 (18)C2—C3—C7—O714.2 (3)
O21—C21—C31—O3165.11 (17)C2—C3—C7—O72176.0 (2)
C11—C21—C31—O3154.50 (17)C4—C3—C7—O71175.9 (2)
C11—C21—C31—C41175.14 (13)C4—C3—C7—O723.9 (3)
O21—C21—C31—C4155.53 (17)C7—C3—C4—C5179.82 (19)
C21—C31—C41—O4198.77 (19)C3—C4—C5—C60.3 (3)
C21—C31—C41—O4280.1 (2)C4—C5—C6—N10.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O210.89 (3)2.33 (3)2.874 (2)120 (2)
N1—H1···O310.89 (3)2.15 (3)2.893 (2)141 (2)
N1—H1···O410.89 (3)2.34 (3)3.0624 (19)138 (2)
O11—H11···O41i0.91 (3)1.70 (3)2.5951 (18)171 (3)
O21—H21A···O42ii0.89 (3)1.91 (3)2.8064 (18)178 (3)
O31—H31A···O42iii0.87 (3)2.48 (3)3.1542 (18)135 (2)
O31—H31A···O71iv0.87 (3)2.30 (3)3.014 (2)139 (2)
O72—H72···O42v0.99 (3)1.55 (3)2.5387 (17)176.3 (19)
C5—H5···O71vi0.932.383.302 (2)172
C6—H6···O12vi0.932.353.252 (2)165
C21—H21···O11vii0.982.553.389 (2)143
Symmetry codes: (i) x, y1, z; (ii) x+1/2, y+3/2, z; (iii) x1/2, y+3/2, z; (iv) x+1, y+1/2, z+1/2; (v) x+3/2, y+1, z+1/2; (vi) x, y+1, z; (vii) x+1/2, y+1/2, z.
(III) 2-carboxypyridinium hydrogen (2R,3R)-tartrate monohydrate top
Crystal data top
C6H6NO2+·C4H5O6·H2ODx = 1.569 Mg m3
Mr = 291.21Melting point: 393 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2870 reflections
a = 7.1536 (4) Åθ = 3.0–32.5°
b = 7.8273 (3) ŵ = 0.14 mm1
c = 22.0145 (10) ÅT = 297 K
V = 1232.67 (10) Å3Plate, colourless
Z = 40.45 × 0.25 × 0.08 mm
F(000) = 608
Data collection top
Oxford Gemini-S CCD area-detector
diffractometer
1416 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray sourceRint = 0.051
Graphite monochromatorθmax = 28.0°, θmin = 3.0°
ω scansh = 89
6582 measured reflectionsk = 108
1709 independent reflectionsl = 1328
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.057P)2 + 0.2031P]
where P = (Fo2 + 2Fc2)/3
1709 reflections(Δ/σ)max = 0.018
209 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C6H6NO2+·C4H5O6·H2OV = 1232.67 (10) Å3
Mr = 291.21Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.1536 (4) ŵ = 0.14 mm1
b = 7.8273 (3) ÅT = 297 K
c = 22.0145 (10) Å0.45 × 0.25 × 0.08 mm
Data collection top
Oxford Gemini-S CCD area-detector
diffractometer
1416 reflections with I > 2σ(I)
6582 measured reflectionsRint = 0.051
1709 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.27 e Å3
1709 reflectionsΔρmin = 0.24 e Å3
209 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O110.3506 (5)0.2113 (3)0.63764 (11)0.0563 (8)
O120.2088 (4)0.1846 (3)0.72684 (11)0.0532 (8)
O210.1116 (3)0.1453 (3)0.70206 (10)0.0327 (6)
O310.5010 (3)0.1538 (3)0.70280 (12)0.0431 (8)
O410.3902 (4)0.4548 (3)0.65870 (10)0.0433 (7)
O420.2845 (4)0.3362 (3)0.57279 (9)0.0477 (8)
C110.2563 (4)0.1275 (3)0.67903 (12)0.0289 (8)
C210.2164 (4)0.0553 (3)0.65868 (11)0.0257 (7)
C310.3973 (4)0.1523 (3)0.64838 (12)0.0270 (8)
C410.3542 (4)0.3322 (3)0.62556 (13)0.0291 (8)
O710.7952 (5)0.0020 (2)0.56837 (10)0.0609 (8)
O720.7516 (5)0.1131 (3)0.47707 (10)0.0629 (11)
N10.8059 (4)0.3089 (3)0.61942 (11)0.0321 (7)
C20.7895 (5)0.2960 (3)0.55920 (13)0.0317 (8)
C30.7882 (6)0.4413 (4)0.52454 (14)0.0450 (9)
C40.8085 (7)0.5978 (4)0.55221 (15)0.0494 (12)
C50.8294 (5)0.6058 (4)0.61403 (16)0.0440 (10)
C60.8250 (5)0.4589 (4)0.64728 (14)0.0404 (10)
C70.7787 (5)0.1169 (3)0.53434 (12)0.0356 (9)
O1W0.8011 (4)0.0703 (3)0.71291 (10)0.0367 (7)
H110.354 (6)0.316 (6)0.6469 (19)0.063 (13)*
H210.146100.052000.620500.0310*
H21A0.016 (5)0.093 (5)0.7065 (15)0.047 (10)*
H310.470200.092400.617300.0320*
H31A0.510 (7)0.245 (6)0.7111 (19)0.067 (15)*
H10.803 (6)0.220 (5)0.6417 (17)0.054 (11)*
H30.773800.434200.482600.0540*
H40.808000.697400.529200.0590*
H50.846300.710600.633200.0530*
H60.835400.463400.689400.0490*
H720.765 (9)0.005 (7)0.459 (2)0.100 (16)*
H11W0.705 (7)0.002 (6)0.7157 (17)0.068 (13)*
H12W0.826 (7)0.122 (6)0.744 (2)0.079 (16)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O110.105 (2)0.0180 (9)0.0458 (13)0.0057 (13)0.0230 (14)0.0006 (10)
O120.0716 (16)0.0394 (11)0.0487 (13)0.0202 (14)0.0195 (13)0.0224 (11)
O210.0323 (11)0.0273 (10)0.0386 (11)0.0013 (10)0.0081 (10)0.0028 (9)
O310.0422 (13)0.0339 (13)0.0531 (14)0.0007 (11)0.0187 (11)0.0007 (12)
O410.0656 (15)0.0203 (9)0.0441 (12)0.0016 (12)0.0006 (12)0.0039 (9)
O420.0786 (17)0.0315 (11)0.0331 (11)0.0058 (13)0.0042 (12)0.0099 (9)
C110.0347 (16)0.0228 (11)0.0293 (13)0.0018 (12)0.0055 (12)0.0000 (11)
C210.0341 (14)0.0201 (10)0.0230 (11)0.0001 (13)0.0031 (11)0.0004 (10)
C310.0338 (14)0.0206 (12)0.0266 (13)0.0029 (13)0.0018 (11)0.0021 (11)
C410.0354 (15)0.0221 (12)0.0299 (14)0.0020 (12)0.0085 (12)0.0051 (11)
O710.119 (2)0.0211 (9)0.0425 (12)0.0002 (14)0.0051 (16)0.0004 (9)
O720.122 (3)0.0326 (11)0.0341 (11)0.0011 (16)0.0053 (15)0.0103 (10)
N10.0455 (14)0.0229 (11)0.0280 (12)0.0016 (12)0.0006 (12)0.0013 (10)
C20.0439 (16)0.0230 (11)0.0281 (13)0.0006 (14)0.0018 (13)0.0022 (11)
C30.077 (2)0.0264 (13)0.0315 (14)0.0030 (19)0.0021 (17)0.0041 (13)
C40.083 (3)0.0224 (13)0.0429 (17)0.0007 (18)0.0042 (19)0.0064 (13)
C50.059 (2)0.0239 (14)0.0490 (19)0.0050 (15)0.0012 (17)0.0126 (13)
C60.051 (2)0.0350 (14)0.0352 (15)0.0007 (16)0.0032 (14)0.0106 (13)
C70.0529 (19)0.0240 (12)0.0300 (14)0.0014 (15)0.0044 (15)0.0056 (11)
O1W0.0430 (13)0.0345 (11)0.0326 (11)0.0038 (12)0.0015 (10)0.0018 (9)
Geometric parameters (Å, º) top
O11—C111.310 (4)N1—H10.85 (4)
O12—C111.193 (4)C11—C211.526 (3)
O21—C211.404 (3)C21—C311.517 (4)
O31—C311.409 (4)C31—C411.527 (3)
O41—C411.233 (3)C21—H210.9800
O42—C411.265 (4)C31—H310.9800
O11—H110.85 (5)C2—C71.507 (3)
O21—H21A0.80 (4)C2—C31.370 (4)
O31—H31A0.74 (5)C3—C41.376 (4)
O71—C71.201 (3)C4—C51.371 (5)
O72—C71.276 (3)C5—C61.363 (5)
O72—H720.94 (5)C3—H30.9300
O1W—H12W0.82 (5)C4—H40.9300
O1W—H11W0.89 (5)C5—H50.9300
N1—C61.332 (4)C6—H60.9300
N1—C21.335 (4)
C11—O11—H11109 (3)C31—C21—H21109.00
C21—O21—H21A106 (3)C41—C31—H31109.00
C31—O31—H31A105 (3)O31—C31—H31109.00
C7—O72—H72115 (3)C21—C31—H31109.00
H11W—O1W—H12W115 (4)N1—C2—C7115.8 (2)
C2—N1—C6122.2 (2)C3—C2—C7124.7 (3)
C2—N1—H1121 (3)N1—C2—C3119.4 (2)
C6—N1—H1117 (3)C2—C3—C4119.5 (3)
O11—C11—O12125.0 (3)C3—C4—C5119.5 (3)
O12—C11—C21123.9 (2)C4—C5—C6119.5 (3)
O11—C11—C21111.2 (2)N1—C6—C5119.9 (3)
C11—C21—C31110.7 (2)O71—C7—C2119.3 (2)
O21—C21—C31107.8 (2)O72—C7—C2112.9 (2)
O21—C21—C11111.8 (2)O71—C7—O72127.8 (2)
O31—C31—C41112.2 (2)C2—C3—H3120.00
C21—C31—C41109.8 (2)C4—C3—H3120.00
O31—C31—C21109.0 (2)C5—C4—H4120.00
O41—C41—O42127.4 (3)C3—C4—H4120.00
O41—C41—C31118.8 (3)C4—C5—H5120.00
O42—C41—C31113.9 (2)C6—C5—H5120.00
O21—C21—H21109.00N1—C6—H6120.00
C11—C21—H21109.00C5—C6—H6120.00
C2—N1—C6—C50.4 (5)O31—C31—C41—O42170.7 (3)
C6—N1—C2—C31.4 (5)C21—C31—C41—O41112.6 (3)
C6—N1—C2—C7177.0 (3)C21—C31—C41—O4267.9 (3)
O11—C11—C21—C3161.2 (3)N1—C2—C3—C41.6 (6)
O11—C11—C21—O21178.6 (3)C7—C2—C3—C4176.7 (4)
O12—C11—C21—O212.2 (4)N1—C2—C7—O714.0 (5)
O12—C11—C21—C31118.1 (3)N1—C2—C7—O72175.9 (3)
O21—C21—C31—O3163.5 (3)C3—C2—C7—O71174.4 (4)
C11—C21—C31—C41177.7 (2)C3—C2—C7—O725.7 (5)
O21—C21—C31—C4159.8 (3)C2—C3—C4—C50.1 (7)
C11—C21—C31—O3159.0 (3)C3—C4—C5—C61.7 (6)
O31—C31—C41—O418.9 (4)C4—C5—C6—N11.9 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1W0.85 (4)1.96 (4)2.779 (3)162 (4)
N1—H1···O710.85 (4)2.37 (4)2.682 (3)102 (3)
O11—H11···O41i0.85 (5)1.83 (5)2.669 (3)171 (4)
O21—H21A···O1Wii0.80 (4)2.00 (4)2.800 (3)171 (4)
O31—H31A···O410.74 (5)2.18 (5)2.669 (3)124 (4)
O31—H31A···O12iii0.74 (5)2.49 (5)2.883 (4)115 (4)
O72—H72···O42iv0.94 (5)1.50 (5)2.441 (3)177 (6)
O1W—H11W···O310.89 (5)1.90 (5)2.781 (3)168 (4)
O1W—H12W···O21v0.82 (5)2.22 (5)2.975 (3)154 (4)
C4—H4···O71i0.932.513.154 (4)127
C4—H4···O42vi0.932.503.329 (4)149
C6—H6···O12v0.932.553.295 (4)137
C6—H6···O21v0.932.563.446 (4)158
Symmetry codes: (i) x, y+1, z; (ii) x1, y, z; (iii) x+1, y1/2, z+3/2; (iv) x+1/2, y1/2, z+1; (v) x+1, y+1/2, z+3/2; (vi) x+1/2, y+1/2, z+1.

Experimental details

(I)(II)(III)
Crystal data
Chemical formulaC5H7N2+·C4H5O6·2H2OC6H6NO2+·C4H5O6C6H6NO2+·C4H5O6·H2O
Mr280.24273.20291.21
Crystal system, space groupOrthorhombic, P212121Orthorhombic, P212121Orthorhombic, P212121
Temperature (K)200297297
a, b, c (Å)7.3073 (12), 12.1065 (13), 14.541 (2)6.5792 (2), 7.7637 (2), 21.6830 (5)7.1536 (4), 7.8273 (3), 22.0145 (10)
V3)1286.4 (3)1107.55 (5)1232.67 (10)
Z444
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.130.150.14
Crystal size (mm)0.35 × 0.25 × 0.200.40 × 0.40 × 0.300.45 × 0.25 × 0.08
Data collection
DiffractometerOxford Gemini-S CCD area-detector
diffractometer
Oxford Gemini-S Ultra CCD area-detector
diffractometer
Oxford Gemini-S CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4764, 1722, 1434 5552, 1537, 1317 6582, 1709, 1416
Rint0.0390.0200.051
(sin θ/λ)max1)0.6810.6750.660
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.098, 1.02 0.029, 0.066, 1.06 0.047, 0.107, 1.05
No. of reflections172215371709
No. of parameters212192209
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.200.16, 0.160.27, 0.24

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 1999), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O410.79 (4)1.95 (4)2.707 (3)161 (4)
N3—H3A···O42i1.00 (4)1.95 (4)2.934 (3)168 (4)
N3—H3B···O1Wii0.87 (3)2.11 (3)2.960 (3)164 (3)
O11—H11···O42iii0.99 (5)1.55 (5)2.538 (2)175 (2)
O21—H21A···O1W0.76 (4)2.02 (4)2.745 (3)162 (4)
O21—H21A···O120.76 (4)2.29 (4)2.622 (3)107 (3)
O31—H31A···O2Wiv0.86 (4)1.78 (4)2.640 (3)171 (3)
O1W—H11W···O41i0.87 (4)1.85 (4)2.711 (3)169 (3)
O1W—H12W···O31v0.75 (5)2.07 (5)2.798 (3)162 (5)
O2W—H21W···O12vi0.80 (5)1.99 (4)2.736 (3)155 (4)
O2W—H22W···O210.86 (6)1.87 (6)2.724 (3)174 (3)
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x+1/2, y+1, z1/2; (iii) x+1, y, z; (iv) x, y+1/2, z+1/2; (v) x+1, y1/2, z+1/2; (vi) x1, y, z.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O210.89 (3)2.33 (3)2.874 (2)120 (2)
N1—H1···O310.89 (3)2.15 (3)2.893 (2)141 (2)
N1—H1···O410.89 (3)2.34 (3)3.0624 (19)138 (2)
O11—H11···O41i0.91 (3)1.70 (3)2.5951 (18)171 (3)
O21—H21A···O42ii0.89 (3)1.91 (3)2.8064 (18)178 (3)
O31—H31A···O42iii0.87 (3)2.48 (3)3.1542 (18)135 (2)
O31—H31A···O71iv0.87 (3)2.30 (3)3.014 (2)139 (2)
O72—H72···O42v0.99 (3)1.55 (3)2.5387 (17)176.3 (19)
Symmetry codes: (i) x, y1, z; (ii) x+1/2, y+3/2, z; (iii) x1/2, y+3/2, z; (iv) x+1, y+1/2, z+1/2; (v) x+3/2, y+1, z+1/2.
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1W0.85 (4)1.96 (4)2.779 (3)162 (4)
N1—H1···O710.85 (4)2.37 (4)2.682 (3)102 (3)
O11—H11···O41i0.85 (5)1.83 (5)2.669 (3)171 (4)
O21—H21A···O1Wii0.80 (4)2.00 (4)2.800 (3)171 (4)
O31—H31A···O410.74 (5)2.18 (5)2.669 (3)124 (4)
O31—H31A···O12iii0.74 (5)2.49 (5)2.883 (4)115 (4)
O72—H72···O42iv0.94 (5)1.50 (5)2.441 (3)177 (6)
O1W—H11W···O310.89 (5)1.90 (5)2.781 (3)168 (4)
O1W—H12W···O21v0.82 (5)2.22 (5)2.975 (3)154 (4)
Symmetry codes: (i) x, y+1, z; (ii) x1, y, z; (iii) x+1, y1/2, z+3/2; (iv) x+1/2, y1/2, z+1; (v) x+1, y+1/2, z+3/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds