Download citation
Download citation
link to html
The title compound, [Cd(C8H18NO8P2)2]n, synthesized by hydro­thermal methods, exhibits a layered structure in which the CdII ion, occupying a centre of symmetry, is coordinated by six O atoms from four phosphonate ligands. The crosslinkage of CdO6 octa­hedra by bridging phosphonate ligands results in a cadmium(II) phosphonate layer. Within the layer, there exists a 16-membered ring incorporating four -Cd-O-P-O- linkages. The uncoordinated carboxyl group of the ligand is oriented so that it penetrates the adjacent layer, taking part in hydrogen bonding to two uncoordinated phosphonate O atoms to form a CO2H/HO2P motif.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270109030893/sf3111sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109030893/sf3111Isup2.hkl
Contains datablock I

CCDC reference: 749694

Comment top

In recent years, the chemistry of metal phosphonates has been an active research area owing to their potential applications in the area of catalysis, ion exchange, proton conductivity, surface modification, intercalation chemistry, photochemistry and materials chemistry (Clearfield 1998). Metal phosphonates can exhibit structural types such as zero-dimensional (Ying, Chen et al., 2008), one-dimensional chain (Yang et al., 2005), two-dimensional layered (Zheng et al., 2002) or three-dimensional microporous (Burkholder et al., 2004). It has been proved that attaching an additional functional group, such as carboxyl, hydroxy, amine or crown ether groups, to the phosphonic acid is a very useful method for building open-framework structures (Cheetham et al., 1999; Stock, Frey et al., 2000; Serpaggi & Férey, 1999; Ying et al., 2006). Amongst these functional groups, the carboxyl group has been used widely because of its coordination ability. Phosphonic acids such as HOOC–R–PO3H2, HOOC–RN–(CH2PO3H2)2 and HOOC–RNHCH2PO3H2, which contain only one carboxylate group, have been used extensively (Bauer et al., 2005; Tang et al., 2006; Stock, 2002; Stock, Stucky & Cheetham, 2000; Zhang et al., 2005). Amongst these three types of phosphonic acid ligand, several metal phosphonates of the form HOOC–RN–(CH2PO3H2)2 have been reported (Bauer et al., 2005; Tang et al., 2006), but to the best of our knowledge, metal phosphonates of the form HOOC–(CH2)5–N(CH2PO3H2)2 are rare. The only example, namely, Pb2[O2C(CH2)5N(CH2PO3)(CH2PO3H)] has been reported by our group recently (Ying, Li et al., 2008). This compound exhibits a three-dimensional structure and the metal ions are five-coordinate. Transition metal phosphonates formed by this ligand have not been reported before. Hydrothermal reactions of CdII acetate and HOOC–(CH2)5–N(CH2PO3H2)2 resulted in the title compound, (I). We report here its synthesis, characterization and crystal structure.

As shown in Fig. 1, in the title compound, the cadmium(II) ions, which reside on centres of symmetry are coordinated by six O atoms from four phosphonate ligands (O2, O4, O2A, O4A, O3C and O3B). The Cd—O distances range from 2.242 (2) to 2.287 (2) Å (Table 1). The cadmium(II) ions exhibit a distorted octahedral coordination geometry. The phosphonate anion chelates the CdII ion in a bidentate fashion, and also forms a bridge to second CdII ion. The amine group and carboxyl group of the ligand remain non-coordinated. The cross-linkage of CdO6 octahedra by bridging phosphonate ligands results in a cadmium(II) phosphonate layer (Fig. 2). Within the layer, there is a 16-membered ring made up of four (Cd—O2—P1—O3–) sequences. If, for the purposes of classifying the net, we define the chelate ring as a single point of connection to Cd (making each ligand effectively a single linker), so that all Cd atoms can be defined as four-connected nodes, then the layer can be described as a (4,4) grid. Within the layer there is a single hydrogen bond (Table 2). The uncoordinated carboxylate group at the end of the hydrocarbon arm of the molecule penetrates the adjacent layer to form a double hydrogen-bonded CO2H···HO2P motif (Fig. 3 and Table 2).

Related literature top

For related literature, see: Bauer et al. (2005); Burkholder et al. (2004); Cheetham et al. (1999); Clearfield (1998); Serpaggi & Férey (1999); Stock (2002); Stock et al. (2000a, 2000b); Tang et al. (2006); Yang et al. (2005); Ying et al. (2006, 2008a, 2008b); Zheng et al. (2002).

Experimental top

The phosphonic acid ligand was synthesized by a Mannich-type reaction according to previously reported procedures (Ying, Li et al., 2008). The title compound was synthesized as follows: a mixture of cadmium acetate (0.5 mmol, 0.130 g) and 6-carboxyl dimethylphosphonoaminohexane (0.5 mmol, 0.078 g) in distilled water (15 ml) was sealed in an autoclave equipped with a Teflon liner (20 ml) and then heated at 423 K 150°C for 4 d. Crystals of the title compound (colorless blocks) were obtained. Analysis found: C 25.62, H 4.87, N 3.70%; calculated for C16H36CdN2O16P4 (Mr = 748.75): C 25.64, H 4.81, N 3.74%. IR data (KBr, cm-1): 3436 (m), 3106 (s), 2960 (s), 1712 (m), 1677 (m), 1472 (m), 1437 (m), 1419 (m), 1375 (w), 1325 (s), 1290 (m), 1259 (s), 1235 (s), 1158 (s), 1083 (s), 1049 (s), 970 (m), 931 (s), 792 (m), 771 (m), 734 (m), 582 (s), 570 (s), 533 (m), 469 (s).

Refinement top

All the H atoms were positioned geometrically (C—H = 0.97 Å [please check change], O—H = 0.82 Å and N—H = 0.91 Å) and refined in the riding-model approximation [Uiso(H) = 1.2Ueq(C), 1.5Ueq(O) and 1.2Ueq(N), respectively].

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 30% probability displacement ellipsoids. [Symmetry codes: (A) -x + 1, -y + 1,-z + 1; (B) -x + 1, y + 1/2, -z + 1/2; (C) x, -y + 1/2, z + 1/2.]
[Figure 2] Fig. 2. The CdII phosphonate layer in the title compound. The C—PO3 tetrahedra are shaded. The OOC(CH2)5– group (which is approximately normal to this plane) and the H atoms have been omitted for clarity.
[Figure 3] Fig. 3. A view of the structure of the title compound, along the b axis. The C—PO3 tetrahedra are shaded and H atoms have been omitted for clarity. Hydrogen bonding is shown by dashed lines.
catena-Poly[bis{µ-dihydrogen [(5-carboxypentylimino)dimethylene]diphosphonato- κ2O:O'}cadmium(II)] top
Crystal data top
[Cd(C8H18NO8P2)2]F(000) = 764
Mr = 748.75Dx = 1.795 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4271 reflections
a = 15.4321 (17) Åθ = 2.6–28.4°
b = 9.4632 (11) ŵ = 1.10 mm1
c = 9.9958 (11) ÅT = 273 K
β = 108.414 (2)°Block, colourless
V = 1385.0 (3) Å30.23 × 0.11 × 0.07 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
3219 independent reflections
Radiation source: sealed tube2092 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.095
ω scansθmax = 28.0°, θmin = 2.6°
Absorption correction: multi-scan
(North et al., 1968)
h = 1920
Tmin = 0.787, Tmax = 0.927k = 1212
10035 measured reflectionsl = 1313
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.089 w = 1/[σ2(Fo2) + (0.0307P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.87(Δ/σ)max = 0.025
3219 reflectionsΔρmax = 1.27 e Å3
179 parametersΔρmin = 1.20 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0019 (6)
Crystal data top
[Cd(C8H18NO8P2)2]V = 1385.0 (3) Å3
Mr = 748.75Z = 2
Monoclinic, P21/cMo Kα radiation
a = 15.4321 (17) ŵ = 1.10 mm1
b = 9.4632 (11) ÅT = 273 K
c = 9.9958 (11) Å0.23 × 0.11 × 0.07 mm
β = 108.414 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3219 independent reflections
Absorption correction: multi-scan
(North et al., 1968)
2092 reflections with I > 2σ(I)
Tmin = 0.787, Tmax = 0.927Rint = 0.095
10035 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.089H-atom parameters constrained
S = 0.87Δρmax = 1.27 e Å3
3219 reflectionsΔρmin = 1.20 e Å3
179 parameters
Special details top

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.500000.500000.500000.0196 (1)
P10.54772 (7)0.22584 (10)0.30183 (9)0.0195 (3)
P20.28670 (7)0.37672 (10)0.28853 (9)0.0225 (3)
O10.64054 (17)0.1664 (3)0.4018 (2)0.0304 (9)
O20.54124 (18)0.3807 (2)0.3314 (2)0.0237 (8)
O30.53347 (18)0.1894 (2)0.1498 (2)0.0234 (8)
O40.35878 (17)0.4086 (3)0.4253 (2)0.0254 (8)
O50.25164 (17)0.4939 (3)0.1826 (3)0.0281 (8)
O60.20569 (18)0.3046 (3)0.3272 (3)0.0292 (9)
O70.0707 (2)0.2723 (4)0.0944 (3)0.0566 (11)
O80.0987 (2)0.4438 (3)0.0386 (3)0.0432 (10)
N10.3714 (2)0.1136 (3)0.2475 (3)0.0208 (10)
C10.0510 (3)0.3361 (5)0.0160 (4)0.0345 (14)
C20.0311 (3)0.2982 (4)0.1398 (4)0.0359 (16)
C30.0928 (3)0.1931 (5)0.1017 (5)0.0450 (16)
C40.1750 (3)0.1464 (4)0.2229 (4)0.0338 (14)
C50.2295 (3)0.0338 (4)0.1772 (4)0.0334 (14)
C60.3099 (3)0.0162 (4)0.2971 (4)0.0264 (11)
C70.4626 (2)0.1307 (4)0.3586 (3)0.0228 (11)
C80.3269 (3)0.2506 (4)0.1845 (3)0.0235 (11)
H1A0.664000.115300.356600.0460*
H2A0.010600.259000.214300.0430*
H2B0.065600.383400.175900.0430*
H3A0.057000.110100.061600.0540*
H3B0.114300.234300.029100.0540*
H4A0.213900.227400.259000.0400*
H4B0.154500.109700.298400.0400*
H5A0.251000.071500.103200.0400*
H5B0.190000.045900.138600.0400*
H6A0.344900.064900.344000.0320*
H6B0.288000.065700.365200.0320*
H6C0.162300.293400.255300.0440*
H7A0.486500.037700.391000.0270*
H7B0.453900.180300.438300.0270*
H8A0.275000.226400.103400.0280*
H8B0.370100.300000.148800.0280*
H8C0.144100.455300.030400.0650*
H10A0.383000.066900.175400.0250*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.0282 (2)0.0200 (2)0.0109 (2)0.0013 (2)0.0068 (1)0.0003 (2)
P10.0267 (6)0.0200 (5)0.0118 (4)0.0004 (4)0.0062 (4)0.0013 (4)
P20.0238 (6)0.0244 (5)0.0186 (5)0.0021 (4)0.0057 (4)0.0006 (4)
O10.0291 (17)0.0404 (16)0.0194 (13)0.0078 (13)0.0043 (12)0.0015 (12)
O20.0397 (17)0.0198 (13)0.0146 (12)0.0027 (12)0.0127 (11)0.0045 (10)
O30.0382 (17)0.0225 (13)0.0110 (11)0.0031 (12)0.0099 (11)0.0029 (10)
O40.0253 (15)0.0298 (14)0.0200 (13)0.0043 (12)0.0058 (11)0.0015 (11)
O50.0259 (15)0.0256 (13)0.0294 (13)0.0001 (13)0.0040 (11)0.0043 (12)
O60.0237 (16)0.0382 (16)0.0250 (14)0.0051 (13)0.0069 (12)0.0003 (12)
O70.049 (2)0.070 (2)0.0376 (18)0.0267 (18)0.0053 (16)0.0209 (17)
O80.0386 (19)0.0468 (17)0.0357 (16)0.0179 (15)0.0004 (14)0.0048 (15)
N10.0268 (19)0.0213 (16)0.0153 (14)0.0028 (14)0.0080 (13)0.0033 (13)
C10.028 (3)0.039 (2)0.037 (2)0.008 (2)0.011 (2)0.006 (2)
C20.034 (3)0.043 (3)0.029 (2)0.009 (2)0.0077 (19)0.005 (2)
C30.038 (3)0.051 (3)0.040 (2)0.016 (2)0.004 (2)0.000 (2)
C40.034 (3)0.036 (2)0.033 (2)0.004 (2)0.013 (2)0.0059 (19)
C50.031 (3)0.033 (2)0.033 (2)0.0064 (18)0.0057 (19)0.0019 (18)
C60.028 (2)0.028 (2)0.0255 (18)0.0044 (18)0.0117 (16)0.0035 (17)
C70.032 (2)0.0206 (19)0.0136 (17)0.0003 (17)0.0039 (16)0.0001 (15)
C80.025 (2)0.029 (2)0.0174 (18)0.0005 (17)0.0081 (16)0.0016 (16)
Geometric parameters (Å, º) top
Cd1—O22.280 (2)N1—C81.509 (5)
Cd1—O3i2.2875 (19)N1—H10A0.9100
Cd1—O42.242 (3)C1—C21.508 (6)
Cd1—O2ii2.280 (2)C2—C31.507 (6)
Cd1—O4ii2.242 (3)C3—C41.517 (6)
Cd1—O3iii2.2875 (19)C4—C51.515 (6)
P1—O11.569 (3)C5—C61.503 (6)
P1—O21.505 (2)C2—H2A0.9700
P1—O31.505 (2)C2—H2B0.9700
P1—C71.825 (4)C3—H3A0.9700
P2—O41.496 (2)C3—H3B0.9700
P2—O51.511 (3)C4—H4A0.9700
P2—O61.576 (3)C4—H4B0.9700
P2—C81.816 (4)C5—H5A0.9700
O7—C11.210 (5)C5—H5B0.9700
O8—C11.318 (6)C6—H6A0.9700
O1—H1A0.8200C6—H6B0.9700
O6—H6C0.8200C7—H7A0.9700
O8—H8C0.8200C7—H7B0.9700
N1—C61.514 (5)C8—H8A0.9700
N1—C71.501 (4)C8—H8B0.9700
O2—Cd1—O491.82 (9)C3—C4—C5111.6 (3)
O2—Cd1—O3i87.83 (7)C4—C5—C6112.2 (3)
O2—Cd1—O4ii88.18 (9)N1—C6—C5112.0 (3)
O2—Cd1—O3iii92.17 (7)P1—C7—N1115.0 (2)
O3i—Cd1—O495.14 (9)P2—C8—N1121.2 (2)
O2ii—Cd1—O488.18 (9)C1—C2—H2A109.00
O3iii—Cd1—O484.86 (9)C1—C2—H2B109.00
O2ii—Cd1—O3i92.17 (7)C3—C2—H2A109.00
O3i—Cd1—O4ii84.86 (9)C3—C2—H2B109.00
O2ii—Cd1—O4ii91.82 (9)H2A—C2—H2B108.00
O2ii—Cd1—O3iii87.83 (7)C2—C3—H3A108.00
O3iii—Cd1—O4ii95.14 (9)C2—C3—H3B108.00
O1—P1—O2109.15 (15)C4—C3—H3A108.00
O1—P1—O3111.94 (14)C4—C3—H3B108.00
O1—P1—C7103.13 (15)H3A—C3—H3B108.00
O2—P1—O3115.08 (12)C3—C4—H4A109.00
O2—P1—C7108.69 (16)C3—C4—H4B109.00
O3—P1—C7108.12 (15)C5—C4—H4A109.00
O4—P2—O5119.41 (16)C5—C4—H4B109.00
O4—P2—O6106.36 (15)H4A—C4—H4B108.00
O4—P2—C8111.47 (17)C4—C5—H5A109.00
O5—P2—O6110.71 (16)C4—C5—H5B109.00
O5—P2—C8101.10 (16)C6—C5—H5A109.00
O6—P2—C8107.26 (18)C6—C5—H5B109.00
Cd1—O2—P1132.76 (13)H5A—C5—H5B108.00
Cd1iv—O3—P1140.46 (12)N1—C6—H6A109.00
Cd1—O4—P2138.27 (14)N1—C6—H6B109.00
P1—O1—H1A109.00C5—C6—H6A109.00
P2—O6—H6C109.00C5—C6—H6B109.00
C1—O8—H8C109.00H6A—C6—H6B108.00
C7—N1—C8114.4 (3)P1—C7—H7A108.00
C6—N1—C8114.2 (3)P1—C7—H7B108.00
C6—N1—C7111.2 (3)N1—C7—H7A109.00
C8—N1—H10A105.00N1—C7—H7B109.00
C7—N1—H10A105.00H7A—C7—H7B108.00
C6—N1—H10A105.00P2—C8—H8A107.00
O8—C1—C2114.4 (3)P2—C8—H8B107.00
O7—C1—C2122.3 (4)N1—C8—H8A107.00
O7—C1—O8123.3 (4)N1—C8—H8B107.00
C1—C2—C3112.6 (3)H8A—C8—H8B107.00
C2—C3—C4115.2 (4)
O1—P1—C7—N1153.6 (2)C8—N1—C7—P156.9 (3)
O2—P1—C7—N190.7 (3)C6—N1—C8—P262.3 (4)
O3—P1—C7—N134.9 (3)C7—N1—C8—P267.5 (4)
O4—P2—C8—N150.4 (4)O7—C1—C2—C310.3 (6)
O5—P2—C8—N1178.4 (3)O8—C1—C2—C3169.6 (4)
O6—P2—C8—N165.7 (4)C1—C2—C3—C4177.9 (4)
C7—N1—C6—C5164.5 (3)C2—C3—C4—C5176.2 (4)
C8—N1—C6—C564.2 (4)C3—C4—C5—C6178.6 (4)
C6—N1—C7—P1171.9 (2)C4—C5—C6—N1172.2 (3)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x, y+1/2, z+1/2; (iv) x+1, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O5iv0.821.872.652 (4)159
O6—H6C···O7v0.821.792.605 (4)178
O8—H8C···O5v0.821.902.718 (4)176
N1—H10A···O2iv0.912.132.823 (4)132
N1—H10A···O4vi0.912.423.172 (4)140
C4—H4B···O8vii0.972.603.538 (5)163
C6—H6B···O60.972.563.230 (5)126
C7—H7A···O2iv0.972.593.023 (4)107
C7—H7B···O40.972.593.256 (5)126
C7—H7B···O3iii0.972.423.249 (4)143
Symmetry codes: (iii) x, y+1/2, z+1/2; (iv) x+1, y1/2, z+1/2; (v) x, y, z; (vi) x, y+1/2, z1/2; (vii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cd(C8H18NO8P2)2]
Mr748.75
Crystal system, space groupMonoclinic, P21/c
Temperature (K)273
a, b, c (Å)15.4321 (17), 9.4632 (11), 9.9958 (11)
β (°) 108.414 (2)
V3)1385.0 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.10
Crystal size (mm)0.23 × 0.11 × 0.07
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(North et al., 1968)
Tmin, Tmax0.787, 0.927
No. of measured, independent and
observed [I > 2σ(I)] reflections
10035, 3219, 2092
Rint0.095
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.089, 0.87
No. of reflections3219
No. of parameters179
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.27, 1.20

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Cd1—O22.280 (2)Cd1—O42.242 (3)
Cd1—O3i2.2875 (19)
O2—Cd1—O491.82 (9)O2—Cd1—O4ii88.18 (9)
O2—Cd1—O3i87.83 (7)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O5iii0.82001.87002.652 (4)159
O6—H6C···O7iv0.82001.79002.605 (4)178
O8—H8C···O5iv0.82001.90002.718 (4)176
N1—H10A···O2iii0.91002.13002.823 (4)132
N1—H10A···O4v0.91002.42003.172 (4)140
Symmetry codes: (iii) x+1, y1/2, z+1/2; (iv) x, y, z; (v) x, y+1/2, z1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds