Download citation
Download citation
link to html
In the absence of conventional hydrogen bonding, the mol­ecules of 4,6-di-O-acetyl-2-O-tosyl-myo-inositol 1,3,5-orthoformate, C18H20O10S, (I), and 4,6-di-O-acetyl-2-O-tosyl-myo-inositol 1,3,5-orthobenzoate, C24H24O10S, (II), are associated via C-H...O inter­actions. Mol­ecules of (II) are additionally linked via dipolar S=O...C=O contacts. It is inter­esting to note that the sulfonyl O atom involved in the dipolar S=O...C=O contacts does not take part in any other inter­action, indicating the competitive nature of this contact relative to the weak hydrogen-bonding inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270109017211/sf3106sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109017211/sf3106Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109017211/sf3106IIsup3.hkl
Contains datablock II

CCDC references: 742247; 742248

Comment top

Non-covalent intermolecular interactions play a vital role in the specificity associated with molecular recognition in chemical and complex biological processes (Glusker, 1998). This necessitates an understanding of the various types and strengths of non-covalent interactions that bind molecules in crystal structures. These studies are significant because of their application in crystal engineering, supramolecular chemistry, and the design of functional materials and drugs (Desiraju & Steiner, 1999). For instance, the importance of dipolar interactions such as CO···CO and C—F···CO has been recognized in the conformational stabilization of proteins (Maccallum et al., 1995) and in structure-based drug design (Hof & Diedrich, 2004). We have previously reported (Manoj et al., 2006) the significance of dipolar SO···CO contacts between the diastereomers of camphorsulfonate derivatives of myo-inositol for the formation of solvent-inclusion crystals. The title compounds, (I) and (II), were synthesized to explore the activity of SO···CO interactions in sulfonylated myo-inositol derivatives containing sulfonyl and acyl groups. Sulfonylated myo-inositol orthoesters are key intermediates (Sureshan et al., 2003) for the synthesis of biologically important phosphorylated inositols, which play a significant role in cellular signal transduction (Potter & Lampe, 1995).

Crystallization of (I) and (II) from common organic solvents resulted in triclinic and monoclinic crystals, respectively. The molecules adopt similar conformations (Figs. 1 and 2) in both compounds, although the orthoester H atom in (I) is substituted by a phenyl group in (II). The regioisomers [racemic 2,4-di-O-acetyl-6-O-tosyl-myo-inositol orthoformate and its orthoacetate analogue] produce conformational polymorphs with different orientations of the tosyl group about the O—S bond (Manoj et al., 2009).

Molecules of (I) and (II) associate centrosymmetrically in their crystal structures to form dimers, via different non-covalent interactions involving sulfonyl O atoms. In compound (I), sulfonyl atom O8 is engaged in the formation of bifurcated C—H···O interactions with atoms H9iv and H16Biv(Fig. 3, Table 1); whereas in (II), the sulfonyl atom O7 is involved in a dipolar SO···CO contact with carbonyl atom C23i, and atom O8 makes a short C—H···O contact with inositol ring atom H1i across the inversion centre (Fig. 4, Table 2). In these SO···CO contacts, the SO group is perpendicular to the CO group (Manoj et al., 2007) and the geometric parameters [O7···C23i = 3.194 (3) Å, O7···C23 O10i = 84.4 (2)° and S1O7···C23i =147.9 (2)°; symmetry code: (i) -x + 2, -y + 2, -z + 1] indicate that the interaction motif is of Type I (Allen et al., 1998). It is worthy of note that the sulfonyl atom O7 involved in the SO···CO contacts (Manoj et al., 2007) does not take part in any other weak interaction. We have previously observed that SO···CO contacts are complementary to C—H···O interactions in camphorsulfonyl derivatives of myo-inositol orthoformate (Manoj et al., 2006).

The organization of the dimers (Figs. 3 and 4) in (I) and (II) is observed to be similar [in the bc plane in (I) and the ac plane in (II)]. The dimers translate to form chains via weak van der Waals contacts along the direction of the b axis in (I) (Fig. 5), and along the c axis in (II) (Fig. 6). These chains form a layered arrangement in the bc plane in (I) with four weak hydrogen-bonding interactions, namely C4—H4···O5ii, C7—H7···O9ii, C16—H16A···O10vi and C18—H18A···O9vi, whereas in (II) the chains are linked by a C5—H5···O10ii interaction (see Table 1 and 2 for symmetry codes).

These molecular layers are packed in the third dimension by translation of the dimers via C—H···O interactions (see supplementary material for figures): C1—H1···O9i and C16—H16B···O8iv contacts in (I) (Table 1) and C22—H22C···O10iii and C24—H24B···O9iv contacts in (II) (Table 2), without leaving voids either for solvent inclusion or for conformational flexibility. In conclusion, the molecular association via SO···CO contacts observed in (II) is of considerable interest and could have relevance in the binding of sulfa [sulfur?] drugs to their receptor proteins. Further work on the theoretical energy calculation of dipolar associations and their packing motifs is underway.

Experimental top

The preparation of (I) was carried out as follows. 2-O-Tosyl-myo-inositol 1,3,5-orthoformate (0.172 g, 0.5 mmol; Sureshan et al., 2003) and acetic anhydride (0.2 ml, 2.10 mmol) were dissolved in pyridine (6 ml) and the mixture stirred at room temperature for 8 h. The solvent was evaporated from the reaction mixture under reduced pressure and the residue worked up with ethyl acetate. The product was purified by flash column chromatography to obtain 2-O-tosyl-4,6-di-O-acetyl-myo-inositol 1,3,5-orthoformate, (I), as a colourless solid (yield 0.205 g, 96%; m.p. 448–449 K). IR (CHCl3, ν, cm-1): 1751; 1H NMR (200 MHz, CDCl3, δ): 2.09 (s, 6H, MeCO), 2.47 (s, 3H, ArMe), 4.25–4.31 (m, 2H, Ins H), 4.52–4.58 (m, 1H, Ins H), 4.94–4.98 (m, 1H, Ins H), 5.46 (t, J = 3.9 Hz, 2H, Ins H), 5.52 (d, 1H, J = 1.5 Hz, O3CH), 7.34–7.42 (m, 2H, ArH), 7.82–7.89 (m, 2H, ArH); 13C NMR (50 MHz, CDCl3, δ): 20.5, 21.6, 65.8, 67.5, 68.8, 69.1, 71.8, 102.7, 127.7, 129.9, 133.3, 145.5, 168.7. Analysis, calculated for C18H20O10S: C 50.47, H 4.71%; found: C 50.23, H 4.55%.

The preparation of (II) was carried out as follows. A mixture of myo-inositol 1,3,5-orthobenzoate (0.266 g, 1 mmol; Murali et al., 2007), tosyl chloride (0.200 g, 1.05 mmol) and pyridine (8 ml) was heated at 353 K for 48 h. The reaction mixture was concentrated under reduced pressure and the residue worked up as usual. The product was purified by column chromatography to obtain 2-O-tosyl-myo-inositol 1,3,5-orthobenzoate (yield 0.264 g, 63%; m.p. 429–430 K). The 2-O-tosyl derivative (0.211 g, 0.5 mmol) and acetic anhydride (0.2 ml, 4 mmol) were dissolved in pyridine (6 ml) and the mixture stirred at room temperature for 8 h. The solvent was evaporated from the reaction mixture under reduced pressure and the residue worked up as usual. The product was purified by flash column chromatography to obtain the diacetate, (II) as a colourless solid (yield 0.459 g, 91%; m.p. 461–462 K). IR (CHCl3, ν, cm-1): 1755; 1H NMR (200 MHz, CDCl3, δ): 2.11 (s, 6H, MeCO), 2.46 (s, 3H, ArMe), 4.43–4.50 (m, 2H, Ins H), 4.65–4.73 (m, 1H, Ins H), 5.01 (t, J = 1.9 Hz, 1H, Ins H), 5.58 (m, 2H, Ins H), 7.31–7.41 (m, 5H, ArH), 7.54–7.62 (m, 2H, ArH), 7.82–7.90 (m, 2H, ArH); 13C NMR (50 MHz, CDCl3, δ): 20.6, 21.6, 66.8, 67.7, 68.2, 70.5, 107.8, 125.3, 127.7, 128.0, 129.8, 129.9, 133.6, 135.8, 145.4, 168.8. Analysis, calculated for C24H24O10S: C 57.14, H 4.79%; found: C 57.23, H 4.97%.

Crystallization was carried out by the slow evaporation of a solution of (I) or (II) in organic solvents such as acetonitrile, chloroform, dichloromethane, ethyl acetate and nitromethane at ambient temperature.

Refinement top

All the H atoms were placed in idealized positions (C—H = 0.98 Å for atom H7 and inositol ring H atoms, C—H = 0.93 Å for phenyl H atoms and C—H = 0.96 Å for methyl H atoms) and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). In compound (I), the anisotropic displacement parameters for carbonyl atom O10 were too large, which indicates orientational disorder. However, a reasonable model was obtained by splitting the acetyl group into two components (C18—C17O10 and C18'—C17'O10'), with the sum of the site-occupancy factors for the disordered atoms constrained to unity. The geometry of the disordered acetyl group restrained to be the same using SAME and FLAT commands in SHELXL97 (Sheldrick, 2008). The structure was finally refined anisotropically using SIMU restraints in SHELXL97 (Sheldrick, 2008) with final occupancy values for the two components being 0.587 (13) and 0.413 (13), respectively.

Computing details top

For both compounds, data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. A view of (I), with the atom-numbering scheme and the disordered atoms with prime labelling. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. A view of (II), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 3] Fig. 3. The dimer in the crystal structure of (I) [symmetry code: (iv) -x+2, -y+1, -z+1.]
[Figure 4] Fig. 4. The dimer in crystal structure of (II) [symmetry code: (i) -x+2, -y+2, -z+1.]
[Figure 5] Fig. 5. The molecular organization of the dimers (shown in Fig. 3) in the structure of (I) [symmetry codes: (ii) -x+ 1, -y, -z; (vi) -x+1, -y+1, -z].
[Figure 6] Fig. 6. The molecular organization of the dimers (shown in Fig. 4) in the structure of (II) [symmetry codes: (ii) -x+1, -y+2, -z+1].
(I) 4,6-di-O-acetyl-2-O-tosyl-myo-inositol 1,3,5-orthoformate top
Crystal data top
C18H20O10SZ = 2
Mr = 428.40F(000) = 448
Triclinic, P1Dx = 1.436 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.5756 (6) ÅCell parameters from 4544 reflections
b = 11.0381 (8) Åθ = 2.4–28.2°
c = 11.2005 (8) ŵ = 0.22 mm1
α = 100.426 (1)°T = 298 K
β = 103.123 (1)°Plate, colourless
γ = 99.660 (1)°0.49 × 0.29 × 0.13 mm
V = 991.04 (12) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3581 independent reflections
Radiation source: fine-focus sealed tube3179 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ω and ϕ Scan scansθmax = 25.3°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 1010
Tmin = 0.901, Tmax = 0.972k = 1313
9864 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.061P)2 + 0.3245P]
where P = (Fo2 + 2Fc2)/3
3581 reflections(Δ/σ)max = 0.003
294 parametersΔρmax = 0.41 e Å3
29 restraintsΔρmin = 0.22 e Å3
Crystal data top
C18H20O10Sγ = 99.660 (1)°
Mr = 428.40V = 991.04 (12) Å3
Triclinic, P1Z = 2
a = 8.5756 (6) ÅMo Kα radiation
b = 11.0381 (8) ŵ = 0.22 mm1
c = 11.2005 (8) ÅT = 298 K
α = 100.426 (1)°0.49 × 0.29 × 0.13 mm
β = 103.123 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3581 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
3179 reflections with I > 2σ(I)
Tmin = 0.901, Tmax = 0.972Rint = 0.020
9864 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04129 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 1.03Δρmax = 0.41 e Å3
3581 reflectionsΔρmin = 0.22 e Å3
294 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S11.13187 (6)0.28646 (5)0.50072 (5)0.05192 (17)
O10.97168 (16)0.11776 (13)0.08998 (14)0.0576 (4)
O21.06658 (15)0.20864 (12)0.35854 (12)0.0506 (3)
O30.79359 (16)0.01944 (12)0.18764 (13)0.0532 (3)
O40.60749 (14)0.28741 (13)0.24659 (12)0.0510 (3)
O50.69156 (16)0.06411 (13)0.00552 (12)0.0546 (4)
O60.82034 (19)0.40686 (13)0.11872 (13)0.0607 (4)
O71.27275 (18)0.24053 (16)0.54906 (16)0.0727 (5)
O81.14713 (18)0.41723 (13)0.50277 (15)0.0644 (4)
O90.34999 (18)0.25258 (16)0.13177 (17)0.0786 (5)
C10.9644 (2)0.24132 (18)0.15071 (18)0.0493 (4)
H11.06860.30050.16290.059*
C20.9272 (2)0.23932 (17)0.27681 (16)0.0425 (4)
H20.90970.32160.31450.051*
C30.7741 (2)0.13669 (17)0.25463 (17)0.0446 (4)
H30.75350.12740.33540.054*
C40.6280 (2)0.17260 (17)0.17381 (17)0.0448 (4)
H40.52940.10610.15750.054*
C50.6666 (2)0.18537 (18)0.04987 (17)0.0481 (4)
H50.57440.20660.00580.058*
C60.8256 (2)0.27979 (18)0.06432 (18)0.0511 (5)
H60.84710.27640.01840.061*
C70.8237 (2)0.03049 (19)0.0718 (2)0.0551 (5)
H70.83470.05210.02910.066*
C80.9742 (2)0.23742 (17)0.56804 (17)0.0471 (4)
C90.8484 (3)0.30170 (18)0.56673 (19)0.0545 (5)
H90.85360.37630.53890.065*
C100.7159 (3)0.2540 (2)0.6070 (2)0.0608 (5)
H100.63080.29660.60510.073*
C110.7066 (3)0.1438 (2)0.65035 (19)0.0598 (5)
C120.8367 (3)0.0842 (2)0.6551 (2)0.0657 (6)
H120.83400.01190.68690.079*
C130.9696 (3)0.12861 (19)0.6141 (2)0.0585 (5)
H131.05520.08650.61710.070*
C140.5575 (4)0.0897 (3)0.6879 (3)0.0916 (9)
H14A0.47760.03550.61530.137*
H14B0.51160.15700.72280.137*
H14C0.58760.04190.74980.137*
C150.4592 (2)0.31450 (19)0.21942 (19)0.0505 (5)
C160.4525 (3)0.4309 (2)0.3063 (2)0.0685 (6)
H16A0.38050.47530.26150.103*
H16B0.56050.48400.33900.103*
H16C0.41220.40890.37450.103*
O100.6925 (14)0.4293 (5)0.0650 (5)0.122 (3)0.581 (15)
C170.7656 (7)0.4774 (8)0.0455 (5)0.098 (3)0.581 (15)
C180.8025 (17)0.6142 (10)0.1121 (10)0.093 (3)0.581 (15)
H18A0.77720.66420.05150.140*0.581 (15)
H18B0.91670.64060.15640.140*0.581 (15)
H18C0.73730.62510.17080.140*0.581 (15)
O10'0.818 (2)0.4636 (8)0.0634 (8)0.120 (3)0.419 (15)
C17'0.8016 (10)0.4872 (12)0.0435 (6)0.094 (3)0.419 (15)
C18'0.760 (3)0.6030 (17)0.1115 (17)0.110 (5)0.419 (15)
H18D0.64300.59270.09270.165*0.419 (15)
H18E0.80600.67550.08450.165*0.419 (15)
H18F0.80450.61480.20060.165*0.419 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0382 (3)0.0502 (3)0.0571 (3)0.0071 (2)0.0047 (2)0.0106 (2)
O10.0397 (7)0.0609 (8)0.0677 (9)0.0097 (6)0.0195 (6)0.0020 (7)
O20.0359 (6)0.0552 (8)0.0561 (8)0.0159 (6)0.0025 (6)0.0082 (6)
O30.0461 (7)0.0450 (7)0.0663 (9)0.0104 (6)0.0136 (6)0.0082 (6)
O40.0331 (6)0.0564 (8)0.0532 (7)0.0108 (5)0.0054 (5)0.0063 (6)
O50.0454 (7)0.0554 (8)0.0516 (8)0.0098 (6)0.0069 (6)0.0080 (6)
O60.0805 (10)0.0515 (8)0.0451 (7)0.0104 (7)0.0092 (7)0.0117 (6)
O70.0439 (8)0.0856 (11)0.0788 (11)0.0181 (7)0.0079 (7)0.0213 (9)
O80.0553 (8)0.0471 (8)0.0759 (10)0.0026 (6)0.0001 (7)0.0115 (7)
O90.0441 (8)0.0726 (10)0.0934 (12)0.0172 (7)0.0087 (8)0.0160 (9)
C10.0366 (9)0.0525 (11)0.0539 (11)0.0027 (8)0.0131 (8)0.0053 (8)
C20.0305 (8)0.0466 (10)0.0463 (10)0.0093 (7)0.0033 (7)0.0081 (8)
C30.0357 (9)0.0472 (10)0.0483 (10)0.0075 (7)0.0097 (7)0.0074 (8)
C40.0315 (8)0.0469 (10)0.0486 (10)0.0067 (7)0.0061 (7)0.0002 (8)
C50.0410 (10)0.0523 (11)0.0430 (10)0.0120 (8)0.0025 (8)0.0001 (8)
C60.0550 (11)0.0531 (11)0.0416 (10)0.0086 (9)0.0111 (8)0.0068 (8)
C70.0416 (10)0.0510 (11)0.0654 (13)0.0105 (8)0.0126 (9)0.0038 (9)
C80.0501 (10)0.0396 (9)0.0436 (10)0.0106 (8)0.0013 (8)0.0058 (8)
C90.0669 (13)0.0435 (10)0.0556 (11)0.0211 (9)0.0117 (10)0.0149 (9)
C100.0672 (14)0.0666 (13)0.0586 (12)0.0302 (11)0.0198 (10)0.0210 (10)
C110.0676 (13)0.0660 (13)0.0451 (11)0.0149 (11)0.0103 (9)0.0165 (9)
C120.0815 (16)0.0521 (12)0.0656 (13)0.0170 (11)0.0121 (12)0.0264 (10)
C130.0645 (13)0.0486 (11)0.0628 (12)0.0227 (10)0.0070 (10)0.0163 (9)
C140.0839 (19)0.123 (2)0.0818 (18)0.0182 (17)0.0295 (15)0.0524 (17)
C150.0342 (9)0.0528 (11)0.0588 (11)0.0084 (8)0.0091 (8)0.0039 (9)
C160.0511 (12)0.0678 (14)0.0770 (15)0.0194 (10)0.0132 (11)0.0090 (11)
O100.195 (7)0.084 (3)0.055 (2)0.033 (4)0.031 (3)0.0132 (18)
C170.156 (5)0.069 (4)0.054 (4)0.033 (4)0.014 (3)0.018 (3)
C180.146 (6)0.059 (4)0.067 (4)0.024 (4)0.006 (4)0.021 (3)
O10'0.216 (9)0.086 (4)0.077 (4)0.038 (5)0.059 (5)0.033 (3)
C17'0.169 (7)0.068 (5)0.059 (5)0.036 (5)0.043 (5)0.021 (4)
C18'0.170 (10)0.064 (7)0.081 (7)0.029 (7)0.005 (7)0.011 (5)
Geometric parameters (Å, º) top
S1—O71.4204 (14)C7—H70.9800
S1—O81.4228 (15)C8—C91.386 (3)
S1—O21.5894 (14)C8—C131.388 (3)
S1—C81.748 (2)C9—C101.375 (3)
O1—C71.408 (2)C9—H90.9300
O1—C11.428 (2)C10—C111.386 (3)
O2—C21.4602 (19)C10—H100.9300
O3—C71.401 (3)C11—C121.383 (3)
O3—C31.430 (2)C11—C141.500 (3)
O4—C151.336 (2)C12—C131.372 (3)
O4—C41.438 (2)C12—H120.9300
O5—C71.408 (2)C13—H130.9300
O5—C51.442 (2)C14—H14A0.9600
O6—C17'1.334 (12)C14—H14B0.9600
O6—C171.295 (8)C14—H14C0.9600
O6—C61.437 (2)C15—C161.483 (3)
O9—C151.197 (2)C16—H16A0.9600
C1—C21.520 (3)C16—H16B0.9600
C1—C61.526 (3)C16—H16C0.9600
C1—H10.9800O10—C171.226 (4)
C2—C31.523 (2)C17—C181.504 (6)
C2—H20.9800C18—H18A0.9600
C3—C41.526 (2)C18—H18B0.9600
C3—H30.9800C18—H18C0.9600
C4—C51.523 (3)O10'—C17'1.222 (5)
C4—H40.9800C17'—C18'1.506 (6)
C5—C61.527 (3)C18'—H18D0.9600
C5—H50.9800C18'—H18E0.9600
C6—H60.9800C18'—H18F0.9600
O7—S1—O8119.80 (9)O3—C7—O5111.00 (15)
O7—S1—O2103.66 (9)O1—C7—O5111.09 (17)
O8—S1—O2108.71 (8)O3—C7—H7108.0
O7—S1—C8110.63 (10)O1—C7—H7108.0
O8—S1—C8109.05 (9)O5—C7—H7108.0
O2—S1—C8103.66 (8)C9—C8—C13120.4 (2)
C7—O1—C1111.31 (13)C9—C8—S1119.92 (15)
C2—O2—S1118.36 (11)C13—C8—S1119.52 (16)
C7—O3—C3110.97 (14)C10—C9—C8119.34 (18)
C15—O4—C4117.37 (13)C10—C9—H9120.3
C7—O5—C5111.85 (13)C8—C9—H9120.3
C17'—O6—C6118.4 (4)C9—C10—C11121.3 (2)
C17—O6—C6119.2 (3)C9—C10—H10119.4
O1—C1—C2110.12 (16)C11—C10—H10119.4
O1—C1—C6106.78 (15)C12—C11—C10118.1 (2)
C2—C1—C6109.61 (15)C12—C11—C14121.3 (2)
O1—C1—H1110.1C10—C11—C14120.6 (2)
C2—C1—H1110.1C13—C12—C11121.89 (19)
C6—C1—H1110.1C13—C12—H12119.1
O2—C2—C1107.81 (14)C11—C12—H12119.1
O2—C2—C3109.64 (14)C12—C13—C8118.91 (19)
C1—C2—C3108.09 (15)C12—C13—H13120.5
O2—C2—H2110.4C8—C13—H13120.5
C1—C2—H2110.4C11—C14—H14A109.5
C3—C2—H2110.4C11—C14—H14B109.5
O3—C3—C2110.26 (14)H14A—C14—H14B109.5
O3—C3—C4107.71 (14)C11—C14—H14C109.5
C2—C3—C4109.14 (15)H14A—C14—H14C109.5
O3—C3—H3109.9H14B—C14—H14C109.5
C2—C3—H3109.9O9—C15—O4122.26 (18)
C4—C3—H3109.9O9—C15—C16125.96 (18)
O4—C4—C5114.16 (16)O4—C15—C16111.72 (16)
O4—C4—C3106.09 (13)C15—C16—H16A109.5
C5—C4—C3107.57 (14)C15—C16—H16B109.5
O4—C4—H4109.6H16A—C16—H16B109.5
C5—C4—H4109.6C15—C16—H16C109.5
C3—C4—H4109.6H16A—C16—H16C109.5
O5—C5—C4106.03 (15)H16B—C16—H16C109.5
O5—C5—C6105.65 (14)O10—C17—O6119.5 (7)
C4—C5—C6114.32 (15)O10—C17—C18127.8 (5)
O5—C5—H5110.2O6—C17—C18112.7 (6)
C4—C5—H5110.2O10'—C17'—O6122.0 (10)
C6—C5—H5110.2O10'—C17'—C18'128.6 (8)
O6—C6—C1108.51 (15)O6—C17'—C18'109.4 (10)
O6—C6—C5112.60 (16)C17'—C18'—H18D109.5
C1—C6—C5107.81 (16)C17'—C18'—H18E109.5
O6—C6—H6109.3H18D—C18'—H18E109.5
C1—C6—H6109.3C17'—C18'—H18F109.5
C5—C6—H6109.3H18D—C18'—H18F109.5
O3—C7—O1110.69 (16)H18E—C18'—H18F109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O9i0.982.643.344 (2)129
C4—H4···O5ii0.982.493.370 (2)149
C7—H7···O1iii0.982.473.221 (2)133
C7—H7···O9ii0.982.603.391 (2)138
C9—H9···O8iv0.932.413.329 (2)171
C14—H14C···O5v0.962.633.443 (3)142
C16—H16B···O8iv0.962.643.551 (3)158
C16—H16A···O10vi0.962.603.444 (5)146
C18—H18A···O9vi0.962.503.437 (15)165
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z; (iii) x+2, y, z; (iv) x+2, y+1, z+1; (v) x, y, z+1; (vi) x+1, y+1, z.
(II) 4,6-di-O-acetyl-2-O-tosyl-myo-inositol 1,3,5-orthobenzoate top
Crystal data top
C24H24O10SF(000) = 1056
Mr = 504.49Dx = 1.408 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2021 reflections
a = 12.3019 (14) Åθ = 2.4–23.5°
b = 8.2155 (10) ŵ = 0.19 mm1
c = 23.551 (3) ÅT = 298 K
β = 91.306 (2)°Plate, colourless
V = 2379.6 (5) Å30.59 × 0.17 × 0.07 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4179 independent reflections
Radiation source: fine-focus sealed tube3082 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ω and ϕ Scan scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 1414
Tmin = 0.878, Tmax = 0.987k = 99
11497 measured reflectionsl = 2813
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0516P)2 + 0.5157P]
where P = (Fo2 + 2Fc2)/3
4179 reflections(Δ/σ)max = 0.001
319 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C24H24O10SV = 2379.6 (5) Å3
Mr = 504.49Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.3019 (14) ŵ = 0.19 mm1
b = 8.2155 (10) ÅT = 298 K
c = 23.551 (3) Å0.59 × 0.17 × 0.07 mm
β = 91.306 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4179 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
3082 reflections with I > 2σ(I)
Tmin = 0.878, Tmax = 0.987Rint = 0.037
11497 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 1.08Δρmax = 0.35 e Å3
4179 reflectionsΔρmin = 0.22 e Å3
319 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S11.05937 (5)0.80750 (9)0.42697 (3)0.0474 (2)
O10.75779 (14)1.0810 (2)0.38702 (7)0.0427 (5)
O20.95453 (13)0.8953 (2)0.40129 (8)0.0463 (5)
O30.77092 (13)0.8699 (2)0.32292 (7)0.0425 (5)
O40.71253 (14)0.5626 (2)0.42790 (8)0.0457 (5)
O50.60405 (13)0.9342 (2)0.36040 (7)0.0424 (5)
O60.68432 (15)0.8176 (2)0.50513 (7)0.0481 (5)
O71.14579 (15)0.9079 (3)0.40986 (10)0.0670 (6)
O81.04358 (15)0.7776 (2)0.48563 (8)0.0566 (5)
O90.54279 (19)0.4688 (3)0.42545 (12)0.0833 (8)
O100.59918 (18)1.0043 (3)0.55677 (9)0.0658 (6)
C10.7787 (2)0.9762 (3)0.43500 (11)0.0407 (6)
H10.81601.03730.46540.049*
C20.84816 (18)0.8332 (3)0.41742 (11)0.0379 (6)
H20.85630.75560.44880.045*
C30.79287 (19)0.7526 (3)0.36670 (11)0.0387 (6)
H30.83960.66630.35210.046*
C40.68538 (19)0.6803 (3)0.38507 (11)0.0403 (6)
H40.64840.62730.35270.048*
C50.6164 (2)0.8209 (3)0.40672 (11)0.0413 (6)
H50.54510.78060.41800.050*
C60.6694 (2)0.9163 (3)0.45521 (11)0.0403 (6)
H60.62371.01010.46420.048*
C70.7039 (2)0.9977 (3)0.34273 (11)0.0426 (7)
C80.6801 (2)1.1128 (4)0.29430 (12)0.0477 (7)
C90.6224 (2)1.0555 (5)0.24735 (13)0.0670 (9)
H90.59910.94790.24650.080*
C100.5991 (3)1.1565 (5)0.20171 (14)0.0774 (11)
H100.56071.11680.17020.093*
C110.6330 (3)1.3165 (5)0.20314 (16)0.0771 (11)
H110.61671.38540.17280.092*
C120.6909 (3)1.3736 (4)0.24933 (15)0.0739 (10)
H120.71411.48130.25010.089*
C130.7153 (3)1.2718 (4)0.29505 (14)0.0640 (9)
H130.75531.31110.32610.077*
C141.0618 (2)0.6210 (3)0.39130 (12)0.0431 (7)
C151.1103 (2)0.6111 (4)0.33899 (13)0.0598 (8)
H151.14510.70110.32380.072*
C161.1064 (3)0.4657 (5)0.30982 (14)0.0663 (9)
H161.13980.45880.27490.080*
C171.0547 (2)0.3304 (4)0.33060 (13)0.0564 (8)
C181.0074 (2)0.3440 (4)0.38323 (13)0.0569 (8)
H180.97230.25420.39840.068*
C191.0110 (2)0.4865 (4)0.41344 (12)0.0498 (7)
H190.97930.49240.44880.060*
C201.0508 (3)0.1744 (5)0.29811 (15)0.0878 (12)
H20A1.07380.19340.26000.132*
H20B0.97780.13310.29730.132*
H20C1.09830.09650.31620.132*
C210.6319 (2)0.4665 (3)0.44671 (14)0.0529 (8)
C220.6694 (3)0.3677 (4)0.49552 (16)0.0740 (10)
H22A0.67330.43460.52890.111*
H22B0.74000.32400.48810.111*
H22C0.61920.28010.50130.111*
C230.6467 (2)0.8789 (4)0.55424 (11)0.0428 (7)
C240.6735 (3)0.7698 (4)0.60291 (12)0.0612 (8)
H24A0.74460.72420.59820.092*
H24B0.62090.68370.60430.092*
H24C0.67240.83100.63760.092*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0324 (4)0.0550 (5)0.0542 (5)0.0079 (3)0.0100 (3)0.0083 (4)
O10.0460 (10)0.0438 (11)0.0380 (10)0.0023 (8)0.0051 (9)0.0019 (8)
O20.0344 (10)0.0501 (11)0.0540 (12)0.0062 (8)0.0045 (9)0.0140 (9)
O30.0382 (10)0.0537 (12)0.0355 (10)0.0051 (8)0.0017 (8)0.0014 (9)
O40.0388 (10)0.0372 (10)0.0610 (13)0.0033 (8)0.0004 (9)0.0015 (9)
O50.0316 (10)0.0563 (12)0.0392 (11)0.0025 (8)0.0013 (8)0.0035 (9)
O60.0591 (12)0.0481 (11)0.0372 (11)0.0088 (9)0.0052 (9)0.0005 (9)
O70.0382 (11)0.0683 (14)0.0939 (17)0.0179 (10)0.0076 (11)0.0133 (12)
O80.0592 (12)0.0673 (14)0.0425 (12)0.0038 (10)0.0157 (10)0.0024 (10)
O90.0530 (14)0.0842 (18)0.112 (2)0.0235 (12)0.0063 (14)0.0136 (15)
O100.0695 (14)0.0797 (16)0.0487 (13)0.0277 (12)0.0116 (11)0.0025 (11)
C10.0471 (16)0.0410 (15)0.0337 (15)0.0008 (12)0.0055 (12)0.0027 (12)
C20.0289 (13)0.0443 (16)0.0403 (15)0.0053 (11)0.0001 (11)0.0041 (12)
C30.0329 (14)0.0437 (15)0.0394 (16)0.0044 (12)0.0005 (12)0.0023 (12)
C40.0358 (14)0.0450 (16)0.0400 (15)0.0030 (12)0.0036 (12)0.0059 (13)
C50.0326 (14)0.0486 (17)0.0427 (16)0.0001 (12)0.0040 (12)0.0003 (13)
C60.0452 (15)0.0416 (15)0.0341 (15)0.0082 (12)0.0020 (13)0.0009 (12)
C70.0368 (15)0.0519 (17)0.0390 (16)0.0018 (13)0.0008 (13)0.0021 (13)
C80.0395 (15)0.062 (2)0.0419 (17)0.0064 (14)0.0018 (13)0.0071 (14)
C90.0534 (19)0.087 (3)0.060 (2)0.0036 (17)0.0134 (17)0.0147 (19)
C100.057 (2)0.116 (3)0.059 (2)0.004 (2)0.0200 (17)0.023 (2)
C110.061 (2)0.105 (3)0.065 (2)0.022 (2)0.0015 (19)0.035 (2)
C120.086 (3)0.068 (2)0.067 (2)0.0110 (19)0.009 (2)0.025 (2)
C130.071 (2)0.066 (2)0.055 (2)0.0048 (17)0.0003 (17)0.0055 (17)
C140.0305 (14)0.0551 (18)0.0434 (16)0.0002 (12)0.0040 (12)0.0108 (14)
C150.0536 (19)0.068 (2)0.058 (2)0.0047 (16)0.0135 (16)0.0143 (17)
C160.066 (2)0.090 (3)0.0440 (19)0.0112 (19)0.0164 (16)0.0064 (19)
C170.0581 (19)0.064 (2)0.0464 (18)0.0054 (16)0.0025 (15)0.0027 (16)
C180.0621 (19)0.056 (2)0.0524 (19)0.0061 (15)0.0058 (16)0.0074 (16)
C190.0528 (17)0.0573 (19)0.0394 (17)0.0033 (14)0.0052 (14)0.0088 (14)
C200.109 (3)0.089 (3)0.066 (2)0.005 (2)0.003 (2)0.016 (2)
C210.0476 (18)0.0401 (17)0.071 (2)0.0023 (14)0.0117 (17)0.0057 (15)
C220.078 (2)0.0488 (19)0.096 (3)0.0047 (17)0.018 (2)0.0147 (19)
C230.0329 (14)0.0549 (18)0.0406 (17)0.0052 (13)0.0017 (12)0.0033 (14)
C240.070 (2)0.068 (2)0.0456 (18)0.0076 (16)0.0019 (16)0.0070 (16)
Geometric parameters (Å, º) top
S1—O71.412 (2)C9—C101.383 (4)
S1—O81.421 (2)C9—H90.9300
S1—O21.5853 (18)C10—C111.379 (5)
S1—C141.748 (3)C10—H100.9300
O1—C71.401 (3)C11—C121.369 (5)
O1—C11.439 (3)C11—H110.9300
O2—C21.463 (3)C12—C131.391 (4)
O3—C71.420 (3)C12—H120.9300
O3—C31.432 (3)C13—H130.9300
O4—C211.351 (3)C14—C191.378 (4)
O4—C41.432 (3)C14—C151.384 (4)
O5—C71.407 (3)C15—C161.378 (4)
O5—C51.440 (3)C15—H150.9300
O6—C231.353 (3)C16—C171.376 (4)
O6—C61.437 (3)C16—H160.9300
O9—C211.195 (3)C17—C181.386 (4)
O10—C231.186 (3)C17—C201.493 (4)
C1—C21.516 (4)C18—C191.370 (4)
C1—C61.518 (4)C18—H180.9300
C1—H10.9800C19—H190.9300
C2—C31.514 (3)C20—H20A0.9600
C2—H20.9800C20—H20B0.9600
C3—C41.521 (3)C20—H20C0.9600
C3—H30.9800C21—C221.472 (4)
C4—C51.527 (4)C22—H22A0.9600
C4—H40.9800C22—H22B0.9600
C5—C61.520 (4)C22—H22C0.9600
C5—H50.9800C23—C241.486 (4)
C6—H60.9800C24—H24A0.9600
C7—C81.505 (4)C24—H24B0.9600
C8—C131.376 (4)C24—H24C0.9600
C8—C91.383 (4)
O7—S1—O8119.95 (13)C8—C9—C10120.7 (3)
O7—S1—O2103.69 (11)C8—C9—H9119.6
O8—S1—O2108.76 (11)C10—C9—H9119.6
O7—S1—C14110.73 (14)C11—C10—C9119.7 (3)
O8—S1—C14108.65 (13)C11—C10—H10120.2
O2—S1—C14103.77 (11)C9—C10—H10120.2
C7—O1—C1111.43 (19)C12—C11—C10119.8 (3)
C2—O2—S1117.87 (15)C12—C11—H11120.1
C7—O3—C3111.24 (19)C10—C11—H11120.1
C21—O4—C4117.7 (2)C11—C12—C13120.5 (4)
C7—O5—C5112.73 (18)C11—C12—H12119.7
C23—O6—C6116.7 (2)C13—C12—H12119.7
O1—C1—C2109.9 (2)C8—C13—C12119.9 (3)
O1—C1—C6107.2 (2)C8—C13—H13120.0
C2—C1—C6110.1 (2)C12—C13—H13120.0
O1—C1—H1109.9C19—C14—C15119.9 (3)
C2—C1—H1109.9C19—C14—S1120.6 (2)
C6—C1—H1109.9C15—C14—S1119.5 (2)
O2—C2—C3109.6 (2)C16—C15—C14118.9 (3)
O2—C2—C1108.3 (2)C16—C15—H15120.5
C3—C2—C1108.0 (2)C14—C15—H15120.5
O2—C2—H2110.3C17—C16—C15122.3 (3)
C3—C2—H2110.3C17—C16—H16118.9
C1—C2—H2110.3C15—C16—H16118.9
O3—C3—C2110.3 (2)C16—C17—C18117.4 (3)
O3—C3—C4108.45 (19)C16—C17—C20121.4 (3)
C2—C3—C4108.9 (2)C18—C17—C20121.2 (3)
O3—C3—H3109.7C19—C18—C17121.6 (3)
C2—C3—H3109.7C19—C18—H18119.2
C4—C3—H3109.7C17—C18—H18119.2
O4—C4—C3105.89 (19)C18—C19—C14119.9 (3)
O4—C4—C5113.5 (2)C18—C19—H19120.1
C3—C4—C5107.0 (2)C14—C19—H19120.1
O4—C4—H4110.1C17—C20—H20A109.5
C3—C4—H4110.1C17—C20—H20B109.5
C5—C4—H4110.1H20A—C20—H20B109.5
O5—C5—C6105.8 (2)C17—C20—H20C109.5
O5—C5—C4106.6 (2)H20A—C20—H20C109.5
C6—C5—C4114.1 (2)H20B—C20—H20C109.5
O5—C5—H5110.1O9—C21—O4121.8 (3)
C6—C5—H5110.1O9—C21—C22127.2 (3)
C4—C5—H5110.1O4—C21—C22111.0 (3)
O6—C6—C1110.0 (2)C21—C22—H22A109.5
O6—C6—C5111.6 (2)C21—C22—H22B109.5
C1—C6—C5107.4 (2)H22A—C22—H22B109.5
O6—C6—H6109.2C21—C22—H22C109.5
C1—C6—H6109.2H22A—C22—H22C109.5
C5—C6—H6109.2H22B—C22—H22C109.5
O1—C7—O5111.2 (2)O10—C23—O6123.0 (3)
O1—C7—O3109.73 (19)O10—C23—C24125.9 (3)
O5—C7—O3109.9 (2)O6—C23—C24111.1 (3)
O1—C7—C8109.8 (2)C23—C24—H24A109.5
O5—C7—C8107.5 (2)C23—C24—H24B109.5
O3—C7—C8108.7 (2)H24A—C24—H24B109.5
C13—C8—C9119.3 (3)C23—C24—H24C109.5
C13—C8—C7122.0 (3)H24A—C24—H24C109.5
C9—C8—C7118.7 (3)H24B—C24—H24C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O8i0.982.563.490 (3)159
C5—H5···O10ii0.982.583.153 (3)117
C22—H22C···O10iii0.962.633.435 (4)142
C24—H24B···O9iv0.962.463.360 (4)156
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+1, y+2, z+1; (iii) x, y1, z; (iv) x+1, y+1, z+1.

Experimental details

(I)(II)
Crystal data
Chemical formulaC18H20O10SC24H24O10S
Mr428.40504.49
Crystal system, space groupTriclinic, P1Monoclinic, P21/c
Temperature (K)298298
a, b, c (Å)8.5756 (6), 11.0381 (8), 11.2005 (8)12.3019 (14), 8.2155 (10), 23.551 (3)
α, β, γ (°)100.426 (1), 103.123 (1), 99.660 (1)90, 91.306 (2), 90
V3)991.04 (12)2379.6 (5)
Z24
Radiation typeMo KαMo Kα
µ (mm1)0.220.19
Crystal size (mm)0.49 × 0.29 × 0.130.59 × 0.17 × 0.07
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Bruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Multi-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.901, 0.9720.878, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
9864, 3581, 3179 11497, 4179, 3082
Rint0.0200.037
(sin θ/λ)max1)0.6000.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.115, 1.03 0.056, 0.123, 1.08
No. of reflections35814179
No. of parameters294319
No. of restraints290
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.220.35, 0.22

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O9i0.982.643.344 (2)129.0
C4—H4···O5ii0.982.493.370 (2)149.3
C7—H7···O1iii0.982.473.221 (2)132.8
C7—H7···O9ii0.982.603.391 (2)138.3
C9—H9···O8iv0.932.413.329 (2)170.5
C14—H14C···O5v0.962.633.443 (3)142.2
C16—H16B···O8iv0.962.643.551 (3)158.1
C16—H16A···O10vi0.962.603.444 (5)146.2
C18—H18A···O9vi0.962.503.437 (15)165.2
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z; (iii) x+2, y, z; (iv) x+2, y+1, z+1; (v) x, y, z+1; (vi) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O8i0.982.563.490 (3)159.1
C5—H5···O10ii0.982.583.153 (3)117.1
C22—H22C···O10iii0.962.633.435 (4)141.7
C24—H24B···O9iv0.962.463.360 (4)156.0
Symmetry codes: (i) x+2, y+2, z+1; (ii) x+1, y+2, z+1; (iii) x, y1, z; (iv) x+1, y+1, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds