Download citation
Download citation
link to html
The title complexes, catena-poly[[[diaqua­diethanol­mangan­ese(II)]-[mu]-1,4-bis­(diphenyl­phosphinoyl)butane-[kappa]2O:O'] di­nitrate 1,4-bis­(diphenyl­phosphinoyl)butane solvate], {[Mn(C2H6O)2(C28H28O2P2)(H2O)2](NO3)2·C28H28O2P2}n, (I), and catena-poly[[[diaqua­diethanol­cobalt(II)]-[mu]-1,4-bis(diphenylphosphinoyl)butane-[kappa]2O:O'] dinitrate 1,4-bis(diphenyl­phos­phin­oyl)butane solvate], {[Co(C2H6O)2(C28H28O2P2)(H2O)2](NO3)2·C28H28O2P2}n, (II), are isostructural and centrosymmetric, with the MII ions at centres of inversion. The coordination geometry is octa­hedral, with each metal ion coordinated by two trans ethanol mol­ecules, two trans water mol­ecules and two bridging 1,4-bis­(diphenyl­phosphinoyl)­butane ligands which link the coordination centres to form one-dimensional polymeric chains. Parallel chains are linked by hydrogen bonds to uncoordinated 1,4-bis­(diphenyl­phosphinoyl)butane mol­ecules, which are bisected by a centre of inversion. Further hydrogen bonds, weak C-H...O inter­actions to nitrate anions, and weak C-H...[pi] inter­actions serve to stabilize the structure. This study reports a development of the coordination chemistry of bis­(diphenyl­phosphinoyl)alkanes, with the first reported structures of complexes of the first-row transition metals with 1,4-bis(diphenyl­phosphinoyl)butane.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827010804033X/sf3094sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010804033X/sf3094Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010804033X/sf3094IIsup3.hkl
Contains datablock II

CCDC references: 718102; 718103

Comment top

In combination with various transition metals, 1,4-bis(diphenylphosphino)butane (dppb) has proved to be an effective catalyst for many organic reactions (see, for example, Bogado et al., 2003; Farnetti & Marsich, 2004; Sundermeier et al., 2003). Because of these catalytic effects, the coordination chemistry of dppb has received much attention. Although there are many structurally characterized examples of dppb complexes of the transition metals [for example: NiII (Câmpian et al., 2007), AgI (Aslanidis et al., 2004) and RuII (Brito et al., 2007)], the oxidized form of the ligand, 1,4-bis(diphenylphosphinoyl)butane (dppbO2) has received little attention. There are examples of dppbO2 coordination to the lanthanides (Spichal et al., 2006) and to tin (Teo et al., 2008), and there are examples of 1,3-bis(diphenylphosphinoyl)propane (dpppO2) coordination to CoII (Harding et al., 2007) and CuII (Platt & Lees, 2007), but to date there are no characterized examples of dppbO2 coordination to the d-block elements. We report here the first examples of the coordination of dppbO2 to the first-row transition metals.

The structures of (I) and (II), {trans-[M(EtOH)2(H2O)2(µ-dppbO2)](NO3)2.dppbO2}n, are essentially isomorphous. The structures are centrosymmetric and the coordination geometry is octahedral, MO6, with the MII ions sitting at centres of inversion. Each metal ion is coordinated by two ethanol molecules, two water molecules and two bridging 1,4-bis(diphenylphosphinoyl)butane (dppbO2) ligands in an all-trans configuration to form one-dimensional polymeric chains. Parallel chains are linked by hydrogen bonds to uncoordinated dppbO2 molecules. M—O bond lengths [2.111 (1)–2.242 (2) Å for Mn and 2.045 (2)–2.147 (2) Å for Co] are typical of those of other octahedrally coordinated O-donor MnII and CoII complexes, for example [Mn(C14H8N2O6)(H2O)4]n [2.141 (2)-2.226 (2) Å; Tang et al.,2007], [Mn(C10H8O5S)(H2O)4]n [2.153 (2)–2.244 (2) Å; Su et al., 2006], {[Co(C8H7NO2)2(H2O)2](NO3)2}n [2.063 (1)–2.108 (1) Å; Domasevitch, 2008] and [Co(dbm)2(µ-dppeO2)]n [2.153 (2)-2.244 (2) Å; Harding et al., 2007].

The coordination geometries of the MII ions each show elongation along one axis. Both complexes show similar elongation along the axis of the trans-coordinated water molecules, O3—Co—O3(1 - x, 1 - y, 1 - z). Lengthening of these bonds is consistent with the water molecules being hydrogen-bonded to adjacent phosphine oxide groups (O3—H3A···O7) and nitrate anions (O3—H3A···O6). Such elongation is also consistent with Jahn–Teller distortion, and this may be expected to be observed in complexes of the CoII d7 ion. For the MnII d5 ion however, Jahn–Teller effects are not expected to be significant. The greater distortion observed in the MnII complex is attributed to the role of hydrogen bonding having a greater influence over the generally weaker M—O bonds in the Mn complex. All M—O bonds are longer in the Mn complex than the Co complex, in keeping with the Irving–Williams series, which indicates stability in the order Mn < Fe < Co.

The metal centres are linked by bridging dppbO2 ligands, which are bisected by an inversion centre. The aliphatic chains of the dppbO2 ligands adopt an all-anti conformation, aligning the PO groups in a strict antiparallel arrangement which affords the linear propagation of the coordination polymer along the crystallographic b axis. Adjacent chains are linked via hydrogen bonds to form a two-dimensional network running parallel to the (001) plane.

The hydrogen-bonding network consists of classical O—H···O hydrogen bonds and C—H···O interactions. One hydrogen bond, O3—H3B···O6, binds the nitrate ion to a coordinated water molecule. Two other hydrogen bonds, O3—H3A···O7 and O2—H2E···O7, are the primary means of attachment of the uncoordinated dppbO2 molecules which form the link between the parallel polymeric chains. Weaker C—H···O interactions serve to stabilize further both the position of the nitrate ion within the structure and the orientation of the dppbO2 molecules. The hydrogen-bonding parameters for (I) are given in Table 2, and those for (II) in Table 4.

Weak methylene–phenyl and phenyl–phenyl (edge to face) C—H···π interactions, with H···π (centroid) distances of 2.83 and 2.79 Å, respectively, in (I), and 2.80 and 2.76 Å, respectively, in (II), stabilize the arrangements between polymer chains and dppbO2 molecules within the (001) sheets. In the first of these interactions, methylene atom C29 acts as donor, via atom H29B, to the C7–C12 ring at (1 - x, 1 - y, 1 - z). In the second interaction, phenyl atom C21 acts as donor, via atom H21, to the C1–C6 ring at (x, -1 + y, z). The stacking of the (001) sheets is stabilized by two further C—H···π interactions: a phenyl–phenyl (edge to face) interaction between neighbouring dppbO2 molecules, with H···π (centroid) distances of 2.90 [(I)] and 2.89 Å [(II)], and a methyl–phenyl interaction between adjacent polymeric chains, with H···π (centroid) distances of 2.91 Å [(I)] and 2.96 Å [(II)]. In the phenyl–phenyl interaction, atom C26 acts as donor, via atom H26, to the C17–C22 ring at (-x, 1/2 + y, 1/2 - z), and in the methyl–phenyl interaction, atom C16 acts as donor, via atom H16B, to the C1–C6 ring at (1 - x, -1/2 + y, 1/2 - z). The observed H···π (centroid) distances for the four interactions in both structures (2.76–2.96 Å) are markedly shorter than those reported for similar interactions in the solid-state alkyl bisdiphenylphosphine oxides (3.00–3.65 Å; Calcagno et al., 2000). We attribute this to the effects of both coordinate bonding to the metal atoms and intramolecular hydrogen bonding stabilizing the dppbO2 molecules in closer proximity.

Experimental top

Hot ethanol solutions of hydrated metal nitrates and the ligand [Please give specific salts and details of molar quantities and liquid volumes] were mixed. Slow evaporation of the resulting solutions led to the formation of crystals suitable for X-ray diffraction studies.

Refinement top

All C-bound H atoms were refined isotropically in idealized positions, with aromatic C—H = 0.95, methylene C—H = 0.99 and methyl C—H= 0.98 Å, and were constrained to ride on their parent atoms. The H atoms of each functional group were assigned a common refined isotropic displacement parameter. O-bound H atoms were located in a difference map and refined isotropically with a common isotropic displacement parameter.

Computing details top

For both compounds, data collection: COLLECT (Nonius, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Nonius, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Nonius, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999) and enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. A view of (II), showing the atom-labelling scheme. Compound (I) is isostructural. [Please check added text] Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radii, and have been omitted from symmetry-generated atoms for clarity. [Symmetry code: (i) 1 - x, 1 - y, 1 - z.] [One further C-atom label is required in each benzene ring to enable unique identification of all atoms - please supply a revised plot]
[Figure 2] Fig. 2. The molecular packing in (I), viewed normal to the (010) plane, showing intermolecular hydrogen bonds parallel to the (001) plane and the edge-to-face alignment of phenyl rings between chains along the c axis. Only selected H atoms are shown for clarity. The packing of (II) is similar. [Please check added text]
(I) catena-poly[[[diaquadiethanolmanganese(II)]-µ-1,4- bis(diphenylphosphinoyl)butane-κ2O:O'] dinitrate 1,4-bis(diphenylphosphinoyl)butane solvate] top
Crystal data top
[Mn(C2H6O)2(C28H28O2P2)(H2O)2](NO3)2·C28H28O2P2F(000) = 1286
Mr = 1224.02Dx = 1.357 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7147 reflections
a = 13.4134 (3) Åθ = 1–27.5°
b = 10.3270 (3) ŵ = 0.39 mm1
c = 22.1028 (6) ÅT = 120 K
β = 101.900 (1)°Cut plate, colourless
V = 2995.88 (14) Å30.24 × 0.22 × 0.03 mm
Z = 2
Data collection top
Bruker Nonius 95mm CCD camera on κ-goniostat
diffractometer
6856 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode5673 reflections with I > 2σ(I)
10cm confocal mirrors monochromatorRint = 0.042
Detector resolution: 9.091 pixels mm-1θmax = 27.6°, θmin = 2.6°
ϕ and ω scansh = 1717
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1313
Tmin = 0.912, Tmax = 0.988l = 2828
40734 measured reflections
Refinement top
Refinement on F2Primary atom site location: heavy-atom method
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Only H-atom displacement parameters refined
wR(F2) = 0.111 w = 1/[σ2(Fo2) + (0.0438P)2 + 3.312P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
6856 reflectionsΔρmax = 0.71 e Å3
382 parametersΔρmin = 0.43 e Å3
0 restraints
Crystal data top
[Mn(C2H6O)2(C28H28O2P2)(H2O)2](NO3)2·C28H28O2P2V = 2995.88 (14) Å3
Mr = 1224.02Z = 2
Monoclinic, P21/cMo Kα radiation
a = 13.4134 (3) ŵ = 0.39 mm1
b = 10.3270 (3) ÅT = 120 K
c = 22.1028 (6) Å0.24 × 0.22 × 0.03 mm
β = 101.900 (1)°
Data collection top
Bruker Nonius 95mm CCD camera on κ-goniostat
diffractometer
6856 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
5673 reflections with I > 2σ(I)
Tmin = 0.912, Tmax = 0.988Rint = 0.042
40734 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.111Only H-atom displacement parameters refined
S = 1.05Δρmax = 0.71 e Å3
6856 reflectionsΔρmin = 0.43 e Å3
382 parameters
Special details top

Experimental. SADABS was used to perform the Absorption correction parameter refinement on 30561 reflections reduced R(int) from 0.0950 to 0.0356 Ratio of minimum to maximum apparent transmission: 0.86259 The given Tmin and Tmax were generated using the SHELX SIZE command

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.50000.50000.50000.01841 (11)
O10.54549 (11)0.63488 (14)0.43921 (7)0.0218 (3)
O20.42438 (14)0.38670 (19)0.41921 (8)0.0385 (4)
O30.34512 (13)0.58875 (17)0.49089 (8)0.0300 (4)
O40.32591 (14)0.8477 (2)0.59908 (11)0.0517 (5)
O50.17836 (16)0.84843 (19)0.62178 (10)0.0484 (5)
O60.22340 (16)0.68865 (18)0.57033 (9)0.0475 (5)
O70.24516 (11)0.35852 (16)0.45062 (7)0.0276 (4)
N10.24226 (15)0.79552 (19)0.59688 (9)0.0293 (4)
P10.57901 (4)0.75716 (5)0.41302 (2)0.01536 (12)
P20.14168 (4)0.30088 (5)0.42641 (2)0.01944 (13)
C10.48769 (15)0.8007 (2)0.34365 (9)0.0175 (4)
C20.48610 (17)0.9224 (2)0.31593 (10)0.0241 (5)
H20.53280.98750.33410.0403 (17)*
C30.41556 (19)0.9477 (2)0.26148 (10)0.0295 (5)
H30.41301.03110.24310.0403 (17)*
C40.34912 (18)0.8517 (2)0.23411 (10)0.0298 (5)
H40.30190.86920.19670.0403 (17)*
C50.35126 (18)0.7307 (2)0.26096 (11)0.0296 (5)
H50.30630.66480.24160.0403 (17)*
C60.41939 (16)0.7051 (2)0.31641 (10)0.0241 (5)
H60.41930.62280.33560.0403 (17)*
C70.69898 (15)0.7360 (2)0.38963 (9)0.0184 (4)
C80.75600 (18)0.8420 (2)0.37671 (11)0.0294 (5)
H80.73310.92770.38170.0403 (17)*
C90.84620 (19)0.8218 (3)0.35648 (13)0.0370 (6)
H90.88550.89370.34810.0403 (17)*
C100.87897 (18)0.6967 (3)0.34848 (12)0.0354 (6)
H100.93990.68330.33380.0403 (17)*
C110.82342 (17)0.5915 (2)0.36184 (11)0.0303 (5)
H110.84660.50610.35660.0403 (17)*
C120.73358 (16)0.6106 (2)0.38298 (10)0.0221 (4)
H120.69600.53840.39280.0403 (17)*
C130.59240 (15)0.8934 (2)0.46444 (9)0.0182 (4)
H13A0.63920.86960.50360.027 (2)*
H13B0.62410.96560.44570.027 (2)*
C140.49196 (15)0.9407 (2)0.47908 (9)0.0192 (4)
H14A0.44400.96260.44010.027 (2)*
H14B0.46120.87050.49960.027 (2)*
C150.4599 (2)0.3111 (3)0.37399 (14)0.0504 (8)
H15A0.46550.21970.38780.104 (11)*
H15B0.52910.34110.37150.104 (11)*
C160.3934 (2)0.3170 (3)0.31064 (13)0.0458 (7)
H16A0.32710.27800.31150.083 (7)*
H16B0.42580.26930.28160.083 (7)*
H16C0.38380.40750.29740.083 (7)*
C170.15004 (16)0.1269 (2)0.41961 (10)0.0218 (4)
C180.1118 (2)0.0418 (3)0.45708 (13)0.0391 (6)
H180.07180.07360.48470.0403 (17)*
C190.1310 (2)0.0898 (3)0.45488 (14)0.0493 (7)
H190.10370.14740.48080.0403 (17)*
C200.1893 (2)0.1376 (3)0.41554 (13)0.0421 (6)
H200.20150.22810.41390.0403 (17)*
C210.22986 (19)0.0542 (3)0.37873 (12)0.0360 (6)
H210.27130.08660.35210.0403 (17)*
C220.21033 (18)0.0779 (2)0.38039 (11)0.0319 (5)
H220.23820.13520.35460.0403 (17)*
C230.08777 (16)0.3656 (2)0.35085 (9)0.0209 (4)
C240.00681 (17)0.3234 (2)0.31805 (10)0.0259 (5)
H240.04210.25610.33420.0403 (17)*
C250.04910 (18)0.3801 (2)0.26170 (11)0.0311 (5)
H250.11350.35170.23920.0403 (17)*
C260.00246 (19)0.4782 (3)0.23824 (11)0.0334 (6)
H260.02670.51670.19960.0403 (17)*
C270.0961 (2)0.5204 (3)0.27071 (12)0.0358 (6)
H270.13110.58740.25430.0403 (17)*
C280.13894 (18)0.4649 (2)0.32719 (11)0.0292 (5)
H280.20300.49450.34970.0403 (17)*
C290.05135 (16)0.3373 (2)0.47382 (10)0.0218 (4)
H29A0.01600.30110.45440.027 (2)*
H29B0.07350.29610.51480.027 (2)*
C300.04168 (16)0.4840 (2)0.48209 (10)0.0233 (5)
H30A0.10760.51900.50470.027 (2)*
H30B0.02530.52600.44100.027 (2)*
H2E0.352 (3)0.351 (4)0.4229 (18)0.087 (8)*
H3A0.302 (3)0.526 (4)0.4765 (19)0.087 (8)*
H3B0.318 (3)0.637 (4)0.5163 (19)0.087 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0182 (2)0.0186 (2)0.0182 (2)0.00526 (17)0.00316 (16)0.00422 (17)
O10.0231 (7)0.0199 (8)0.0235 (7)0.0022 (6)0.0074 (6)0.0070 (6)
O20.0344 (10)0.0514 (12)0.0338 (9)0.0160 (9)0.0165 (8)0.0164 (8)
O30.0275 (9)0.0253 (9)0.0386 (10)0.0044 (7)0.0099 (7)0.0037 (7)
O40.0347 (11)0.0400 (11)0.0823 (15)0.0066 (9)0.0162 (10)0.0156 (11)
O50.0543 (12)0.0357 (11)0.0647 (13)0.0007 (9)0.0339 (11)0.0041 (10)
O60.0625 (13)0.0264 (10)0.0512 (12)0.0039 (9)0.0063 (10)0.0112 (9)
O70.0195 (8)0.0324 (9)0.0306 (8)0.0031 (7)0.0046 (6)0.0051 (7)
N10.0341 (11)0.0214 (10)0.0334 (10)0.0015 (8)0.0091 (9)0.0065 (8)
P10.0171 (2)0.0139 (2)0.0166 (2)0.00039 (19)0.00702 (19)0.00100 (19)
P20.0173 (3)0.0210 (3)0.0205 (3)0.0006 (2)0.0049 (2)0.0020 (2)
C10.0198 (10)0.0179 (10)0.0163 (9)0.0022 (8)0.0073 (8)0.0007 (8)
C20.0325 (12)0.0197 (11)0.0209 (10)0.0003 (9)0.0075 (9)0.0001 (8)
C30.0413 (14)0.0244 (12)0.0234 (11)0.0074 (10)0.0077 (10)0.0055 (9)
C40.0305 (12)0.0369 (13)0.0201 (10)0.0063 (10)0.0011 (9)0.0009 (10)
C50.0268 (12)0.0318 (13)0.0285 (12)0.0031 (10)0.0016 (9)0.0039 (10)
C60.0244 (11)0.0212 (11)0.0266 (11)0.0005 (9)0.0047 (9)0.0012 (9)
C70.0194 (10)0.0190 (10)0.0183 (9)0.0032 (8)0.0076 (8)0.0002 (8)
C80.0313 (12)0.0203 (11)0.0423 (13)0.0031 (9)0.0211 (10)0.0044 (10)
C90.0336 (13)0.0345 (14)0.0506 (15)0.0000 (11)0.0261 (12)0.0066 (12)
C100.0253 (12)0.0477 (16)0.0385 (13)0.0068 (11)0.0187 (10)0.0023 (12)
C110.0271 (12)0.0320 (13)0.0320 (12)0.0093 (10)0.0066 (10)0.0099 (10)
C120.0221 (10)0.0204 (11)0.0235 (10)0.0021 (8)0.0040 (8)0.0037 (8)
C130.0176 (10)0.0192 (10)0.0186 (9)0.0012 (8)0.0053 (8)0.0031 (8)
C140.0175 (10)0.0227 (11)0.0183 (9)0.0017 (8)0.0056 (8)0.0045 (8)
C150.0479 (17)0.061 (2)0.0447 (16)0.0179 (15)0.0153 (13)0.0110 (15)
C160.0568 (18)0.0478 (17)0.0373 (14)0.0146 (14)0.0205 (13)0.0114 (13)
C170.0199 (10)0.0225 (11)0.0219 (10)0.0016 (8)0.0021 (8)0.0010 (8)
C180.0510 (16)0.0298 (13)0.0438 (15)0.0037 (12)0.0263 (13)0.0023 (11)
C190.069 (2)0.0299 (14)0.0548 (18)0.0033 (14)0.0254 (16)0.0127 (13)
C200.0515 (17)0.0266 (13)0.0461 (15)0.0110 (12)0.0053 (13)0.0002 (12)
C210.0300 (13)0.0372 (14)0.0394 (14)0.0067 (11)0.0042 (11)0.0117 (12)
C220.0320 (13)0.0303 (13)0.0357 (13)0.0020 (10)0.0122 (10)0.0067 (10)
C230.0222 (10)0.0213 (11)0.0207 (10)0.0028 (8)0.0079 (8)0.0024 (8)
C240.0271 (11)0.0256 (12)0.0256 (11)0.0019 (9)0.0066 (9)0.0022 (9)
C250.0293 (12)0.0366 (14)0.0258 (11)0.0008 (10)0.0015 (9)0.0013 (10)
C260.0367 (13)0.0388 (15)0.0256 (12)0.0081 (11)0.0089 (10)0.0068 (10)
C270.0366 (14)0.0353 (14)0.0383 (13)0.0004 (11)0.0145 (11)0.0119 (11)
C280.0262 (12)0.0302 (12)0.0322 (12)0.0021 (10)0.0085 (9)0.0025 (10)
C290.0217 (10)0.0236 (11)0.0212 (10)0.0006 (9)0.0072 (8)0.0017 (8)
C300.0235 (11)0.0229 (11)0.0247 (11)0.0007 (9)0.0079 (9)0.0022 (9)
Geometric parameters (Å, º) top
Mn1—O1i2.1109 (14)C14—C14ii1.522 (4)
Mn1—O12.1109 (14)C14—H14A0.9900
Mn1—O2i2.1998 (17)C14—H14B0.9900
Mn1—O22.1998 (17)C15—O21.426 (3)
Mn1—O3i2.2415 (16)C15—C161.499 (4)
Mn1—O32.2415 (16)C15—H15A0.9900
P1—O11.4964 (15)C15—H15B0.9900
P2—O71.5036 (16)C16—H16A0.9800
O2—H2E1.06 (4)C16—H16B0.9800
O3—H3A0.89 (4)C16—H16C0.9800
O3—H3B0.88 (4)C17—C181.377 (3)
N1—O41.237 (3)C17—C221.397 (3)
N1—O51.237 (3)C17—P21.809 (2)
N1—O61.251 (3)C18—C191.386 (4)
C1—C21.396 (3)C18—H180.9500
C1—C61.397 (3)C19—C201.376 (4)
C1—P11.811 (2)C19—H190.9500
C2—C31.394 (3)C20—C211.372 (4)
C2—H20.9500C20—H200.9500
C3—C41.386 (3)C21—C221.390 (4)
C3—H30.9500C21—H210.9500
C4—C51.381 (3)C22—H220.9500
C4—H40.9500C23—C281.395 (3)
C5—C61.395 (3)C23—C241.395 (3)
C5—H50.9500C23—P21.806 (2)
C6—H60.9500C24—C251.388 (3)
C7—C121.394 (3)C24—H240.9500
C7—C81.398 (3)C25—C261.386 (3)
C7—P11.802 (2)C25—H250.9500
C8—C91.389 (3)C26—C271.382 (4)
C8—H80.9500C26—H260.9500
C9—C101.387 (4)C27—C281.386 (3)
C9—H90.9500C27—H270.9500
C10—C111.384 (4)C28—H280.9500
C10—H100.9500C29—C301.534 (3)
C11—C121.393 (3)C29—P21.798 (2)
C11—H110.9500C29—H29A0.9900
C12—H120.9500C29—H29B0.9900
C13—C141.529 (3)C30—C30iii1.533 (4)
C13—P11.795 (2)C30—H30A0.9900
C13—H13A0.9900C30—H30B0.9900
C13—H13B0.9900
O1—Mn1—O1i180.0H16A—C16—H16C109.5
O1—Mn1—O288.84 (6)H16B—C16—H16C109.5
O1—Mn1—O2i91.16 (6)C18—C17—C22118.5 (2)
O1i—Mn1—O291.16 (6)C18—C17—P2123.15 (18)
O1i—Mn1—O2i88.84 (6)C22—C17—P2117.73 (17)
O1—Mn1—O393.28 (6)C17—C18—C19120.6 (2)
O1i—Mn1—O386.72 (6)C17—C18—H18119.7
O1i—Mn1—O3i93.28 (6)C19—C18—H18119.7
O1—Mn1—O3i86.72 (6)C20—C19—C18120.6 (3)
O2—Mn1—O2i180.0C20—C19—H19119.7
O2—Mn1—O383.16 (7)C18—C19—H19119.7
O2i—Mn1—O3i83.16 (7)C21—C20—C19119.7 (2)
O2—Mn1—O3i96.84 (7)C21—C20—H20120.2
O2i—Mn1—O396.84 (7)C19—C20—H20120.2
O3i—Mn1—O3180.00 (10)C20—C21—C22120.0 (2)
C2—C1—C6119.87 (19)C20—C21—H21120.0
C2—C1—P1122.81 (16)C22—C21—H21120.0
C6—C1—P1117.28 (16)C21—C22—C17120.5 (2)
C3—C2—C1119.6 (2)C21—C22—H22119.7
C3—C2—H2120.2C17—C22—H22119.7
C1—C2—H2120.2C28—C23—C24120.0 (2)
C4—C3—C2120.2 (2)C28—C23—P2119.01 (17)
C4—C3—H3119.9C24—C23—P2120.85 (17)
C2—C3—H3119.9C25—C24—C23119.6 (2)
C5—C4—C3120.3 (2)C25—C24—H24120.2
C5—C4—H4119.8C23—C24—H24120.2
C3—C4—H4119.8C26—C25—C24120.1 (2)
C4—C5—C6120.1 (2)C26—C25—H25120.0
C4—C5—H5120.0C24—C25—H25120.0
C6—C5—H5120.0C27—C26—C25120.4 (2)
C5—C6—C1119.8 (2)C27—C26—H26119.8
C5—C6—H6120.1C25—C26—H26119.8
C1—C6—H6120.1C26—C27—C28120.1 (2)
C12—C7—C8119.86 (19)C26—C27—H27119.9
C12—C7—P1118.64 (16)C28—C27—H27119.9
C8—C7—P1121.48 (16)C27—C28—C23119.8 (2)
C9—C8—C7119.8 (2)C27—C28—H28120.1
C9—C8—H8120.1C23—C28—H28120.1
C7—C8—H8120.1C30—C29—P2111.09 (15)
C10—C9—C8120.0 (2)C30—C29—H29A109.4
C10—C9—H9120.0P2—C29—H29A109.4
C8—C9—H9120.0C30—C29—H29B109.4
C11—C10—C9120.4 (2)P2—C29—H29B109.4
C11—C10—H10119.8H29A—C29—H29B108.0
C9—C10—H10119.8C30iii—C30—C29111.3 (2)
C10—C11—C12120.1 (2)C30iii—C30—H30A109.4
C10—C11—H11120.0C29—C30—H30A109.4
C12—C11—H11120.0C30iii—C30—H30B109.4
C11—C12—C7119.8 (2)C29—C30—H30B109.4
C11—C12—H12120.1H30A—C30—H30B108.0
C7—C12—H12120.1O4—N1—O5119.7 (2)
C14—C13—P1114.02 (14)O4—N1—O6119.8 (2)
C14—C13—H13A108.7O5—N1—O6120.4 (2)
P1—C13—H13A108.7P1—O1—Mn1162.25 (10)
C14—C13—H13B108.7C15—O2—Mn1134.06 (17)
P1—C13—H13B108.7C15—O2—H2E108 (2)
H13A—C13—H13B107.6Mn1—O2—H2E114 (2)
C14ii—C14—C13111.4 (2)Mn1—O3—H3A105 (3)
C14ii—C14—H14A109.3Mn1—O3—H3B132 (3)
C13—C14—H14A109.3H3A—O3—H3B109 (4)
C14ii—C14—H14B109.3O1—P1—C13114.56 (9)
C13—C14—H14B109.3O1—P1—C7111.48 (9)
H14A—C14—H14B108.0C13—P1—C7107.34 (9)
O2—C15—C16114.3 (2)O1—P1—C1109.42 (9)
O2—C15—H15A108.7C13—P1—C1107.65 (9)
C16—C15—H15A108.7C7—P1—C1105.98 (9)
O2—C15—H15B108.7O7—P2—C29113.17 (10)
C16—C15—H15B108.7O7—P2—C23110.29 (10)
H15A—C15—H15B107.6C29—P2—C23105.79 (10)
C15—C16—H16A109.5O7—P2—C17110.75 (10)
C15—C16—H16B109.5C29—P2—C17108.50 (10)
H16A—C16—H16B109.5C23—P2—C17108.11 (10)
C15—C16—H16C109.5
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+2, z+1; (iii) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2E···O71.06 (4)1.67 (4)2.652 (2)152 (3)
O3—H3A···O70.88 (4)1.93 (4)2.784 (2)163 (4)
O3—H3B···O60.88 (4)1.99 (4)2.828 (3)159 (4)
C8—H8···O4ii0.952.523.465 (3)177
C12—H12···O6i0.952.643.271 (3)124
C13—H13B···O4ii0.992.333.310 (3)171
C24—H24···O5iii0.952.493.387 (3)158
C30—H30A···O60.992.583.500 (3)155
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+2, z+1; (iii) x, y+1, z+1.
(II) catena-poly[[[diaquadiethanolcobalt(II)]-µ-1,4- bis(diphenylphosphinoyl)butane-κ2O:O'] dinitrate 1,4-bis(diphenylphosphinoyl)butane solvate] top
Crystal data top
[Co(C2H6O)2(C28H28O2P2)(H2O)2](NO3)2·C28H28O2P2F(000) = 1290
Mr = 1228.01Dx = 1.378 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6761 reflections
a = 13.3646 (5) Åθ = 2.9–27.5°
b = 10.2517 (5) ŵ = 0.47 mm1
c = 22.0744 (11) ÅT = 120 K
β = 101.920 (3)°Plate, light pink
V = 2959.2 (2) Å30.16 × 0.14 × 0.03 mm
Z = 2
Data collection top
Bruker Nonius 95mm CCD camera on κ-goniostat
diffractometer
6806 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode4594 reflections with I > 2σ(I)
10cm confocal mirrors monochromatorRint = 0.093
Detector resolution: 9.091 pixels mm-1θmax = 27.6°, θmin = 3.0°
ϕ and ω scansh = 1717
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1312
Tmin = 0.929, Tmax = 0.986l = 2828
36332 measured reflections
Refinement top
Refinement on F2Primary atom site location: heavy-atom method
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Only H-atom displacement parameters refined
wR(F2) = 0.135 w = 1/[σ2(Fo2) + (0.0347P)2 + 4.4666P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.002
6806 reflectionsΔρmax = 0.53 e Å3
382 parametersΔρmin = 0.38 e Å3
0 restraints
Crystal data top
[Co(C2H6O)2(C28H28O2P2)(H2O)2](NO3)2·C28H28O2P2V = 2959.2 (2) Å3
Mr = 1228.01Z = 2
Monoclinic, P21/cMo Kα radiation
a = 13.3646 (5) ŵ = 0.47 mm1
b = 10.2517 (5) ÅT = 120 K
c = 22.0744 (11) Å0.16 × 0.14 × 0.03 mm
β = 101.920 (3)°
Data collection top
Bruker Nonius 95mm CCD camera on κ-goniostat
diffractometer
6806 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
4594 reflections with I > 2σ(I)
Tmin = 0.929, Tmax = 0.986Rint = 0.093
36332 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.135Only H-atom displacement parameters refined
S = 1.03Δρmax = 0.53 e Å3
6806 reflectionsΔρmin = 0.38 e Å3
382 parameters
Special details top

Experimental. SADABS was used to perform the Absorption correction Parameter refinement on 21506 reflections reduced R(int) from 0.1322 to 0.0683 Ratio of minimum to maximum apparent transmission: 0.730864 The given Tmin and Tmax were generated using the SHELX SIZE command

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.50000.50000.50000.02356 (16)
O10.54485 (16)0.6287 (2)0.44000 (10)0.0281 (5)
O20.4306 (2)0.3875 (3)0.42348 (14)0.0459 (8)
O30.35165 (19)0.5880 (2)0.48968 (13)0.0311 (6)
O40.3272 (2)0.8543 (3)0.60046 (15)0.0598 (9)
O50.1757 (2)0.8484 (3)0.61870 (14)0.0508 (7)
O60.2302 (2)0.6910 (3)0.56933 (13)0.0496 (7)
O70.24660 (16)0.3599 (2)0.45024 (10)0.0305 (5)
N10.2435 (2)0.7981 (3)0.59612 (14)0.0341 (7)
P10.57808 (6)0.75211 (8)0.41424 (4)0.02229 (19)
P20.14325 (6)0.30089 (8)0.42649 (4)0.0234 (2)
C10.4865 (2)0.7956 (3)0.34467 (14)0.0240 (7)
C20.4853 (3)0.9172 (3)0.31660 (15)0.0299 (8)
H20.53220.98290.33470.036 (2)*
C30.4150 (3)0.9421 (4)0.26199 (16)0.0339 (8)
H30.41321.02580.24330.036 (2)*
C40.3482 (3)0.8470 (4)0.23466 (16)0.0355 (8)
H40.30110.86500.19710.036 (2)*
C50.3494 (3)0.7253 (4)0.26164 (17)0.0359 (9)
H50.30400.65920.24230.036 (2)*
C60.4174 (2)0.7000 (3)0.31727 (16)0.0317 (8)
H60.41680.61730.33660.036 (2)*
C70.6986 (2)0.7318 (3)0.39050 (14)0.0245 (7)
C80.7564 (3)0.8375 (3)0.37793 (16)0.0329 (8)
H80.73410.92380.38350.036 (2)*
C90.8462 (3)0.8176 (4)0.35742 (18)0.0385 (9)
H90.88560.89010.34920.036 (2)*
C100.8787 (3)0.6921 (4)0.34885 (17)0.0368 (9)
H100.93940.67860.33370.036 (2)*
C110.8234 (3)0.5869 (4)0.36224 (16)0.0335 (8)
H110.84680.50090.35710.036 (2)*
C120.7328 (2)0.6060 (3)0.38335 (15)0.0262 (7)
H120.69480.53310.39280.036 (2)*
C130.5917 (2)0.8894 (3)0.46526 (15)0.0239 (7)
H13A0.63740.86470.50480.032 (3)*
H13B0.62530.96080.44680.032 (3)*
C140.4915 (2)0.9404 (3)0.47897 (15)0.0252 (7)
H14A0.44460.96350.43960.032 (3)*
H14B0.45870.87070.49910.032 (3)*
C150.4691 (4)0.3186 (5)0.3773 (2)0.0651 (14)
H15A0.48650.22900.39260.109 (15)*
H15B0.53360.36110.37240.109 (15)*
C160.4003 (4)0.3090 (5)0.3144 (2)0.0666 (14)
H16A0.33510.26940.31820.111 (12)*
H16B0.43300.25490.28740.111 (12)*
H16C0.38780.39640.29650.111 (12)*
C170.1521 (2)0.1263 (3)0.42010 (15)0.0249 (7)
C180.1122 (3)0.0406 (3)0.45741 (18)0.0385 (9)
H180.07180.07270.48490.036 (2)*
C190.1310 (3)0.0914 (4)0.4548 (2)0.0495 (11)
H190.10280.14960.48030.036 (2)*
C200.1899 (3)0.1399 (4)0.41594 (18)0.0405 (9)
H200.20280.23090.41480.036 (2)*
C210.2303 (3)0.0557 (4)0.37860 (18)0.0379 (9)
H210.27110.08860.35160.036 (2)*
C220.2112 (3)0.0762 (3)0.38053 (16)0.0338 (8)
H220.23880.13370.35450.036 (2)*
C230.0881 (2)0.3648 (3)0.35034 (15)0.0244 (7)
C240.0060 (2)0.3220 (3)0.31819 (16)0.0292 (8)
H240.04120.25470.33480.036 (2)*
C250.0487 (3)0.3779 (3)0.26152 (16)0.0313 (8)
H250.11340.34890.23920.036 (2)*
C260.0026 (3)0.4757 (3)0.23738 (17)0.0339 (8)
H260.02690.51380.19860.036 (2)*
C270.0963 (3)0.5177 (4)0.26960 (17)0.0375 (9)
H270.13150.58460.25270.036 (2)*
C280.1399 (3)0.4638 (3)0.32624 (16)0.0322 (8)
H280.20440.49370.34850.036 (2)*
C290.0525 (2)0.3377 (3)0.47389 (15)0.0245 (7)
H29A0.01490.30050.45460.032 (3)*
H29B0.07500.29660.51500.032 (3)*
C300.0416 (2)0.4846 (3)0.48197 (15)0.0262 (7)
H30B0.02440.52670.44080.032 (3)*
H30A0.10760.52090.50430.032 (3)*
H2E0.387 (4)0.366 (5)0.431 (2)0.072 (10)*
H3A0.312 (4)0.527 (5)0.480 (2)0.072 (10)*
H3B0.332 (4)0.630 (5)0.512 (2)0.072 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0200 (3)0.0194 (3)0.0316 (4)0.0026 (3)0.0060 (3)0.0045 (3)
O10.0255 (12)0.0240 (12)0.0363 (14)0.0031 (10)0.0097 (10)0.0083 (10)
O20.0402 (17)0.0519 (18)0.0514 (18)0.0198 (14)0.0231 (14)0.0185 (14)
O30.0259 (13)0.0246 (14)0.0431 (16)0.0032 (10)0.0080 (11)0.0055 (12)
O40.0401 (16)0.0519 (19)0.089 (2)0.0072 (14)0.0178 (16)0.0161 (17)
O50.0550 (17)0.0392 (16)0.068 (2)0.0027 (14)0.0346 (15)0.0002 (14)
O60.0661 (19)0.0282 (15)0.0511 (18)0.0012 (13)0.0040 (14)0.0053 (13)
O70.0220 (11)0.0349 (14)0.0336 (14)0.0045 (10)0.0038 (10)0.0011 (11)
N10.0350 (17)0.0295 (17)0.0381 (18)0.0024 (14)0.0083 (14)0.0103 (14)
P10.0214 (4)0.0204 (4)0.0261 (4)0.0008 (3)0.0073 (3)0.0025 (4)
P20.0209 (4)0.0238 (5)0.0252 (4)0.0007 (3)0.0045 (3)0.0004 (4)
C10.0240 (16)0.0251 (17)0.0245 (17)0.0033 (14)0.0089 (13)0.0015 (14)
C20.0330 (19)0.0300 (19)0.0272 (19)0.0001 (15)0.0073 (15)0.0003 (15)
C30.041 (2)0.031 (2)0.030 (2)0.0057 (17)0.0077 (16)0.0040 (16)
C40.035 (2)0.042 (2)0.0275 (19)0.0054 (17)0.0011 (15)0.0007 (16)
C50.0278 (19)0.038 (2)0.040 (2)0.0030 (16)0.0017 (16)0.0053 (17)
C60.0280 (18)0.0250 (19)0.042 (2)0.0036 (15)0.0058 (16)0.0006 (16)
C70.0266 (17)0.0239 (18)0.0239 (17)0.0032 (14)0.0073 (13)0.0015 (13)
C80.0339 (19)0.0264 (19)0.043 (2)0.0039 (15)0.0197 (16)0.0058 (16)
C90.034 (2)0.036 (2)0.051 (2)0.0018 (17)0.0213 (18)0.0047 (18)
C100.0295 (19)0.045 (2)0.040 (2)0.0062 (17)0.0174 (16)0.0017 (18)
C110.0308 (19)0.031 (2)0.038 (2)0.0097 (16)0.0064 (16)0.0047 (16)
C120.0268 (17)0.0236 (18)0.0274 (18)0.0006 (14)0.0040 (14)0.0019 (14)
C130.0221 (16)0.0241 (17)0.0258 (18)0.0019 (13)0.0056 (13)0.0007 (14)
C140.0266 (17)0.0252 (18)0.0243 (17)0.0005 (14)0.0066 (14)0.0015 (14)
C150.060 (3)0.075 (4)0.058 (3)0.023 (3)0.007 (2)0.004 (3)
C160.073 (3)0.074 (4)0.060 (3)0.025 (3)0.033 (3)0.017 (3)
C170.0192 (15)0.0296 (18)0.0243 (17)0.0021 (14)0.0010 (13)0.0008 (14)
C180.047 (2)0.029 (2)0.046 (2)0.0029 (17)0.0238 (19)0.0008 (17)
C190.061 (3)0.036 (2)0.056 (3)0.004 (2)0.025 (2)0.013 (2)
C200.047 (2)0.027 (2)0.043 (2)0.0110 (18)0.0018 (18)0.0017 (17)
C210.0309 (19)0.040 (2)0.041 (2)0.0099 (17)0.0054 (16)0.0082 (18)
C220.0337 (19)0.034 (2)0.035 (2)0.0019 (16)0.0102 (16)0.0017 (16)
C230.0268 (17)0.0233 (17)0.0239 (17)0.0032 (14)0.0074 (13)0.0019 (13)
C240.0281 (18)0.0267 (18)0.0334 (19)0.0020 (15)0.0077 (15)0.0006 (15)
C250.0272 (18)0.033 (2)0.031 (2)0.0016 (15)0.0009 (15)0.0029 (16)
C260.036 (2)0.036 (2)0.031 (2)0.0062 (16)0.0089 (16)0.0063 (16)
C270.039 (2)0.037 (2)0.040 (2)0.0014 (17)0.0155 (17)0.0130 (17)
C280.0269 (18)0.033 (2)0.039 (2)0.0042 (15)0.0101 (15)0.0021 (16)
C290.0250 (17)0.0251 (18)0.0238 (17)0.0005 (14)0.0059 (13)0.0002 (13)
C300.0223 (16)0.0270 (19)0.0296 (18)0.0014 (14)0.0061 (14)0.0005 (14)
Geometric parameters (Å, º) top
Co1—O1i2.045 (2)C14—C14ii1.524 (6)
Co1—O12.045 (2)C14—H14A0.9900
Co1—O2i2.097 (3)C14—H14B0.9900
Co1—O22.097 (3)C15—O21.422 (5)
Co1—O32.147 (2)C15—C161.502 (6)
Co1—O3i2.147 (2)C15—H15A0.9900
P1—O11.492 (2)C15—H15B0.9900
P2—O71.500 (2)C16—H16A0.9800
O2—H2E0.68 (5)C16—H16B0.9800
O3—H3A0.82 (5)C16—H16C0.9800
O3—H3B0.75 (5)C17—C181.384 (5)
N1—O51.233 (4)C17—C221.392 (4)
N1—O61.243 (4)C17—P21.801 (3)
N1—O41.244 (4)C18—C191.380 (5)
C1—C21.391 (5)C18—H180.9500
C1—C61.396 (4)C19—C201.371 (5)
C1—P11.811 (3)C19—H190.9500
C2—C31.390 (5)C20—C211.378 (5)
C2—H20.9500C20—H200.9500
C3—C41.375 (5)C21—C221.378 (5)
C3—H30.9500C21—H210.9500
C4—C51.381 (5)C22—H220.9500
C4—H40.9500C23—C241.381 (4)
C5—C61.393 (5)C23—C281.395 (4)
C5—H50.9500C23—P21.813 (3)
C6—H60.9500C24—C251.387 (5)
C7—C121.388 (4)C24—H240.9500
C7—C81.392 (4)C25—C261.382 (5)
C7—P11.806 (3)C25—H250.9500
C8—C91.382 (5)C26—C271.376 (5)
C8—H80.9500C26—H260.9500
C9—C101.383 (5)C27—C281.381 (5)
C9—H90.9500C27—H270.9500
C10—C111.374 (5)C28—H280.9500
C10—H100.9500C29—C301.527 (4)
C11—C121.398 (4)C29—P21.798 (3)
C11—H110.9500C29—H29A0.9900
C12—H120.9500C29—H29B0.9900
C13—C141.525 (4)C30—C30iii1.529 (6)
C13—P11.788 (3)C30—H30B0.9900
C13—H13A0.9900C30—H30A0.9900
C13—H13B0.9900
O1—Co1—O1i180.0H16A—C16—H16C109.5
O1—Co1—O288.46 (10)H16B—C16—H16C109.5
O1i—Co1—O2i88.46 (10)C18—C17—C22118.5 (3)
O1—Co1—O2i91.54 (10)C18—C17—P2123.0 (3)
O1i—Co1—O291.54 (10)C22—C17—P2118.1 (3)
O1—Co1—O392.75 (9)C19—C18—C17120.1 (3)
O1i—Co1—O387.25 (9)C19—C18—H18119.9
O2—Co1—O2i180.0C17—C18—H18119.9
O2—Co1—O384.30 (11)C20—C19—C18120.9 (4)
O2—Co1—O3i95.70 (11)C20—C19—H19119.5
O3—Co1—O3i180.00 (15)C18—C19—H19119.5
O2i—Co1—O395.70 (11)C19—C20—C21119.6 (4)
O1i—Co1—O3i92.75 (9)C19—C20—H20120.2
O1—Co1—O3i87.25 (9)C21—C20—H20120.2
O2i—Co1—O3i84.30 (11)C20—C21—C22119.9 (3)
C2—C1—C6119.4 (3)C20—C21—H21120.1
C2—C1—P1122.8 (3)C22—C21—H21120.1
C6—C1—P1117.7 (3)C21—C22—C17120.9 (3)
C3—C2—C1119.6 (3)C21—C22—H22119.5
C3—C2—H2120.2C17—C22—H22119.5
C1—C2—H2120.2C24—C23—C28120.4 (3)
C4—C3—C2120.8 (3)C24—C23—P2121.0 (2)
C4—C3—H3119.6C28—C23—P2118.5 (2)
C2—C3—H3119.6C23—C24—C25119.5 (3)
C3—C4—C5120.2 (3)C23—C24—H24120.2
C3—C4—H4119.9C25—C24—H24120.2
C5—C4—H4119.9C26—C25—C24120.2 (3)
C4—C5—C6119.7 (3)C26—C25—H25119.9
C4—C5—H5120.1C24—C25—H25119.9
C6—C5—H5120.1C27—C26—C25119.9 (3)
C5—C6—C1120.3 (3)C27—C26—H26120.0
C5—C6—H6119.9C25—C26—H26120.0
C1—C6—H6119.9C26—C27—C28120.8 (3)
C12—C7—C8119.4 (3)C26—C27—H27119.6
C12—C7—P1118.3 (2)C28—C27—H27119.6
C8—C7—P1122.2 (2)C27—C28—C23119.1 (3)
C9—C8—C7120.4 (3)C27—C28—H28120.4
C9—C8—H8119.8C23—C28—H28120.4
C7—C8—H8119.8C30—C29—P2111.5 (2)
C8—C9—C10120.0 (3)C30—C29—H29A109.3
C8—C9—H9120.0P2—C29—H29A109.3
C10—C9—H9120.0C30—C29—H29B109.3
C11—C10—C9120.2 (3)P2—C29—H29B109.3
C11—C10—H10119.9H29A—C29—H29B108.0
C9—C10—H10119.9C29—C30—C30iii111.2 (3)
C10—C11—C12120.2 (3)C29—C30—H30B109.4
C10—C11—H11119.9C30iii—C30—H30B109.4
C12—C11—H11119.9C29—C30—H30A109.4
C7—C12—C11119.8 (3)C30iii—C30—H30A109.4
C7—C12—H12120.1H30B—C30—H30A108.0
C11—C12—H12120.1O5—N1—O6121.1 (3)
C14—C13—P1114.6 (2)O5—N1—O4120.0 (3)
C14—C13—H13A108.6O6—N1—O4118.9 (3)
P1—C13—H13A108.6P1—O1—Co1160.74 (15)
C14—C13—H13B108.6C15—O2—Co1133.3 (3)
P1—C13—H13B108.6C15—O2—H2E119 (5)
H13A—C13—H13B107.6Co1—O2—H2E103 (5)
C14ii—C14—C13111.7 (3)Co1—O3—H3A104 (3)
C14ii—C14—H14A109.3Co1—O3—H3B128 (4)
C13—C14—H14A109.3H3A—O3—H3B108 (5)
C14ii—C14—H14B109.3O1—P1—C13115.27 (14)
C13—C14—H14B109.3O1—P1—C7111.48 (14)
H14A—C14—H14B107.9C13—P1—C7107.04 (15)
O2—C15—C16116.9 (4)O1—P1—C1109.25 (14)
O2—C15—H15A108.1C13—P1—C1107.66 (15)
C16—C15—H15A108.1C7—P1—C1105.64 (14)
O2—C15—H15B108.1O7—P2—C29113.27 (14)
C16—C15—H15B108.1O7—P2—C17110.96 (14)
H15A—C15—H15B107.3C29—P2—C17108.50 (15)
C15—C16—H16A109.5O7—P2—C23110.31 (14)
C15—C16—H16B109.5C29—P2—C23105.64 (15)
H16A—C16—H16B109.5C17—P2—C23107.88 (15)
C15—C16—H16C109.5
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+2, z+1; (iii) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2E···O70.68 (5)2.01 (5)2.660 (4)163 (6)
O3—H3A···O70.82 (5)1.97 (5)2.774 (3)166 (5)
O3—H3B···O60.74 (5)2.13 (5)2.832 (4)157 (5)
C8—H8···O4ii0.952.473.418 (4)178
C12—H12···O6i0.952.583.224 (4)126
C13—H13B···O4ii0.992.323.292 (4)169
C24—H24···O5iii0.952.483.383 (4)158
C30—H30A···O60.992.613.541 (4)157
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+2, z+1; (iii) x, y+1, z+1.

Experimental details

(I)(II)
Crystal data
Chemical formula[Mn(C2H6O)2(C28H28O2P2)(H2O)2](NO3)2·C28H28O2P2[Co(C2H6O)2(C28H28O2P2)(H2O)2](NO3)2·C28H28O2P2
Mr1224.021228.01
Crystal system, space groupMonoclinic, P21/cMonoclinic, P21/c
Temperature (K)120120
a, b, c (Å)13.4134 (3), 10.3270 (3), 22.1028 (6)13.3646 (5), 10.2517 (5), 22.0744 (11)
β (°) 101.900 (1) 101.920 (3)
V3)2995.88 (14)2959.2 (2)
Z22
Radiation typeMo KαMo Kα
µ (mm1)0.390.47
Crystal size (mm)0.24 × 0.22 × 0.030.16 × 0.14 × 0.03
Data collection
DiffractometerBruker Nonius 95mm CCD camera on κ-goniostat
diffractometer
Bruker Nonius 95mm CCD camera on κ-goniostat
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.912, 0.9880.929, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
40734, 6856, 5673 36332, 6806, 4594
Rint0.0420.093
(sin θ/λ)max1)0.6520.652
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.111, 1.05 0.062, 0.135, 1.03
No. of reflections68566806
No. of parameters382382
H-atom treatmentOnly H-atom displacement parameters refinedOnly H-atom displacement parameters refined
Δρmax, Δρmin (e Å3)0.71, 0.430.53, 0.38

Computer programs: , DENZO (Otwinowski & Minor, 1997) and COLLECT (Nonius, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX publication routines (Farrugia, 1999) and enCIFer (Allen et al., 2004).

Selected geometric parameters (Å, º) for (I) top
Mn1—O12.1109 (14)P1—O11.4964 (15)
Mn1—O22.1998 (17)P2—O71.5036 (16)
Mn1—O32.2415 (16)
O1—Mn1—O1i180.0O2—Mn1—O2i180.0
O1—Mn1—O288.84 (6)O2—Mn1—O383.16 (7)
O1—Mn1—O2i91.16 (6)O2—Mn1—O3i96.84 (7)
O1—Mn1—O393.28 (6)O3i—Mn1—O3180.00 (10)
O1i—Mn1—O386.72 (6)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O2—H2E···O71.06 (4)1.67 (4)2.652 (2)152 (3)
O3—H3A···O70.88 (4)1.93 (4)2.784 (2)163 (4)
O3—H3B···O60.88 (4)1.99 (4)2.828 (3)159 (4)
C8—H8···O4ii0.952.523.465 (3)177
C12—H12···O6i0.952.643.271 (3)124
C13—H13B···O4ii0.992.333.310 (3)171
C24—H24···O5iii0.952.493.387 (3)158
C30—H30A···O60.992.583.500 (3)155
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+2, z+1; (iii) x, y+1, z+1.
Selected geometric parameters (Å, º) for (II) top
Co1—O12.045 (2)P1—O11.492 (2)
Co1—O22.097 (3)P2—O71.500 (2)
Co1—O32.147 (2)
O1—Co1—O1i180.0O2—Co1—O2i180.0
O1—Co1—O288.46 (10)O2—Co1—O384.30 (11)
O1—Co1—O2i91.54 (10)O2—Co1—O3i95.70 (11)
O1—Co1—O392.75 (9)O3—Co1—O3i180.00 (15)
O1i—Co1—O387.25 (9)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O2—H2E···O70.68 (5)2.01 (5)2.660 (4)163 (6)
O3—H3A···O70.82 (5)1.97 (5)2.774 (3)166 (5)
O3—H3B···O60.74 (5)2.13 (5)2.832 (4)157 (5)
C8—H8···O4ii0.952.473.418 (4)178
C12—H12···O6i0.952.583.224 (4)126
C13—H13B···O4ii0.992.323.292 (4)169
C24—H24···O5iii0.952.483.383 (4)158
C30—H30A···O60.992.613.541 (4)157
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+2, z+1; (iii) x, y+1, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds