Download citation
Download citation
link to html
The mol­ecule of the title compound, tetra-[mu]2-acetato-diaquadi-[mu]2-chloro-tetra­chloro­tetra­kis[[mu]4-3-hydroxy-2,2-bis­(oxido­meth­yl)propanol­ato]­tetra­methanoldi-[mu]3-methanolato-di-[mu]5-oxo-octa­manganese(II)­tetra­manganese(III), [Mn4IIIMn8II(CH3O)2(C2H3O2)4(C5H9O4)4Cl6O2(CH4O)4(H2O)2], displays a centre of symmetry. The structure of the {Mn4IIIMn8IIO18Cl2}10- core is composed of three layers and features two oxo ligands binding in a rare [mu]5-mode.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827010700042X/sf3024sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010700042X/sf3024Isup2.hkl
Contains datablock I

CCDC reference: 638309

Comment top

Studying the structural aspects of new polynuclear transition metal complexes is of considerable interest because of their potential to act as single-molecule magnets (Gatteschi & Sessoli, 2003; Christou et al., 2000; Sessoli et al., 1993). We are presently exploring the solvothermal reactions of simple transition metal salts with polyalcohol-containing proligands in an effort to synthesize new polynuclear complexes with interesting magnetic properties (Labat et al., 2005; Alley et al., 2006). The complex [MnIII4MnII 8(O)2(Cl)6(OMe)2(HPeol)4(O2CMe)4(MeOH)4 (H2O)2], (I) (H4peol is pentaerythritol), is a neutral mixed-valent species that was synthesized by solvothermal methods (Laye & McInnes, 2004) at 393 K and obtained in high yield (see scheme). The presence of chloro ligands in (I) is due to the decomposition of dichloroethane (Park et al., 2000; Walter et al., 1994; Petrosius et al., 1993) as a result of the high temperature and autogenous pressure. The methanol employed in the reaction as a solvent acts as the source of the methoxide ligand in the complex. Crystals could not be obtained upon changing the composition of the solvent mixture.

Complex (I) crystallizes in the centrosymmetric triclinic space group P1; An ORTEP (Farrugia, 1997) diagram is provided in Fig. 1. The structure of the {MnIII4MnII8O18Cl2}10- core can be considered to consist of three layers. The central layer has two MnIII (Mn2 and Mn3) and four MnII centers (Mn1 and Mn4–Mn6; Fig. 2) bridged by eight O atoms, while the peripheral layers each contain one MnIII and two MnII centers bridged by five O atoms and one Cl atom. All the manganese (MnII/MnIII) atoms are six coordinate. The three layers are linked through the bridging O and Cl atoms. While the atoms within the central layer are essentially coplanar, the atoms in the two peripheral layers deviate more substantially from planarity.

The two oxo ligands (O9) bind in a rare µ5 mode, displaying a square-pyramidal geometry (Fig. 2) (Khan et al., 1992; Murugesu et al., 2006) with one long bond (Mn5—O9) at 2.625 (3) Å. Of the four O atoms of the Hpeol3- ligands, one remains as a pendant alcohol group (i.e. O8), two coordinate in a µ3 manner (i.e. O5 and O6) and the remaining one (i.e. O7) binds two MnII ions in a µ2 fashion (Fig. 1). Two MeO- and two Cl- ligands bridge Mn centers in µ3 and µ2 modes, respectively. Two of the acetate ligands contribute O atoms to the core of complex (I), binding in a η1,η22 fashion, while the other two bind in the common syn,syn2 manner. The peripheral ligation is completed by terminally bound MeOH, H2O and chloro ligands. The average MnII··· MnII, MnII··· MnIII and MnIII··· MnIII distances are 3.535, 3.365 and 3.035 Å, respectively. Each of the MnII ions are coordinated to five O atoms and one Cl atom, in contrast to the MnIII centers that possess six O atoms in their coordination sphere. The MnII ions (Mn1, Mn4, Mn5, Mn6) display an average Mn—O distance of 2.22 (2) Å, with little difference between intra-layer and inter-layer connectivities. The intra- and inter-layer Mn—O distances for the MnIII ions are in the ranges 1.91 (2)–1.94 (2) Å and 2.16 (2)–2.29 (2) Å respectively. Thus the Jahn–Teller elongated axes of the MnIII centers are essentially parallel and aligned along the inter-layer vector. The average bridging and terminal MnII—Cl distances are 2.48 (1) and 2.44 (1) Å, respectively.

There has recently been a report of a structure of similar formulation and architecture (Murugesu et al., 2006). However, this compound is obtained from an entirely different synthetic route and has no chloro ligands. The Mn centers bridged by Cl atoms in complex (I) are bridged by the O atoms of carboxylate ligands in the literature compound. In addition, while all of the Mn centers in complex (I) are six-coordinate, two of the MnII centers in the literature compound are seven-coordinate. Differences in the magnetic behaviour will likely result from these different magnetic exchange pathways. The literature compound displays the slow magnetic relaxation characteristic of a single-molecule magnet and thus it is of interest to probe the magnetic properties of complex (I) in the future.

Related literature top

For related literature, see: Alley et al. (2006); Christou et al. (2000); Farrugia (1997); Gatteschi & Sessoli (2003); Khan et al. (1992); Labat et al. (2005); Laye & McInnes (2004); Murugesu et al. (2006); Park et al. (2000); Petrosius et al. (1993); Sessoli et al. (1993); Walter et al. (1994).

Experimental top

MnIII(O2CMe)3·2H2O (0.248 g, 0.90 mmol), pentaerythritol (0.061 g, 0.45 mmol) and 10 ml of an 8:2 v/v dichloroethane–methanol solution were combined in a Teflon-lined solvothermal reaction vessel. The mixture was heated at 393 K for 48 h and then cooled at 2 K h-1. Brown crystalline blocks coated the walls and bottom of the Teflon vessel (yield 0.090 g, 0.047 mmol, 60%). Elemental analysis calculated for C34H74Cl6Mn12O34: C 21.51, H 3.93%; found C 21.47, H 3.87%. IR (KBr): 3384 (br, s), 2914 (br), 2868 (m), 1630 (m), 1601 (s), 1552 (s), 1448 (s), 1429 (s), 1356 (m), 1113 (s), 1064 (m), 1012 (s), 989 (m), 686 (m), 649 (s), 580 (vs), 547 (m), 508 (m), 474 (m), 451 (w) cm-1.

Refinement top

H on the hetero atoms were located from difference Fourier maps and were refined with individual isotropic displacement parameters. All other H atoms were constrained at geometrical estimates with isotropic displacement parameters of 1.2–1.5 times those of the parent Catom.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SMART [OR SAINT??]; data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Diamond (Brandenburg, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. An ORTEP-3 (Farrugia, 1997) diagram of complex (I), with labelling of the atoms in the asymmetric unit (except atoms C14, C15, C16 and C17, and the pendant atom O17 of the second Hpeol unit lying at the back in the figure). Displacement ellipsoids are shown at the ??% probability level.
[Figure 2] Fig. 2. A labeled ball and stick diagram of the core of complex (I) (colour code for the online version: MnIII dark blue, MnII light blue, O red, Cl green).
tetra-µ2-acetato-diaquadi-µ2-chloro-tetrachlorotetrakis[µ4– 3-hydroxy-2,2-bis(oxidomethyl)propanolato]tetramethanoldi-µ5-oxo- octamanganese(II)tetramanganese(III), [MnIII4MnII8Cl6O2(CH3O)2(C2H3O2)4(C3H5O4)4(CH4MeO)4(H2O)2] top
Crystal data top
[Mn12(CH3O)2(C2H3O2)4(C5H9O4)4Cl6O2(CH4O)4(H2O)2]Z = 1
Mr = 1898.91F(000) = 952
Triclinic, P1Dx = 2.015 Mg m3
a = 11.3575 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.6949 (7) ÅCell parameters from 6015 reflections
c = 13.8332 (8) Åθ = 2.7–27°
α = 101.753 (1)°µ = 2.68 mm1
β = 107.337 (1)°T = 130 K
γ = 108.916 (1)°Cubic, brown
V = 1564.76 (16) Å30.37 × 0.25 × 0.21 mm
Data collection top
Bruker SMART APEX CCD area -etector
diffractometer
6251 independent reflections
Radiation source: fine-focus sealed tube5762 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.013
Detector resolution: 0.3 pixels mm-1θmax = 26.4°, θmin = 1.6°
ϕ and ω scansh = 1413
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick 1997)
k = 1412
Tmin = 0.544, Tmax = 0.774l = 1716
9180 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.044P)2 + 1.886P]
where P = (Fo2 + 2Fc2)/3
6251 reflections(Δ/σ)max = 0.009
415 parametersΔρmax = 0.83 e Å3
0 restraintsΔρmin = 0.83 e Å3
Crystal data top
[Mn12(CH3O)2(C2H3O2)4(C5H9O4)4Cl6O2(CH4O)4(H2O)2]γ = 108.916 (1)°
Mr = 1898.91V = 1564.76 (16) Å3
Triclinic, P1Z = 1
a = 11.3575 (7) ÅMo Kα radiation
b = 11.6949 (7) ŵ = 2.68 mm1
c = 13.8332 (8) ÅT = 130 K
α = 101.753 (1)°0.37 × 0.25 × 0.21 mm
β = 107.337 (1)°
Data collection top
Bruker SMART APEX CCD area -etector
diffractometer
6251 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick 1997)
5762 reflections with I > 2σ(I)
Tmin = 0.544, Tmax = 0.774Rint = 0.013
9180 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.081H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.83 e Å3
6251 reflectionsΔρmin = 0.83 e Å3
415 parameters
Special details top

Experimental. The intensity data for complex I were measured in frames with Increasing ω (width 0.3 °/frame) at a scan speed of 20 s/frame with a Bruker SMART APEX CCD diffractometer equipped with a low temperature device (Oxford Crysostream). The SMART and the SAINT software packagewas used for data acquisition and processing of raw data respectively. The absorption correction was made using SADABS program. Finally, the program generated the reflection file (.hkl file) and the atom list file (.ins file) were used in WinGX suite for structure solution (Farrugia, 1999) and refinement using SHELX (Sheldrick, 1997) set of programs.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.12054 (4)0.25549 (4)0.40364 (3)0.01754 (10)
Mn20.07602 (4)0.04669 (3)0.17234 (3)0.01305 (9)
Mn30.04107 (4)0.09390 (3)0.03284 (3)0.01253 (9)
Mn40.25138 (4)0.11067 (4)0.25377 (3)0.01571 (9)
Mn50.15519 (4)0.33175 (4)0.18574 (3)0.01545 (9)
Mn60.32260 (4)0.17875 (4)0.02231 (3)0.01663 (10)
Cl10.26893 (7)0.24419 (7)0.56562 (5)0.02924 (16)
Cl20.44541 (6)0.16536 (6)0.19785 (5)0.01953 (13)
Cl30.19976 (7)0.55324 (6)0.27827 (5)0.02371 (14)
O10.1592 (3)0.4552 (2)0.46275 (18)0.0331 (5)
H10.181 (4)0.498 (3)0.429 (3)0.032 (10)*
O20.0646 (2)0.1931 (2)0.42616 (18)0.0301 (5)
H210.088 (4)0.214 (4)0.479 (3)0.048 (11)*
H220.120 (4)0.135 (4)0.384 (3)0.037 (11)*
O30.22595 (18)0.00436 (18)0.24102 (14)0.0204 (4)
O40.40081 (19)0.14694 (18)0.09756 (15)0.0229 (4)
O50.20074 (17)0.03422 (16)0.03673 (13)0.0143 (3)
O60.01677 (17)0.22940 (16)0.23279 (13)0.0147 (3)
O70.00205 (17)0.26828 (16)0.03677 (13)0.0142 (3)
O80.2435 (2)0.4426 (2)0.12992 (19)0.0316 (5)
H80.305 (5)0.464 (5)0.126 (4)0.077 (16)*
O90.07810 (17)0.08493 (16)0.09593 (13)0.0138 (3)
O100.26057 (17)0.29429 (17)0.32112 (14)0.0169 (4)
O110.3720 (2)0.1135 (2)0.41404 (16)0.0247 (4)
H110.348 (4)0.141 (4)0.455 (3)0.037 (11)*
O120.29894 (18)0.35074 (18)0.11315 (14)0.0212 (4)
O130.4653 (2)0.38462 (19)0.06301 (17)0.0273 (4)
O140.12364 (17)0.13253 (16)0.09996 (13)0.0141 (3)
O150.16279 (17)0.08396 (16)0.16663 (13)0.0147 (3)
O160.06452 (18)0.05687 (16)0.29779 (14)0.0154 (3)
O170.1030 (2)0.26004 (19)0.39621 (15)0.0232 (4)
H170.135 (4)0.305 (4)0.369 (3)0.053 (12)*
C10.1938 (5)0.5371 (3)0.5670 (3)0.0478 (9)
H1A0.14320.59090.56220.072*
H1B0.29110.59160.59920.072*
H1C0.17100.48530.61160.072*
C20.3489 (3)0.0765 (3)0.1936 (2)0.0193 (5)
C30.4354 (3)0.0866 (3)0.2584 (2)0.0285 (6)
H3A0.38600.09030.32830.043*
H3B0.51940.16450.21990.043*
H3C0.45690.01150.26920.043*
C40.2795 (2)0.1094 (2)0.0326 (2)0.0163 (5)
H4A0.34620.07770.06410.020*
H4B0.33060.09590.04350.020*
C50.1962 (2)0.2527 (2)0.0915 (2)0.0156 (5)
C60.1182 (2)0.2810 (2)0.2112 (2)0.0161 (5)
H6A0.07350.37500.24750.019*
H6B0.18350.24490.24260.019*
C70.1068 (2)0.3123 (2)0.0348 (2)0.0157 (5)
H7A0.16520.29290.04100.019*
H7B0.06440.40660.06930.019*
C80.3030 (3)0.3081 (2)0.0808 (2)0.0199 (5)
H8A0.35830.28590.00380.024*
H8B0.36400.26880.11450.024*
C90.3950 (4)0.3924 (4)0.3843 (3)0.0526 (10)
H9A0.43830.36960.44560.079*
H9B0.38980.47440.41050.079*
H9C0.44830.40020.34000.079*
C100.5157 (3)0.1611 (4)0.4675 (3)0.0437 (9)
H10A0.53820.14910.53770.065*
H10B0.55710.25260.47730.065*
H10C0.55030.11430.42410.065*
C110.4006 (3)0.4271 (3)0.1095 (2)0.0233 (6)
C120.4462 (3)0.5682 (3)0.1578 (3)0.0354 (7)
H12A0.49970.61300.12240.053*
H12B0.50190.59580.23460.053*
H12C0.36710.58830.14830.053*
C130.1234 (3)0.2220 (2)0.1581 (2)0.0163 (5)
H13A0.19800.23550.18350.020*
H13B0.14120.30540.10840.020*
C140.0089 (3)0.1780 (2)0.25411 (19)0.0157 (5)
C150.1262 (3)0.1748 (2)0.2192 (2)0.0169 (5)
H15A0.10100.26130.17030.020*
H15B0.20670.15580.28360.020*
C160.0395 (3)0.0507 (2)0.3365 (2)0.0176 (5)
H16A0.11980.03100.40130.021*
H16B0.03800.06180.35810.021*
C170.0155 (3)0.2813 (3)0.3079 (2)0.0198 (5)
H17A0.04660.36610.25390.024*
H17B0.08830.28300.33370.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0201 (2)0.0172 (2)0.01429 (19)0.00764 (16)0.00734 (16)0.00249 (15)
Mn20.01410 (19)0.01237 (18)0.01235 (18)0.00543 (15)0.00551 (15)0.00303 (14)
Mn30.01419 (19)0.01247 (18)0.01199 (18)0.00633 (15)0.00579 (15)0.00381 (14)
Mn40.0159 (2)0.01481 (19)0.01600 (19)0.00637 (16)0.00664 (16)0.00364 (15)
Mn50.01465 (19)0.01623 (19)0.01530 (19)0.00622 (16)0.00662 (15)0.00399 (15)
Mn60.0168 (2)0.01477 (19)0.01622 (19)0.00571 (16)0.00574 (16)0.00343 (15)
Cl10.0322 (4)0.0393 (4)0.0172 (3)0.0190 (3)0.0074 (3)0.0077 (3)
Cl20.0159 (3)0.0227 (3)0.0199 (3)0.0074 (2)0.0070 (2)0.0076 (2)
Cl30.0285 (3)0.0175 (3)0.0276 (3)0.0107 (3)0.0146 (3)0.0050 (3)
O10.0557 (15)0.0223 (11)0.0270 (11)0.0163 (11)0.0233 (11)0.0083 (9)
O20.0246 (11)0.0370 (13)0.0173 (11)0.0046 (10)0.0102 (9)0.0030 (10)
O30.0201 (10)0.0216 (9)0.0194 (9)0.0073 (8)0.0105 (8)0.0050 (8)
O40.0192 (9)0.0235 (10)0.0215 (10)0.0041 (8)0.0092 (8)0.0047 (8)
O50.0148 (8)0.0137 (8)0.0144 (8)0.0070 (7)0.0056 (7)0.0033 (7)
O60.0151 (8)0.0142 (8)0.0150 (8)0.0070 (7)0.0059 (7)0.0039 (7)
O70.0133 (8)0.0137 (8)0.0172 (9)0.0067 (7)0.0071 (7)0.0046 (7)
O80.0235 (11)0.0207 (10)0.0465 (13)0.0115 (9)0.0113 (10)0.0027 (9)
O90.0148 (8)0.0142 (8)0.0140 (8)0.0072 (7)0.0066 (7)0.0044 (7)
O100.0148 (9)0.0167 (9)0.0167 (9)0.0053 (7)0.0052 (7)0.0040 (7)
O110.0247 (11)0.0295 (11)0.0192 (10)0.0127 (9)0.0074 (9)0.0061 (9)
O120.0184 (9)0.0230 (10)0.0179 (9)0.0122 (8)0.0038 (8)0.0024 (8)
O130.0259 (11)0.0254 (10)0.0354 (12)0.0105 (9)0.0181 (9)0.0104 (9)
O140.0163 (9)0.0129 (8)0.0142 (8)0.0060 (7)0.0066 (7)0.0057 (7)
O150.0158 (9)0.0151 (8)0.0136 (8)0.0067 (7)0.0056 (7)0.0053 (7)
O160.0174 (9)0.0149 (8)0.0146 (8)0.0070 (7)0.0064 (7)0.0052 (7)
O170.0329 (11)0.0276 (10)0.0174 (9)0.0196 (9)0.0119 (8)0.0089 (8)
C10.079 (3)0.0277 (17)0.0349 (19)0.0176 (18)0.0290 (19)0.0033 (15)
C20.0214 (13)0.0191 (13)0.0228 (14)0.0110 (11)0.0110 (11)0.0101 (11)
C30.0284 (15)0.0323 (16)0.0295 (15)0.0134 (13)0.0161 (13)0.0110 (13)
C40.0139 (12)0.0170 (12)0.0191 (12)0.0080 (10)0.0067 (10)0.0051 (10)
C50.0151 (12)0.0150 (12)0.0180 (12)0.0080 (10)0.0074 (10)0.0038 (10)
C60.0159 (12)0.0172 (12)0.0180 (12)0.0096 (10)0.0079 (10)0.0050 (10)
C70.0166 (12)0.0161 (12)0.0185 (12)0.0097 (10)0.0081 (10)0.0071 (10)
C80.0181 (13)0.0189 (13)0.0246 (14)0.0101 (11)0.0092 (11)0.0055 (11)
C90.053 (2)0.050 (2)0.049 (2)0.022 (2)0.015 (2)0.0134 (19)
C100.0293 (17)0.065 (2)0.0312 (18)0.0205 (17)0.0065 (14)0.0123 (17)
C110.0317 (16)0.0240 (14)0.0176 (13)0.0161 (13)0.0085 (12)0.0075 (11)
C120.0396 (18)0.0256 (16)0.0419 (19)0.0101 (14)0.0230 (16)0.0083 (14)
C130.0194 (13)0.0139 (12)0.0178 (12)0.0071 (10)0.0090 (10)0.0069 (10)
C140.0203 (13)0.0150 (12)0.0139 (12)0.0076 (10)0.0085 (10)0.0054 (10)
C150.0201 (13)0.0182 (12)0.0177 (12)0.0104 (11)0.0095 (10)0.0091 (10)
C160.0231 (13)0.0165 (12)0.0156 (12)0.0083 (11)0.0093 (10)0.0071 (10)
C170.0237 (14)0.0199 (13)0.0186 (13)0.0097 (11)0.0100 (11)0.0081 (11)
Geometric parameters (Å, º) top
Mn1—O22.131 (2)O8—H80.81 (5)
Mn1—O12.158 (2)O9—Mn3i1.9358 (17)
Mn1—O102.2054 (18)O10—C91.439 (4)
Mn1—O16i2.2462 (18)O11—C101.430 (4)
Mn1—O62.3049 (17)O11—H110.76 (4)
Mn1—Cl12.4275 (8)O12—C111.231 (4)
Mn1—Mn23.1953 (5)O13—C111.261 (3)
Mn2—O16i1.9275 (17)O14—C131.444 (3)
Mn2—O51.9282 (17)O14—Mn2i1.9431 (17)
Mn2—O61.9293 (17)O14—Mn3i2.2855 (17)
Mn2—O14i1.9431 (17)O15—C151.428 (3)
Mn2—O32.1580 (18)O15—Mn3i1.9060 (17)
Mn2—O92.2735 (16)O15—Mn4i2.0787 (17)
Mn2—Mn3i3.1123 (5)O16—C161.444 (3)
Mn2—Mn33.1384 (5)O16—Mn2i1.9275 (17)
Mn2—Mn6i3.1419 (5)O16—Mn1i2.2462 (18)
Mn3—O15i1.9060 (17)O16—Mn4i2.3089 (17)
Mn3—O7i1.9085 (17)O17—C171.430 (3)
Mn3—O9i1.9358 (17)O17—H170.82 (4)
Mn3—O91.9442 (17)C1—H1A0.9800
Mn3—O5i2.2793 (17)C1—H1B0.9800
Mn3—O14i2.2855 (17)C1—H1C0.9800
Mn3—Mn3i2.8558 (7)C2—C31.509 (4)
Mn3—Mn2i3.1123 (5)C3—H3A0.9800
Mn3—Mn43.1201 (5)C3—H3B0.9800
Mn3—Mn5i3.2226 (5)C3—H3C0.9800
Mn4—O15i2.0787 (17)C4—C51.524 (3)
Mn4—O102.1147 (18)C4—H4A0.9900
Mn4—O112.219 (2)C4—H4B0.9900
Mn4—O16i2.3089 (17)C5—C61.533 (3)
Mn4—O92.3491 (17)C5—C81.535 (3)
Mn4—Cl22.4834 (7)C5—C71.540 (3)
Mn5—O72.0763 (17)C6—H6A0.9900
Mn5—O102.1143 (18)C6—H6B0.9900
Mn5—O122.1344 (19)C7—H7A0.9900
Mn5—O62.2869 (17)C7—H7B0.9900
Mn5—Cl32.4531 (7)C8—H8A0.9900
Mn5—Mn3i3.2226 (5)C8—H8B0.9900
Mn6—O4i2.1256 (19)C9—H9A0.9800
Mn6—O142.1948 (17)C9—H9B0.9800
Mn6—O5i2.2470 (17)C9—H9C0.9800
Mn6—O132.262 (2)C10—H10A0.9800
Mn6—O122.2845 (18)C10—H10B0.9800
Mn6—Cl22.4788 (7)C10—H10C0.9800
Mn6—C112.635 (3)C11—C121.493 (4)
Mn6—Mn2i3.1419 (5)C12—H12A0.9800
O1—C11.416 (4)C12—H12B0.9800
O1—H10.78 (4)C12—H12C0.9800
O2—H210.87 (4)C13—C141.522 (3)
O2—H220.74 (4)C13—H13A0.9900
O3—C21.273 (3)C13—H13B0.9900
O4—C21.250 (3)C14—C171.537 (3)
O4—Mn6i2.1256 (19)C14—C161.540 (3)
O5—C41.441 (3)C14—C151.538 (3)
O5—Mn6i2.2470 (17)C15—H15A0.9900
O5—Mn3i2.2793 (17)C15—H15B0.9900
O6—C61.449 (3)C16—H16A0.9900
O7—C71.437 (3)C16—H16B0.9900
O7—Mn3i1.9085 (17)C17—H17A0.9900
O8—C81.412 (3)C17—H17B0.9900
O2—Mn1—O192.89 (9)O4i—Mn6—C11109.11 (8)
O2—Mn1—O10159.70 (8)O14—Mn6—C1199.32 (8)
O1—Mn1—O1092.58 (8)O5i—Mn6—C11161.61 (8)
O2—Mn1—O16i91.04 (8)O13—Mn6—C1128.57 (8)
O1—Mn1—O16i163.94 (8)O12—Mn6—C1127.85 (8)
O10—Mn1—O16i78.71 (6)Cl2—Mn6—C1190.86 (6)
O2—Mn1—O683.91 (8)O4i—Mn6—Mn2i76.01 (5)
O1—Mn1—O692.78 (8)O14—Mn6—Mn2i37.69 (4)
O10—Mn1—O676.31 (6)O5i—Mn6—Mn2i37.50 (4)
O16i—Mn1—O672.15 (6)O13—Mn6—Mn2i139.95 (6)
O2—Mn1—Cl199.49 (7)O12—Mn6—Mn2i121.28 (5)
O1—Mn1—Cl198.13 (7)Cl2—Mn6—Mn2i126.37 (2)
O10—Mn1—Cl199.07 (5)C11—Mn6—Mn2i136.79 (6)
O16i—Mn1—Cl196.57 (5)Mn6—Cl2—Mn496.50 (2)
O6—Mn1—Cl1168.36 (5)C1—O1—Mn1131.5 (2)
O2—Mn1—Mn280.12 (7)C1—O1—H1108 (3)
O1—Mn1—Mn2129.32 (6)Mn1—O1—H1117 (3)
O10—Mn1—Mn281.30 (5)Mn1—O2—H21134 (3)
O16i—Mn1—Mn236.49 (4)Mn1—O2—H22116 (3)
O6—Mn1—Mn236.76 (4)H21—O2—H22110 (4)
Cl1—Mn1—Mn2132.54 (2)C2—O3—Mn2127.09 (16)
O16i—Mn2—O5172.17 (7)C2—O4—Mn6i133.62 (17)
O16i—Mn2—O688.05 (7)C4—O5—Mn2120.68 (14)
O5—Mn2—O693.85 (7)C4—O5—Mn6i114.78 (14)
O16i—Mn2—O14i93.43 (7)Mn2—O5—Mn6i97.32 (7)
O5—Mn2—O14i83.78 (7)C4—O5—Mn3i113.58 (14)
O6—Mn2—O14i172.85 (7)Mn2—O5—Mn3i95.05 (7)
O16i—Mn2—O393.11 (7)Mn6i—O5—Mn3i113.14 (7)
O5—Mn2—O394.38 (7)C6—O6—Mn2117.81 (14)
O6—Mn2—O392.99 (7)C6—O6—Mn5110.59 (13)
O14i—Mn2—O393.92 (7)Mn2—O6—Mn5109.00 (7)
O16i—Mn2—O987.66 (7)C6—O6—Mn1123.27 (14)
O5—Mn2—O984.79 (7)Mn2—O6—Mn197.59 (7)
O6—Mn2—O988.70 (7)Mn5—O6—Mn195.82 (6)
O14i—Mn2—O984.37 (7)C7—O7—Mn3i122.29 (15)
O3—Mn2—O9178.16 (7)C7—O7—Mn5115.36 (14)
O16i—Mn2—Mn3i125.80 (5)Mn3i—O7—Mn5107.87 (8)
O5—Mn2—Mn3i46.85 (5)C8—O8—H8106 (4)
O6—Mn2—Mn3i87.24 (5)Mn3i—O9—Mn394.79 (7)
O14i—Mn2—Mn3i86.22 (5)Mn3i—O9—Mn295.02 (7)
O3—Mn2—Mn3i141.05 (5)Mn3—O9—Mn295.85 (7)
O9—Mn2—Mn3i38.29 (4)Mn3i—O9—Mn4169.31 (9)
O16i—Mn2—Mn387.77 (5)Mn3—O9—Mn492.74 (6)
O5—Mn2—Mn385.00 (5)Mn2—O9—Mn491.74 (6)
O6—Mn2—Mn3126.70 (5)C9—O10—Mn5113.43 (19)
O14i—Mn2—Mn346.46 (5)C9—O10—Mn4115.00 (19)
O3—Mn2—Mn3140.29 (5)Mn5—O10—Mn4103.13 (8)
O9—Mn2—Mn338.04 (4)C9—O10—Mn1116.66 (19)
Mn3i—Mn2—Mn354.369 (13)Mn5—O10—Mn1104.14 (7)
O16i—Mn2—Mn6i134.68 (5)Mn4—O10—Mn1102.86 (7)
O5—Mn2—Mn6i45.18 (5)C10—O11—Mn4128.88 (19)
O6—Mn2—Mn6i136.48 (5)C10—O11—H11106 (3)
O14i—Mn2—Mn6i43.68 (5)Mn4—O11—H11109 (3)
O3—Mn2—Mn6i79.15 (5)C11—O12—Mn5144.22 (18)
O9—Mn2—Mn6i99.13 (5)C11—O12—Mn692.09 (16)
Mn3i—Mn2—Mn6i74.311 (13)Mn5—O12—Mn6122.72 (9)
Mn3—Mn2—Mn6i72.476 (13)C11—O13—Mn692.38 (17)
O16i—Mn2—Mn143.87 (5)C13—O14—Mn2i121.48 (14)
O5—Mn2—Mn1139.25 (5)C13—O14—Mn6114.15 (14)
O6—Mn2—Mn145.64 (5)Mn2i—O14—Mn698.62 (7)
O14i—Mn2—Mn1136.97 (5)C13—O14—Mn3i113.18 (13)
O3—Mn2—Mn185.20 (5)Mn2i—O14—Mn3i95.50 (7)
O9—Mn2—Mn196.51 (5)Mn6—O14—Mn3i111.90 (7)
Mn3i—Mn2—Mn1120.183 (15)C15—O15—Mn3i122.25 (15)
Mn3—Mn2—Mn1120.145 (15)C15—O15—Mn4i119.28 (14)
Mn6i—Mn2—Mn1164.236 (16)Mn3i—O15—Mn4i102.99 (8)
O15i—Mn3—O7i94.23 (7)C16—O16—Mn2i118.13 (15)
O15i—Mn3—O9i173.88 (7)C16—O16—Mn1i121.67 (14)
O7i—Mn3—O9i91.88 (7)Mn2i—O16—Mn1i99.63 (7)
O15i—Mn3—O988.67 (7)C16—O16—Mn4i115.05 (14)
O7i—Mn3—O9176.80 (7)Mn2i—O16—Mn4i102.76 (7)
O9i—Mn3—O985.21 (7)Mn1i—O16—Mn4i95.73 (7)
O15i—Mn3—O5i95.52 (7)C17—O17—H17103 (3)
O7i—Mn3—O5i88.29 (7)O1—C1—H1A109.5
O9i—Mn3—O5i84.46 (7)O1—C1—H1B109.5
O9—Mn3—O5i90.10 (7)H1A—C1—H1B109.5
O15i—Mn3—O14i88.03 (7)O1—C1—H1C109.5
O7i—Mn3—O14i97.41 (7)H1A—C1—H1C109.5
O9i—Mn3—O14i91.38 (6)H1B—C1—H1C109.5
O9—Mn3—O14i84.01 (6)O4—C2—O3123.8 (2)
O5i—Mn3—O14i173.06 (6)O4—C2—C3119.0 (2)
O15i—Mn3—Mn3i131.16 (5)O3—C2—C3117.2 (2)
O7i—Mn3—Mn3i134.59 (5)C2—C3—H3A109.5
O9i—Mn3—Mn3i42.72 (5)C2—C3—H3B109.5
O9—Mn3—Mn3i42.49 (5)H3A—C3—H3B109.5
O5i—Mn3—Mn3i86.31 (4)C2—C3—H3C109.5
O14i—Mn3—Mn3i86.87 (4)H3A—C3—H3C109.5
O15i—Mn3—Mn2i133.62 (5)H3B—C3—H3C109.5
O7i—Mn3—Mn2i85.74 (5)O5—C4—C5114.3 (2)
O9i—Mn3—Mn2i46.69 (5)O5—C4—H4A108.7
O9—Mn3—Mn2i91.29 (5)C5—C4—H4A108.7
O5i—Mn3—Mn2i38.11 (4)O5—C4—H4B108.7
O14i—Mn3—Mn2i138.07 (4)C5—C4—H4B108.7
Mn3i—Mn3—Mn2i63.282 (14)H4A—C4—H4B107.6
O15i—Mn3—Mn440.48 (5)C4—C5—C6111.5 (2)
O7i—Mn3—Mn4133.91 (5)C4—C5—C8103.8 (2)
O9i—Mn3—Mn4133.46 (5)C6—C5—C8108.1 (2)
O9—Mn3—Mn448.77 (5)C4—C5—C7111.3 (2)
O5i—Mn3—Mn488.54 (4)C6—C5—C7113.9 (2)
O14i—Mn3—Mn490.32 (4)C8—C5—C7107.7 (2)
Mn3i—Mn3—Mn491.005 (18)O6—C6—C5113.95 (19)
Mn2i—Mn3—Mn4117.226 (15)O6—C6—H6A108.8
O15i—Mn3—Mn285.11 (5)C5—C6—H6A108.8
O7i—Mn3—Mn2135.44 (5)O6—C6—H6B108.8
O9i—Mn3—Mn290.67 (5)C5—C6—H6B108.8
O9—Mn3—Mn246.11 (5)H6A—C6—H6B107.7
O5i—Mn3—Mn2136.20 (4)O7—C7—C5114.29 (19)
O14i—Mn3—Mn238.04 (4)O7—C7—H7A108.7
Mn3i—Mn3—Mn262.349 (14)C5—C7—H7A108.7
Mn2i—Mn3—Mn2125.631 (13)O7—C7—H7B108.7
Mn4—Mn3—Mn264.040 (12)C5—C7—H7B108.7
O15i—Mn3—Mn5i131.56 (5)H7A—C7—H7B107.6
O7i—Mn3—Mn5i37.82 (5)O8—C8—C5111.9 (2)
O9i—Mn3—Mn5i54.54 (5)O8—C8—H8A109.2
O9—Mn3—Mn5i139.47 (5)C5—C8—H8A109.2
O5i—Mn3—Mn5i90.43 (4)O8—C8—H8B109.2
O14i—Mn3—Mn5i91.67 (4)C5—C8—H8B109.2
Mn3i—Mn3—Mn5i97.133 (18)H8A—C8—H8B107.9
Mn2i—Mn3—Mn5i65.728 (12)O10—C9—H9A109.5
Mn4—Mn3—Mn5i171.715 (16)O10—C9—H9B109.5
Mn2—Mn3—Mn5i121.374 (15)H9A—C9—H9B109.5
O15i—Mn4—O10157.54 (7)O10—C9—H9C109.5
O15i—Mn4—O11101.40 (7)H9A—C9—H9C109.5
O10—Mn4—O1191.22 (7)H9B—C9—H9C109.5
O15i—Mn4—O16i82.70 (6)O11—C10—H10A109.5
O10—Mn4—O16i79.18 (7)O11—C10—H10B109.5
O11—Mn4—O16i88.23 (7)H10A—C10—H10B109.5
O15i—Mn4—O974.57 (6)O11—C10—H10C109.5
O10—Mn4—O988.61 (6)H10A—C10—H10C109.5
O11—Mn4—O9165.64 (7)H10B—C10—H10C109.5
O16i—Mn4—O977.63 (6)O12—C11—O13119.1 (3)
O15i—Mn4—Cl296.09 (5)O12—C11—C12120.9 (3)
O10—Mn4—Cl2101.46 (5)O13—C11—C12120.0 (3)
O11—Mn4—Cl294.23 (6)O12—C11—Mn660.06 (14)
O16i—Mn4—Cl2177.43 (5)O13—C11—Mn659.06 (14)
O9—Mn4—Cl299.87 (4)C12—C11—Mn6179.0 (2)
O15i—Mn4—Mn336.53 (5)C11—C12—H12A109.5
O10—Mn4—Mn3126.68 (5)C11—C12—H12B109.5
O11—Mn4—Mn3137.60 (6)H12A—C12—H12B109.5
O16i—Mn4—Mn382.13 (4)C11—C12—H12C109.5
O9—Mn4—Mn338.49 (4)H12A—C12—H12C109.5
Cl2—Mn4—Mn395.54 (2)H12B—C12—H12C109.5
O7—Mn5—O10150.12 (7)O14—C13—C14113.61 (19)
O7—Mn5—O1291.04 (7)O14—C13—H13A108.8
O10—Mn5—O1297.71 (7)C14—C13—H13A108.8
O7—Mn5—O682.55 (6)O14—C13—H13B108.8
O10—Mn5—O678.49 (6)C14—C13—H13B108.8
O12—Mn5—O6157.49 (7)H13A—C13—H13B107.7
O7—Mn5—Cl3107.96 (5)C13—C14—C17105.1 (2)
O10—Mn5—Cl397.51 (5)C13—C14—C16111.2 (2)
O12—Mn5—Cl3104.27 (5)C17—C14—C16107.32 (19)
O6—Mn5—Cl398.24 (5)C13—C14—C15111.8 (2)
O7—Mn5—Mn3i34.31 (5)C17—C14—C15107.4 (2)
O10—Mn5—Mn3i118.35 (5)C16—C14—C15113.5 (2)
O12—Mn5—Mn3i83.46 (5)O15—C15—C14115.27 (19)
O6—Mn5—Mn3i79.11 (4)O15—C15—H15A108.5
Cl3—Mn5—Mn3i142.23 (2)C14—C15—H15A108.5
O4i—Mn6—O1491.20 (7)O15—C15—H15B108.5
O4i—Mn6—O5i87.23 (7)C14—C15—H15B108.5
O14—Mn6—O5i71.16 (6)H15A—C15—H15B107.5
O4i—Mn6—O1382.58 (7)O16—C16—C14114.21 (19)
O14—Mn6—O13111.03 (7)O16—C16—H16A108.7
O5i—Mn6—O13169.59 (7)C14—C16—H16A108.7
O4i—Mn6—O12134.00 (7)O16—C16—H16B108.7
O14—Mn6—O1285.85 (6)C14—C16—H16B108.7
O5i—Mn6—O12133.81 (7)H16A—C16—H16B107.6
O13—Mn6—O1256.41 (7)O17—C17—C14112.8 (2)
O4i—Mn6—Cl2116.35 (6)O17—C17—H17A109.0
O14—Mn6—Cl2145.68 (5)C14—C17—H17A109.0
O5i—Mn6—Cl289.19 (5)O17—C17—H17B109.0
O13—Mn6—Cl293.43 (6)C14—C17—H17B109.0
O12—Mn6—Cl288.42 (5)H17A—C17—H17B107.8
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···Cl30.78 (4)2.35 (4)3.097 (2)159 (3)
O2—H21···O17ii0.87 (4)1.77 (4)2.630 (3)169 (4)
O2—H22···O30.74 (4)1.96 (4)2.658 (3)158 (4)
O8—H8···O13iii0.81 (5)2.27 (5)2.952 (3)142 (5)
O11—H11···Cl10.76 (4)2.32 (4)3.069 (2)172 (4)
O17—H17···Cl3iv0.82 (4)2.32 (4)3.132 (2)173 (4)
Symmetry codes: (ii) x, y, z+1; (iii) x1, y, z; (iv) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Mn12(CH3O)2(C2H3O2)4(C5H9O4)4Cl6O2(CH4O)4(H2O)2]
Mr1898.91
Crystal system, space groupTriclinic, P1
Temperature (K)130
a, b, c (Å)11.3575 (7), 11.6949 (7), 13.8332 (8)
α, β, γ (°)101.753 (1), 107.337 (1), 108.916 (1)
V3)1564.76 (16)
Z1
Radiation typeMo Kα
µ (mm1)2.68
Crystal size (mm)0.37 × 0.25 × 0.21
Data collection
DiffractometerBruker SMART APEX CCD area -etector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Sheldrick 1997)
Tmin, Tmax0.544, 0.774
No. of measured, independent and
observed [I > 2σ(I)] reflections
9180, 6251, 5762
Rint0.013
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.081, 1.02
No. of reflections6251
No. of parameters415
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.83, 0.83

Computer programs: SMART (Bruker, 1997), SMART [OR SAINT??], SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997) and Diamond (Brandenburg, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Mn1—O22.131 (2)Mn3—Mn43.1201 (5)
Mn1—O12.158 (2)Mn3—Mn5i3.2226 (5)
Mn1—O102.2054 (18)Mn4—O15i2.0787 (17)
Mn1—O16i2.2462 (18)Mn4—O102.1147 (18)
Mn1—O62.3049 (17)Mn4—O112.219 (2)
Mn1—Cl12.4275 (8)Mn4—O16i2.3089 (17)
Mn1—Mn23.1953 (5)Mn4—O92.3491 (17)
Mn2—O16i1.9275 (17)Mn4—Cl22.4834 (7)
Mn2—O51.9282 (17)Mn5—O72.0763 (17)
Mn2—O61.9293 (17)Mn5—O102.1143 (18)
Mn2—O14i1.9431 (17)Mn5—O122.1344 (19)
Mn2—O32.1580 (18)Mn5—O62.2869 (17)
Mn2—O92.2735 (16)Mn5—Cl32.4531 (7)
Mn2—Mn3i3.1123 (5)Mn5—Mn3i3.2226 (5)
Mn2—Mn33.1384 (5)Mn6—O4i2.1256 (19)
Mn2—Mn6i3.1419 (5)Mn6—O142.1948 (17)
Mn3—O15i1.9060 (17)Mn6—O5i2.2470 (17)
Mn3—O7i1.9085 (17)Mn6—O132.262 (2)
Mn3—O9i1.9358 (17)Mn6—O122.2845 (18)
Mn3—O91.9442 (17)Mn6—Cl22.4788 (7)
Mn3—O5i2.2793 (17)Mn6—C112.635 (3)
Mn3—O14i2.2855 (17)Mn6—Mn2i3.1419 (5)
Mn3—Mn3i2.8558 (7)O9—Mn3i1.9358 (17)
Mn3—Mn2i3.1123 (5)
O2—Mn1—O192.89 (9)O9—Mn4—Cl299.87 (4)
O2—Mn1—O10159.70 (8)O7—Mn5—O10150.12 (7)
O1—Mn1—O1092.58 (8)O7—Mn5—O1291.04 (7)
O2—Mn1—O16i91.04 (8)O10—Mn5—O1297.71 (7)
O1—Mn1—O16i163.94 (8)O7—Mn5—O682.55 (6)
O10—Mn1—O16i78.71 (6)O10—Mn5—O678.49 (6)
O2—Mn1—O683.91 (8)O12—Mn5—O6157.49 (7)
O1—Mn1—O692.78 (8)O7—Mn5—Cl3107.96 (5)
O10—Mn1—O676.31 (6)O10—Mn5—Cl397.51 (5)
O16i—Mn1—O672.15 (6)O12—Mn5—Cl3104.27 (5)
O2—Mn1—Cl199.49 (7)O6—Mn5—Cl398.24 (5)
O1—Mn1—Cl198.13 (7)O4i—Mn6—O1491.20 (7)
O10—Mn1—Cl199.07 (5)O4i—Mn6—O5i87.23 (7)
O16i—Mn1—Cl196.57 (5)O14—Mn6—O5i71.16 (6)
O6—Mn1—Cl1168.36 (5)O4i—Mn6—O1382.58 (7)
O16i—Mn2—O5172.17 (7)O14—Mn6—O13111.03 (7)
O16i—Mn2—O688.05 (7)O5i—Mn6—O13169.59 (7)
O5—Mn2—O693.85 (7)O4i—Mn6—O12134.00 (7)
O16i—Mn2—O14i93.43 (7)O14—Mn6—O1285.85 (6)
O5—Mn2—O14i83.78 (7)O5i—Mn6—O12133.81 (7)
O6—Mn2—O14i172.85 (7)O13—Mn6—O1256.41 (7)
O16i—Mn2—O393.11 (7)O4i—Mn6—Cl2116.35 (6)
O5—Mn2—O394.38 (7)O14—Mn6—Cl2145.68 (5)
O6—Mn2—O392.99 (7)O5i—Mn6—Cl289.19 (5)
O14i—Mn2—O393.92 (7)O13—Mn6—Cl293.43 (6)
O16i—Mn2—O987.66 (7)O12—Mn6—Cl288.42 (5)
O5—Mn2—O984.79 (7)O4i—Mn6—C11109.11 (8)
O6—Mn2—O988.70 (7)O14—Mn6—C1199.32 (8)
O14i—Mn2—O984.37 (7)O5i—Mn6—C11161.61 (8)
O3—Mn2—O9178.16 (7)O13—Mn6—C1128.57 (8)
O15i—Mn3—O7i94.23 (7)O12—Mn6—C1127.85 (8)
O15i—Mn3—O9i173.88 (7)Cl2—Mn6—C1190.86 (6)
O7i—Mn3—O9i91.88 (7)Mn6—Cl2—Mn496.50 (2)
O15i—Mn3—O988.67 (7)Mn2—O5—Mn6i97.32 (7)
O7i—Mn3—O9176.80 (7)Mn2—O5—Mn3i95.05 (7)
O9i—Mn3—O985.21 (7)Mn6i—O5—Mn3i113.14 (7)
O15i—Mn3—O5i95.52 (7)Mn2—O6—Mn5109.00 (7)
O7i—Mn3—O5i88.29 (7)Mn2—O6—Mn197.59 (7)
O9i—Mn3—O5i84.46 (7)Mn5—O6—Mn195.82 (6)
O9—Mn3—O5i90.10 (7)Mn3i—O7—Mn5107.87 (8)
O15i—Mn3—O14i88.03 (7)Mn3i—O9—Mn394.79 (7)
O7i—Mn3—O14i97.41 (7)Mn3i—O9—Mn295.02 (7)
O9i—Mn3—O14i91.38 (6)Mn3—O9—Mn295.85 (7)
O9—Mn3—O14i84.01 (6)Mn3i—O9—Mn4169.31 (9)
O5i—Mn3—O14i173.06 (6)Mn3—O9—Mn492.74 (6)
O15i—Mn4—O10157.54 (7)Mn2—O9—Mn491.74 (6)
O15i—Mn4—O11101.40 (7)Mn5—O10—Mn4103.13 (8)
O10—Mn4—O1191.22 (7)Mn5—O10—Mn1104.14 (7)
O15i—Mn4—O16i82.70 (6)Mn4—O10—Mn1102.86 (7)
O10—Mn4—O16i79.18 (7)Mn4—O11—H11109 (3)
O11—Mn4—O16i88.23 (7)Mn5—O12—Mn6122.72 (9)
O15i—Mn4—O974.57 (6)Mn2i—O14—Mn698.62 (7)
O10—Mn4—O988.61 (6)Mn2i—O14—Mn3i95.50 (7)
O11—Mn4—O9165.64 (7)Mn6—O14—Mn3i111.90 (7)
O16i—Mn4—O977.63 (6)Mn3i—O15—Mn4i102.99 (8)
O15i—Mn4—Cl296.09 (5)Mn2i—O16—Mn1i99.63 (7)
O10—Mn4—Cl2101.46 (5)Mn2i—O16—Mn4i102.76 (7)
O11—Mn4—Cl294.23 (6)Mn1i—O16—Mn4i95.73 (7)
O16i—Mn4—Cl2177.43 (5)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···Cl30.78 (4)2.35 (4)3.097 (2)159 (3)
O2—H21···O17ii0.87 (4)1.77 (4)2.630 (3)169 (4)
O2—H22···O30.74 (4)1.96 (4)2.658 (3)158 (4)
O8—H8···O13iii0.81 (5)2.27 (5)2.952 (3)142 (5)
O11—H11···Cl10.76 (4)2.32 (4)3.069 (2)172 (4)
O17—H17···Cl3iv0.82 (4)2.32 (4)3.132 (2)173 (4)
Symmetry codes: (ii) x, y, z+1; (iii) x1, y, z; (iv) x, y+1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds