Download citation
Download citation
link to html
In the structure of the title complex, [Cu(C2O4)(C10H9N3)(H2O)]·H2O, the CuII atom displays a square-pyramidal geometry, being coordinated by two N atoms from the di-2-pyridylamine ligand, two O atoms from the oxalate group and one O atom of a water mol­ecule. The complex mol­ecules are linked to form a three-dimensional supra­molecular array by hydrogen-bonding inter­actions between coordinated/uncoordinated water mol­ecules and the uncoordinated oxalate O atoms of neighboring mol­ecules.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270106016398/sf3005sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106016398/sf3005Isup2.hkl
Contains datablock I

CCDC reference: 612445

Comment top

There has been considerable interest in the design and syntheses of transition metal complexes with the oxalate ligand in coordination chemistry, owing to the fact that this type of complex has potential application in molecular-based magnets. Furthermore, such complexes could have potential application as precursors for the synthesis of, for instance, copper-containing superconducting ceramics (Bouayad et al., 1995). Self-assembly of metal compounds by hydrogen bonds into one-, two-, and three-dimensional supramolecular architectures connects with biological chemistry, material chemistry (such as organic film and magnetic material) and supramolecular chemistry (Chen et al., 2001). Hydrogen bonds play vital roles in highly efficient and specific biological reactions and are essential for molecular recognition and self-organization of molecules in supramolecular chemistry. We report here the crystal structure of one such complex, aqua(di-2-pyridylamine)oxalatocopper(II) hydrate, (I). The ligand dpyam has been selected primarily because of the fact that it also has a N— H, H -bond donor function that might consider into one-, two-, or three-dimensional supramolecular architectures. The molecular structure of (I), shown in Fig. 1, consists of discrete monomers. The Cu atom in (I) involves a five-coordinate CuN2O2O' environment, with a distorted square-pyramidal structure (τ = 0.10). The structure index is defined as τ = (β - α)/60, where b and a are the largest coordination angles (Addison et al., 1984). The dpyam and oxalate anion are both symmetrically coordinated to the Cu atom in the plane of the square pyramid, with a water molecule occupying the fifth coordinated position (Table 1). The dihedral angle between the planes of the pyridine rings is 16.8 (1)° and that between the CuO2 and CuN2 planes is 18.3 (1)°. The Cu atom lies 0.2197 Å above the basal plane, towards the coordinated water molecule. Other related examples of the oxalate compounds are [Cu(bipy)(C2O4)(H2O)]·2H2O, (II), [Cu(nphen)(C2O4)(H2O)]·2H2O, (III) (nphen is 5-nitro-1,10-phenanthroline), and [Cu(phen)(C2O4)(H2O)]·H2O, (IV) (Chen et al., 2001). The CuII atoms in these compounds also exhibit distorted square-pyramidal geometry, with τ values of 0.21 for (II), 0.01 for (III) and 0.02 for (IV). The Cu—O(oxalate) bond distances are 1.958 (2) and 1.938 (2) Å for (II), 1.936 (6) and 1.935 (7) Å for (III), and 1.937 (1) and 1.944 (2) Å for (IV); the difference between these and the corresponding distances in (I) (Table 1) is probably due to the effect of the chelating coordination in (I). The Cu—O(water) distance is comparable to those of 2.175 (4) Å in (II), 2.175 (4) Å in (III) and 2.175 (4) Å in (IV) (Chen et al., 2001). The Cu—N bond lengths are somewhat longer than those in [Cu(dpyam)(H2O)(CO3)]·2H2O [1.970 (3) and 1.972 (3) Å; dpyam is di-2-pyridylamine; Akhter et al., 1991].

In (I), hydrogen bonds are observed between atom O5 and the uncoordinated water molecule, and between O5 and O4ii of the oxalate group in the adjacent [Cu(dpyam)(C2O4)(H2O)] unit (Table 2). These hydrogen bonds form a one-dimensional chain structure. Additional hydrogen bonds between the uncoordinated water molecule and atoms O3 and O4 of the oxalate group in an adjacent chain link the molecules into a three-dimensional array (Fig. 2 and Table 2).

Experimental top

The title compound was obtained as blue blocks by slow evaporation of a concentrated aqueous ethanol solution (1:2) containing stoichiometric amounts of K2[Cu(C2O4)2]·2H2O and di-2-pyridylamine. Crystals of (I) suitable for single-crystal X-ray diffraction were selected directly from the sample as prepared.

Refinement top

All H-atom parameters were refined freely. The resulting C—H distances are in the range 0.926 (19)–1.01 (2) Å.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2000b); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2001).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. The molecular packing of (I), showing the three-dimensional structure along the c axis.
Aqua(di-2-pyridylamine)oxalatocopper(II) monohydrate top
Crystal data top
[Cu(C2O4)(C10H9N3)(H2O)]·H2OF(000) = 732
Mr = 358.79Dx = 1.729 Mg m3
Dm = 1.732 Mg m3
Dm measured by not measured
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3924 reflections
a = 9.3814 (1) Åθ = 2.3–30.5°
b = 9.7427 (1) ŵ = 1.62 mm1
c = 15.510 (1) ÅT = 293 K
β = 103.487 (1)°Block, blue
V = 1378.49 (2) Å30.63 × 0.48 × 0.40 mm
Z = 4
Data collection top
Siemens SMART CCD area-detector
diffractometer
3924 independent reflections
Radiation source: fine-focus sealed tube3456 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
ω scansθmax = 30.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000a)
h = 1212
Tmin = 0.817, Tmax = 1.000k = 1313
9853 measured reflectionsl = 1721
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.069All H-atom parameters refined
S = 1.04 w = 1/[σ2(Fo2) + (0.0444P)2 + 0.1326P]
where P = (Fo2 + 2Fc2)/3
3924 reflections(Δ/σ)max < 0.001
251 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.46 e Å3
Crystal data top
[Cu(C2O4)(C10H9N3)(H2O)]·H2OV = 1378.49 (2) Å3
Mr = 358.79Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.3814 (1) ŵ = 1.62 mm1
b = 9.7427 (1) ÅT = 293 K
c = 15.510 (1) Å0.63 × 0.48 × 0.40 mm
β = 103.487 (1)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
3924 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000a)
3456 reflections with I > 2σ(I)
Tmin = 0.817, Tmax = 1.000Rint = 0.014
9853 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.069All H-atom parameters refined
S = 1.04Δρmax = 0.38 e Å3
3924 reflectionsΔρmin = 0.46 e Å3
251 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.194259 (17)0.032745 (14)0.129823 (10)0.02740 (6)
N10.20965 (12)0.20204 (11)0.06121 (7)0.0278 (2)
N20.29485 (11)0.07771 (11)0.05411 (7)0.0268 (2)
N30.26091 (13)0.08545 (11)0.06236 (7)0.0302 (2)
O10.06190 (12)0.12540 (10)0.19213 (8)0.0422 (2)
O20.12187 (11)0.13385 (10)0.17672 (7)0.0347 (2)
O30.10734 (12)0.07746 (12)0.26705 (7)0.0400 (2)
O40.03132 (12)0.19683 (10)0.25958 (7)0.0375 (2)
O50.39935 (13)0.04477 (13)0.24357 (8)0.0399 (2)
O60.65095 (13)0.87295 (13)0.23696 (9)0.0446 (3)
C10.18551 (16)0.32420 (13)0.09846 (9)0.0332 (3)
C100.34990 (15)0.20145 (13)0.08694 (8)0.0305 (2)
C110.01152 (14)0.04384 (13)0.22884 (9)0.0293 (2)
C120.02792 (13)0.10953 (13)0.22211 (8)0.0273 (2)
C20.17410 (17)0.44664 (14)0.05440 (10)0.0376 (3)
C30.18625 (18)0.44630 (15)0.03384 (10)0.0381 (3)
C40.21395 (15)0.32565 (14)0.07210 (9)0.0332 (3)
C50.22767 (13)0.20361 (12)0.02217 (8)0.0266 (2)
C60.30806 (13)0.04201 (12)0.02706 (8)0.0255 (2)
C70.36902 (14)0.13151 (14)0.07995 (8)0.0312 (2)
C80.42201 (15)0.25649 (14)0.04599 (9)0.0330 (3)
C90.41475 (15)0.29159 (14)0.04001 (9)0.0318 (2)
H10.174 (2)0.317 (2)0.1612 (13)0.049 (5)*
H100.3428 (17)0.2235 (17)0.1456 (11)0.031 (4)*
H110.634 (3)0.798 (3)0.2523 (17)0.077 (8)*
H120.729 (3)0.893 (3)0.2635 (17)0.073 (8)*
H130.430 (2)0.120 (3)0.2494 (14)0.057 (6)*
H140.469 (3)0.005 (3)0.2431 (18)0.074 (8)*
H20.158 (2)0.5277 (18)0.0832 (13)0.039 (5)*
H30.169 (2)0.526 (2)0.0688 (15)0.054 (6)*
H40.221 (2)0.3199 (19)0.1308 (13)0.044 (5)*
H50.276 (2)0.098 (2)0.1111 (13)0.039 (4)*
H70.3686 (18)0.1037 (18)0.1384 (11)0.032 (4)*
H80.468 (2)0.314 (2)0.0800 (13)0.049 (5)*
H90.4549 (19)0.3741 (19)0.0637 (11)0.037 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O60.0365 (6)0.0421 (6)0.0550 (7)0.0024 (5)0.0101 (5)0.0084 (5)
Cu10.03459 (9)0.02420 (9)0.02867 (9)0.00029 (5)0.01801 (6)0.00075 (5)
O30.0403 (5)0.0422 (5)0.0450 (6)0.0031 (4)0.0255 (4)0.0099 (4)
O40.0435 (5)0.0355 (5)0.0395 (5)0.0033 (4)0.0217 (4)0.0070 (4)
O50.0417 (6)0.0371 (6)0.0403 (6)0.0046 (5)0.0083 (4)0.0027 (4)
N20.0314 (5)0.0273 (5)0.0250 (5)0.0007 (4)0.0133 (4)0.0002 (4)
O20.0412 (5)0.0267 (4)0.0440 (5)0.0009 (4)0.0258 (4)0.0034 (4)
N30.0402 (6)0.0300 (5)0.0226 (5)0.0008 (4)0.0119 (4)0.0022 (4)
C60.0261 (5)0.0281 (5)0.0231 (5)0.0029 (4)0.0076 (4)0.0010 (4)
O10.0537 (6)0.0275 (5)0.0576 (6)0.0002 (4)0.0377 (5)0.0013 (4)
C80.0344 (6)0.0352 (6)0.0320 (6)0.0016 (5)0.0131 (5)0.0071 (5)
N10.0333 (5)0.0257 (5)0.0267 (5)0.0017 (4)0.0116 (4)0.0004 (4)
C110.0308 (6)0.0312 (6)0.0282 (5)0.0020 (5)0.0116 (5)0.0046 (4)
C50.0269 (5)0.0279 (5)0.0254 (5)0.0027 (4)0.0070 (4)0.0012 (4)
C120.0280 (5)0.0310 (6)0.0244 (5)0.0016 (4)0.0091 (4)0.0005 (4)
C90.0340 (6)0.0296 (6)0.0338 (6)0.0027 (5)0.0116 (5)0.0002 (5)
C40.0377 (6)0.0329 (6)0.0289 (6)0.0022 (5)0.0079 (5)0.0060 (5)
C70.0351 (6)0.0363 (6)0.0247 (5)0.0007 (5)0.0122 (5)0.0027 (5)
C30.0444 (7)0.0287 (6)0.0407 (7)0.0021 (5)0.0089 (6)0.0075 (5)
C10.0412 (7)0.0289 (6)0.0327 (6)0.0027 (5)0.0150 (5)0.0026 (5)
C100.0362 (6)0.0301 (6)0.0277 (5)0.0014 (5)0.0127 (5)0.0024 (4)
C20.0454 (7)0.0268 (6)0.0431 (7)0.0009 (5)0.0155 (6)0.0012 (5)
Geometric parameters (Å, º) top
O6—H110.80 (3)C8—C71.373 (2)
O6—H120.78 (3)C8—C91.3939 (19)
Cu1—O11.9623 (10)C8—H80.94 (2)
Cu1—O21.9634 (9)N1—C51.3427 (15)
Cu1—N21.9861 (10)N1—C11.3647 (16)
Cu1—N11.9863 (10)C11—C121.5487 (18)
Cu1—O52.2901 (12)C5—C41.4083 (17)
O3—C111.2309 (16)C9—C101.3703 (18)
O4—C121.2331 (15)C9—H90.926 (19)
O5—H140.82 (3)C4—C31.369 (2)
O5—H130.79 (3)C4—H40.931 (19)
N2—C61.3393 (15)C7—H70.945 (17)
N2—C101.3626 (16)C3—C21.400 (2)
O2—C121.2721 (15)C3—H30.94 (2)
N3—C51.3791 (16)C1—C21.3665 (19)
N3—C61.3873 (16)C1—H11.01 (2)
N3—H50.812 (19)C10—H100.952 (16)
C6—C71.4068 (17)C2—H20.936 (18)
O1—C111.2700 (16)
H11—O6—H12108 (3)O3—C11—O1125.63 (13)
O1—Cu1—O283.37 (4)O3—C11—C12120.13 (12)
O1—Cu1—N2169.41 (5)O1—C11—C12114.24 (11)
O2—Cu1—N291.39 (4)N1—C5—N3121.22 (11)
O1—Cu1—N190.87 (4)N1—C5—C4121.55 (12)
O2—Cu1—N1163.65 (4)N3—C5—C4117.22 (11)
N2—Cu1—N191.67 (4)O4—C12—O2125.38 (12)
O1—Cu1—O596.40 (5)O4—C12—C11119.52 (11)
O2—Cu1—O593.32 (4)O2—C12—C11115.10 (10)
N2—Cu1—O593.07 (4)C10—C9—C8118.54 (12)
N1—Cu1—O5102.55 (4)C10—C9—H9122.4 (11)
Cu1—O5—H14120 (2)C8—C9—H9119.1 (11)
Cu1—O5—H13110.6 (16)C3—C4—C5119.27 (12)
H14—O5—H13107 (2)C3—C4—H4122.8 (12)
C6—N2—C10118.09 (10)C5—C4—H4117.9 (12)
C6—N2—Cu1125.16 (9)C8—C7—C6119.08 (12)
C10—N2—Cu1116.70 (8)C8—C7—H7122.9 (11)
C12—O2—Cu1113.28 (8)C6—C7—H7118.0 (11)
C5—N3—C6130.82 (11)C4—C3—C2119.54 (13)
C5—N3—H5113.6 (14)C4—C3—H3119.1 (14)
C6—N3—H5113.4 (14)C2—C3—H3121.2 (14)
N2—C6—N3120.83 (11)N1—C1—C2123.44 (13)
N2—C6—C7121.76 (11)N1—C1—H1114.3 (11)
N3—C6—C7117.40 (11)C2—C1—H1122.2 (11)
C11—O1—Cu1113.86 (8)N2—C10—C9123.03 (12)
C7—C8—C9119.38 (12)N2—C10—H10116.9 (10)
C7—C8—H8119.1 (12)C9—C10—H10120.1 (10)
C9—C8—H8121.4 (12)C1—C2—C3118.17 (13)
C5—N1—C1117.92 (11)C1—C2—H2120.0 (12)
C5—N1—Cu1124.51 (9)C3—C2—H2121.8 (12)
C1—N1—Cu1117.22 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H5···O6i0.81 (2)2.23 (2)3.037 (1)172 (2)
O5—H13···O4ii0.78 (3)2.04 (3)2.811 (1)166 (2)
O5—H14···O6iii0.82 (2)2.10 (3)2.915 (1)177 (2)
O6—H12···O3iv0.78 (2)2.36 (3)2.973 (1)137 (2)
O6—H12···O4iv0.78 (2)2.43 (3)2.997 (1)131 (2)
Symmetry codes: (i) x+1, y+1, z; (ii) x+1/2, y+1/2, z+1/2; (iii) x, y1, z; (iv) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Cu(C2O4)(C10H9N3)(H2O)]·H2O
Mr358.79
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)9.3814 (1), 9.7427 (1), 15.510 (1)
β (°) 103.487 (1)
V3)1378.49 (2)
Z4
Radiation typeMo Kα
µ (mm1)1.62
Crystal size (mm)0.63 × 0.48 × 0.40
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2000a)
Tmin, Tmax0.817, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
9853, 3924, 3456
Rint0.014
(sin θ/λ)max1)0.715
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.069, 1.04
No. of reflections3924
No. of parameters251
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.38, 0.46

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SAINT, SHELXTL (Sheldrick, 2000b), SHELXTL and PLATON (Spek, 2001).

Selected geometric parameters (Å, º) top
Cu1—O11.9623 (10)O3—C111.2309 (16)
Cu1—O21.9634 (9)O4—C121.2331 (15)
Cu1—N21.9861 (10)O2—C121.2721 (15)
Cu1—N11.9863 (10)O1—C111.2700 (16)
Cu1—O52.2901 (12)
O1—Cu1—O283.37 (4)N2—Cu1—N191.67 (4)
O1—Cu1—N2169.41 (5)O1—Cu1—O596.40 (5)
O2—Cu1—N291.39 (4)O2—Cu1—O593.32 (4)
O1—Cu1—N190.87 (4)N2—Cu1—O593.07 (4)
O2—Cu1—N1163.65 (4)N1—Cu1—O5102.55 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H5···O6i0.81 (2)2.23 (2)3.037 (1)172 (2)
O5—H13···O4ii0.78 (3)2.04 (3)2.811 (1)166 (2)
O5—H14···O6iii0.82 (2)2.10 (3)2.915 (1)177 (2)
O6—H12···O3iv0.78 (2)2.36 (3)2.973 (1)137 (2)
O6—H12···O4iv0.78 (2)2.43 (3)2.997 (1)131 (2)
Symmetry codes: (i) x+1, y+1, z; (ii) x+1/2, y+1/2, z+1/2; (iii) x, y1, z; (iv) x+1, y+1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds