research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of three ortho-substituted N-acyl­hydrazone derivatives

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, bDepartment of Chemistry, Sri Dharmasthala Manjunatheshwara College (Autonomous), Ujire 574 240, India, cInstitute of Materials Science, Darmstadt University of Technology, Alarich-Weiss-Strasse 2, D-64287, Darmstadt, Germany, and dKarnataka State Rural Development and Panchayat Raj University, Gadag 582 101, India
*Correspondence e-mail: gowdabt@yahoo.com

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 7 November 2017; accepted 21 November 2017; online 28 November 2017)

To explore the effect of the nature of substitutions on the structural parameters and hydrogen-bond inter­actions in N-acyl­hydrazone derivatives, the crystal structures of three ortho-substituted N-acyl­hydrazone derivatives, namely (E)-N-{2-[2-(2-chloro­benzyl­idene)hydrazin­yl]-2-oxoeth­yl}-4-methyl­benzene­sulfon­amide, C16H16ClN3O3S (I), (E)-N-{2-[2-(2-methyl­benzyl­idene)hydrazin­yl]-2-oxoeth­yl}-4-methyl­benzene­sulfonamide, C17H19N3O3S (II), and (E)-N-{2-[2-(2-nitro­benzyl­idene)hydrazin­yl]-2-oxoeth­yl}-4-methyl­benzene­sulfonamide, C16H16N4O5S (III), have been determined. The structures of the three compounds display similar mol­ecular conformations and hydrogen-bond patterns. The hydrazone part of the mol­ecule, C—C—N—N=C, is almost planar in all the compounds, with the C—C—N—N and C—N—N=C torsion angles being 179.5 (3) and 177.1 (3)°, respectively, in (I), −179.4 (2) and −177.1 (3)° in (II) and −179.7 (2) and 173.4 (2)° in (III). The two phenyl rings on either side of the chain are approximately parallel to each other. In the crystal, the mol­ecules are linked to each other via N—H⋯O hydrogen bonds, forming ribbons with R22(8) and R22(10) ring motifs. The introduction of electron-withdrawing groups (by a chloro or nitro group) to produce compounds (I) or (III) results in C—H⋯O hydrogen-bonding inter­actions involving the sulfonyl O atoms of adjacent ribbons, forming layers parallel to the ab plane in (I) or a three-dimensional network in (III). In (III), one O atom of the nitro group is disordered over two orientations with refined occupancy ratio of 0.836 (12):0.164 (12).

1. Chemical context

N-Acyl­hydrazones belong to the Schiff base family of general structure R1—C(=O)—N—N=CR3R4. N-Acyl­hydrazones of aromatic aldehydes find great importance in organic synthesis due to their biological and medicinal activities (Tian et al., 2009[Tian, B., He, M., Tang, S., Hewlett, I., Tan, Z., Li, J., Jin, Y. & Yang, M. (2009). Bioorg. Med. Chem. Lett. 19, 2162-2167.], 2011[Tian, B., He, M., Tan, Z., Tang, S., Hewlett, I., Chen, S., Jin, Y. & Yang, M. (2011). Chem. Biol. Drug Des. 77, 189-198.]). The donor sites, carbonyl and imine groups, in the compounds are responsible for the physical and chemical properties of N-acyl­hydrazones. Their ability to form chelates with transition metals can be effectively utilized to analyse metals selectively as hydrazone complexes. N-Acyl­hydrazones can exist as Z/E geometrical isomers about the C=N bond of the hydrazone moiety (Palla et al., 1986[Palla, G., Predieri, G., Domiano, P., Vignali, C. & Turner, W. (1986). Tetrahedron, 42, 3649-3654.]). Crystal-structure studies of N-acyl­hydrazones revealed that the mol­ecules display an E conformation in the solid state (Purandara et al., 2015a[Purandara, H., Foro, S. & Gowda, B. T. (2015a). Acta Cryst. E71, 602-605.],b[Purandara, H., Foro, S. & Gowda, B. T. (2015b). Acta Cryst. E71, 730-733.],c[Purandara, H., Foro, S. & Gowda, B. T. (2015c). Acta Cryst. E71, 795-798.], 2017[Purandara, H., Foro, S. & Thimme Gowda, B. (2017). Acta Cryst. E73, 1683-1686.]; Gu et al. 2012[Gu, W., Wu, R., Qi, S., Gu, C., Si, F. & Chen, Z. (2012). Molecules, 17, 4634-4650.]), whereas NMR spectroscopic studies showed the duplicate signals for amide and methyl­ene protons, indicating the presence of two isomers in solution (Lacerda et al., 2012[Lacerda, R. B., da Silva, L. L., de Lima, C. K. F., Miguez, E., Miranda, A. L. P., Laufer, S. A., Barreiro, E. J. & Fraga, C. A. M. (2012). PLoS One, 7, e46925.]; Lopes et al., 2013[Lopes, A. B., Miguez, E., Kümmerle, A. E., Rumjanek, V. M., Fraga, C. A. M. & Barreiro, E. J. (2013). Molecules, 18, 11683-11704.]). As the stereochemistry of the hydrazone is determined by the various substituents in the hydrazone moiety, we thought it would be inter­esting to synthesize several ortho-substituted N-acyl­hydrazone derivatives to explore their effects on crystal-structure parameters and hydrogen-bonding inter­actions. Thus this paper describes the salient features of ortho-chloro-, methyl- and nitro-substituted N-acyl­hydrazone derivatives, namely, (E)-N-{2-[2-(2-chloro­benzyl­idene)hydrazin­yl]-2-oxoeth­yl}-4-methyl­benzene­sulfonamide, C16H16ClN3O3S (I)[link], (E)-N-{2-[2-(2-methyl­benzyl­idene)hydrazin­yl]-2-oxoeth­yl}-4-methyl­benzene­sulfonamide, C17H19N3O3S (II)[link], and (E)-N-{2-[2-(2-nitro­benzyl­idene)hydrazin­yl]-2-oxoeth­yl}-4-methyl­benzene­sulfonamide (III)[link].

[Scheme 1]

2. Structural commentary

The title compounds (I)–(III) (Figs. 1[link]–3[link][link]), which differ only in the ortho-substituent, each crystallize in the centrosymmetric space group P[\overline{1}] with one mol­ecule in the asymmetric units and display many common features. Each mol­ecule adopts an E configuration around the imine C=N bond. The conformation of the N—-H bond in the amide part is syn with respect to the C=O bond, the imine C—H bond and the ortho substituent. The sulfonamide bonds are found to be anti­clinal, and the torsion angles of the sulfonamide moieties are 98.6 (3), −99.6 (3) and 99.9 (2)° in compounds (I)[link], (II)[link], and (III)[link], respectively.

[Figure 1]
Figure 1
The mol­ecular structure of compound (I)[link], with displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
The mol­ecular structure of compound (II)[link], with displacement ellipsoids drawn at the 50% probability level.
[Figure 3]
Figure 3
The mol­ecular structure of compound (III)[link], with displacement ellipsoids drawn at the 50% probability level.

The dihedral angles between the phenyl ring (C10-C15) and the mean plane of the C9/N3/N2/C8/O3 hydrazone fragment are 5.7 (2), 5.54 (18) and 7.90 (17)° for (I)[link], (II)[link], and (III)[link], respectively. The N-acylhydrazone portion of the mol­ecules (C=N—NH—C=O group) is therefore approximately coplanar with the plane of benzyl­idenephenyl ring (C10–C15) in these compounds, but the sulfonyl glycine part of the mol­ecule is rotated by 40.0 (3)° in (I)[link], 40.2 (3)° in (II)[link] and 41.4 (2)° in (III)[link] with respect to the hydrazone group. The phenyl rings are also approximately parallel to each other, forming dihedral angles ranging from 12.86 (11) to 13.10 (19)°. In (III)[link], an intra­molecular C—H⋯O hydrogen bond involving the nitro group and the imine H atom is observed (Table 3[link]).

Table 3
Hydrogen-bond geometry (Å, °) for (III)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O3i 0.85 (2) 2.06 (2) 2.869 (3) 161 (3)
N2—H2N⋯O3ii 0.87 (2) 2.03 (2) 2.881 (3) 170 (3)
C7—H7B⋯O4iii 0.97 2.55 3.100 (4) 116
C9—H9A⋯O4 0.93 2.27 2.821 (4) 118
C16—H16C⋯O5iv 0.96 2.58 3.525 (6) 168
Symmetry codes: (i) -x+1, -y, -z; (ii) -x+2, -y, -z; (iii) x-1, y, z; (iv) -x+1, -y+1, -z+1.

3. Supra­molecular features

In all three compounds, the O atom of the carbonyl group is engaged as an acceptor in bifurcated N—H⋯O hydrogen bonding with the sulfonamide H atom and the amino H atom of the hydrazide segment of two centrosymmetrically related neighbouring mol­ecules, enclosing rings of R22(8) and R22(10) graph-set motif and forming mol­ecular ribbons parallel to the a axis [Table 1[link], Fig. 4[link] for (I)[link], Table 2[link], Fig. 6[link] for (II)[link] and Table 3[link], Fig. 7[link] for (III)]. In the crystal structure of (II)[link], there are no other significant inter­molecular inter­actions present. Replace­ment of the methyl group in (II)[link] by the chloro or nitro electron-withdrawing groups to produce compound (I)[link] or (III)[link] introduces C—H⋯O inter­actions. In (I)[link], the inter­actions involving the sulfonyl oxygen atoms and aromatic H atoms of adjacent ribbons (Fig. 5[link]) result in the formation of two-dimensional layer networks extending parallel to the ab plane. In (III)[link], the ribbons are further stabilized by inter­molecular C—H⋯O inter­actions between methyl­ene H atoms and the O4 oxygen atom of the nitro group. Adjacent ribbons in (III)[link] are further linked into a three-dimensional network by weak hydrogen-bonding inter­actions occurring between methyl H atoms and the oxygen atom O5 of the nitro group, resulting in the formation of R22(34) ring motifs (Fig. 8[link]).

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O3i 0.84 (2) 2.02 (2) 2.839 (3) 162 (4)
N2—H2N⋯O3ii 0.86 (2) 2.03 (2) 2.884 (3) 171 (3)
C12—H12⋯O1iii 0.93 2.55 3.457 (4) 165
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+2, -y+1, -z; (iii) x+1, y+1, z.

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O3i 0.84 (2) 2.03 (2) 2.845 (3) 166 (3)
N2—H2N⋯O3ii 0.86 (2) 2.05 (2) 2.898 (3) 170 (3)
Symmetry codes: (i) -x, -y+1, -z+2; (ii) -x-1, -y+1, -z+2.
[Figure 4]
Figure 4
Crystal packing of compound (I)[link], showing the formation of mol­ecular ribbons parallel to the a axis through N—H⋯O hydrogen bonds (dashed lines).
[Figure 6]
Figure 6
Crystal packing of compound (II)[link], showing the formation of mol­ecular ribbons parallel to the a axis through N—H⋯O hydrogen bonds (dashed lines).
[Figure 7]
Figure 7
Crystal packing of compound (III)[link], showing the formation of a three-dimensional network through N—H⋯O and C—H⋯O hydrogen bonds (dashed lines).
[Figure 5]
Figure 5
The C—H⋯O inter­actions (blue dotted lines) observed in the structure of the compound (I)[link]. H atoms have been omitted for clarity.
[Figure 8]
Figure 8
Partial crystal structure of compound (III)[link], showing the C—H⋯O inter­action forming R22(34) rings along [001].

4. Database survey

Comparison of structures (I)–(III) with those of the related N-acyl­hydrazone derivatives (E)-N-{2-[2-(4-methyl­benzyl­idene)hydrazin-1-yl]-2-oxoeth­yl}-p-toluene­sulfonamide (IV) (Purandara et al., 2015b[Purandara, H., Foro, S. & Gowda, B. T. (2015b). Acta Cryst. E71, 730-733.]) and (E)-N-2-[2-(4-nitro­benzyl­idene)hydrazine-1-yl]-2-oxoethyl-4-methyl­benzene­sulfon­amide N,N-di­methyl­formamide monosolvate (V) (Purandara et al., 2017[Purandara, H., Foro, S. & Thimme Gowda, B. (2017). Acta Cryst. E73, 1683-1686.]) indicate that mol­ecules of ortho-substituted compounds are U-shaped, while the mol­ecules of compounds (IV) and (V) have an extended chain conformation.

5. Synthesis and crystallization

General procedure for the synthesis of N-(4-methyl­benzene­sulfon­yl)glycinyl hydrazide (L3)

p-Toluene­sulfonyl chloride (0.01 mol) was added to glycine (0.02 mol) dissolved in an aqueous solution of potassium carbonate (0.06 mol, 50 ml). The reaction mixture was stirred at 373 K for 6h, left overnight at room temperature, then filtered and treated with dilute hydro­chloric acid. The solid N-(4-methyl­benzene­sulfon­yl)glycine (L1) obtained was crystallized from aqueous ethanol. Sulfuric acid (0.5 ml) was added to (L1) (0.02 mol) dissolved in ethanol (30 ml) and the mixture was refluxed. The reaction mixture was monitored by TLC at regular inter­vals. After completion of the reaction, the reaction mixture was concentrated to remove excess ethanol. The product, N-(4-methyl­benzene­sulfon­yl)glycine ethyl ester (L2) was poured into water, neutralized with sodium bicarbonate and recrystallized from acetone. The pure (L2) (0.01 mol) was then added in small portions to a stirred solution of 99% hydrazine hydrate (10 ml) in 30 ml ethanol and the mixture was refluxed for 6 h. After cooling to room temperature, the resulting precipitate was filtered, washed with cold water and dried to obtain N-(4-methyl­benzene­sulfon­yl)glycinyl hydrazide (L3).

Synthesis of compound (I)

A mixture of L3 (0.01 mol) and 2-chloro­benzaldehyde (0.01 mol) in anhydrous methanol (30 ml) and two drops of glacial acetic acid was refluxed for 8 h. After cooling, the precipitate was collected by vacuum filtration, washed with cold methanol, dried, and recrystallized to a constant melting point from methanol (511–512 K). The purity of the compound was checked by TLC and characterized by its IR spectrum. The characteristic absorptions observed are 3199.9, 1674.2, 1604.8, 1327.0 and 1153.4 cm−1 for the asymmetric N—H, C=O, C=N, S=O and symmetric S=O stretching bands, respectively. 1H NMR (400 MHz, DMSO-d6, δ ppm): 2.36 (s, 3H), 3.56, 4.05 (2d, 2H, J = 6.1 Hz), 7.32–7.39 (m, 4H, Ar-H), 7.41–7.53 (m, 2H, Ar-H), 7.71–7.77 (m, 2H, Ar-H), 7.98 (t, 1H), 8.31, 8.57 (2s, 1H), 11.60 (s, 1H). 13C NMR (400 MHz, DMSO-d6, δ ppm): 20.96, 43.23, 44.63, 126.65, 127.38, 128.04, 129.70, 131.12, 132.99, 134.76, 137.50, 139.90, 142.50, 143.23, 158.17, 164.33, 169.08. Plate-shaped colourless single crystals of (I)[link] suitable for the X-ray diffraction study were grown from a DMF solution by slow evaporation of the solvent.

Synthesis of compound (II)

A mixture of L3 (0.01 mol) and 2-methyl­benzaldehyde (0.01 mol) in anhydrous methanol (30 ml) and two drops of glacial acetic acid was refluxed for 8 h. After cooling, the precipitate was collected by vacuum filtration, washed with cold methanol and dried. It was recrystallized to a constant melting point from methanol (474–475 K). The purity of the compound was checked by TLC and characterized by its IR spectrum. The characteristic absorptions observed are 3186.4, 1672.3, 1620.2, 1328.9 and 1155.4 cm−1 for the asymmetric N—H, C=O, C=N, S=O and symmetric S=O stretching bands, respectively. 1H NMR (400 MHz, DMSO-d6, δ ppm): 2.37 (s, 3H), 2.40 (s, 3H), 3.54, 4.01 (2d, 2H), 7.18–7.28 (m, 3H, Ar-H), 7.34 (t, 2H, Ar-H), 7.60–7.62 (m, 1H, Ar-H), 7.70–7.77 (m, 3H, Ar-H), 8.18, 8.46 (2s, 1H), 11.36 (s, 1H). 13C NMR (400 MHz, DMSO-d6, δ ppm): 19.53, 20.97, 43.33, 44.67, 125.93, 126.60, 129.34, 130.72, 131.86, 136.41, 136.67, 137.21, 137.61, 142.49, 143.07, 145.86, 163.98, 168.81. Prismatic colourless single crystals of (II)[link] employed in the X-ray diffraction study were grown from a DMF solution by slow evaporation of the solvent.

Synthesis of compound (III)

A mixture of L3 (0.01 mol) and 2-nitro­benzaldehyde (0.01 mol) in anhydrous methanol (30 ml) and two drops of glacial acetic acid was refluxed for 8 h. After cooling, the precipitate was collected by vacuum filtration, washed with cold methanol and dried. It was recrystallized to a constant melting point from methanol (509–512 K). The purity of the compound was checked by TLC and characterized by its IR spectrum. The characteristic absorptions observed are 3219.2, 1674.2, 1597.1, 1327.0 and 1132.2 cm−1 for the asymmetric N—H, C=O, C=N, S=O and symmetric S=O stretching bands, respectively. 1H NMR (400 MHz, DMSO-d6, δ ppm): 2.39 (s, 3H), 3.59, 4.04 (2d, 2H, J = 6.1 Hz), 7.35 (t, 2H, Ar-H), 7.60–7.66 (m, 1H, Ar-H), 7.73–7.77 (m, 4H, Ar-H), 7.95–8.06 (m, 2H, Ar-H), 8.33, 8.63 (2s, 1H), 11.72, 11.75 (2s, 1H). 13C NMR (400 MHz, DMSO-d6, δ ppm): 20.98, 43.22, 44.59, 124.38, 126.60, 128.07, 129.29, 130.29, 133.35, 137.22, 137.72, 139.12, 142.49, 147.86, 148.01, 164.54, 169.23. Rod-shaped light-yellow single crystals of (III)[link] employed in the X-ray diffraction study were grown from a DMF solution by slow evaporation of the solvent.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. The amino H atoms were freely refined with the N—H distances restrained to 0.86 (2) Å. H atoms bonded to C were positioned with idealized geometry using a riding model with C—H = 0.93 Å (aromatic), 0.96 Å (meth­yl), 0.97 Å (methyl­ene). All H atoms were refined with isotropic displacement parameters set at 1.2Ueq(C, N) or 1.5Ueq(C) for methyl H atoms. A rotating model was used for the methyl groups. In the structure of (I)[link], the Uij components of atom C16 were restrained to approximate isotropic behavior. In (III)[link], the O5 atom of the nitro group is disordered over two orientations with refined occupancy ratio of 0.836 (12):0.164 (12). The Ueq of atom O5′ was restrained to approximate isotropic behavior.

Table 4
Experimental details

  (I) (II) (III)
Crystal data
Chemical formula C16H16ClN3O3S C17H19N3O3S C16H16N4O5S
Mr 365.83 345.41 376.39
Crystal system, space group Triclinic, P[\overline{1}] Triclinic, P[\overline{1}] Triclinic, P[\overline{1}]
Temperature (K) 293 293 293
a, b, c (Å) 7.867 (1), 10.340 (1), 10.997 (2) 7.984 (1), 10.320 (2), 11.081 (2) 8.006 (1), 10.229 (1), 11.181 (2)
α, β, γ (°) 84.96 (1), 75.46 (1), 81.13 (1) 85.17 (1), 74.89 (1), 81.14 (1) 83.76 (1), 72.86 (1), 82.13 (1)
V3) 854.4 (2) 870.0 (3) 864.5 (2)
Z 2 2 2
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.37 0.21 0.22
Crystal size (mm) 0.50 × 0.36 × 0.18 0.30 × 0.16 × 0.12 0.48 × 0.48 × 0.28
 
Data collection
Diffractometer Oxford Diffraction Xcalibur diffractometer with Sapphire CCD detector Oxford Diffraction Xcalibur diffractometer with Sapphire CCD detector Oxford Diffraction Xcalibur diffractometer with Sapphire CCD detector
Absorption correction Multi-scan CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Multi-scan CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Multi-scan CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.])
Tmin, Tmax 0.838, 0.937 0.941, 0.976 0.900, 0.940
No. of measured, independent and observed [I > 2σ(I)] reflections 5855, 3444, 2709 5265, 3115, 2019 5980, 3524, 2511
Rint 0.021 0.027 0.020
(sin θ/λ)max−1) 0.625 0.599 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.131, 1.29 0.053, 0.141, 1.05 0.057, 0.131, 1.16
No. of reflections 3444 3115 3524
No. of parameters 224 225 252
No. of restraints 8 8 10
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.26, −0.28 0.28, −0.26 0.31, −0.30
Computer programs: CrysAlis CCD and CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]), SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

For all structures, data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

(E)-N-{2-[2-(2-Chlorobenzylidene)hydrazinyl]-2-oxoethyl}-4-methylbenzenesulfonamide (I) top
Crystal data top
C16H16ClN3O3SZ = 2
Mr = 365.83F(000) = 380
Triclinic, P1Dx = 1.422 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.867 (1) ÅCell parameters from 2213 reflections
b = 10.340 (1) Åθ = 2.7–27.8°
c = 10.997 (2) ŵ = 0.37 mm1
α = 84.96 (1)°T = 293 K
β = 75.46 (1)°Plate, colourless
γ = 81.13 (1)°0.50 × 0.36 × 0.18 mm
V = 854.4 (2) Å3
Data collection top
Oxford Diffraction Xcalibur
diffractometer with Sapphire CCD detector
2709 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray SourceRint = 0.021
Rotation method data acquisition using ω scansθmax = 26.4°, θmin = 2.7°
Absorption correction: multi-scan
CrysAlis RED (Oxford Diffraction, 2009)
h = 99
Tmin = 0.838, Tmax = 0.937k = 1212
5855 measured reflectionsl = 1313
3444 independent reflections
Refinement top
Refinement on F28 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.062H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.131 w = 1/[σ2(Fo2) + (0.0196P)2 + 0.9514P]
where P = (Fo2 + 2Fc2)/3
S = 1.29(Δ/σ)max = 0.001
3444 reflectionsΔρmax = 0.26 e Å3
224 parametersΔρmin = 0.28 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1690 (4)0.5986 (3)0.3391 (3)0.0455 (8)
C20.0073 (5)0.5621 (4)0.3404 (3)0.0553 (9)
H20.00190.48560.30390.066*
C30.1476 (5)0.6406 (5)0.3968 (4)0.0728 (13)
H30.25670.61520.39860.087*
C40.1428 (6)0.7543 (5)0.4497 (4)0.0762 (13)
C50.0198 (7)0.7875 (4)0.4496 (4)0.0803 (14)
H50.02500.86370.48670.096*
C60.1762 (6)0.7103 (4)0.3955 (4)0.0655 (11)
H60.28490.73380.39740.079*
C70.5616 (4)0.6710 (3)0.1041 (4)0.0472 (8)
H7A0.54990.71620.18000.057*
H7B0.54260.73650.03840.057*
C80.7477 (4)0.5978 (3)0.0656 (3)0.0363 (7)
C90.9704 (4)0.8454 (3)0.1176 (3)0.0384 (7)
H91.08610.80280.09630.046*
C100.9332 (4)0.9799 (3)0.1602 (3)0.0376 (7)
C111.0632 (4)1.0477 (3)0.1782 (3)0.0416 (7)
C121.0240 (5)1.1749 (3)0.2181 (4)0.0541 (9)
H121.11301.21820.23070.065*
C130.8524 (5)1.2361 (3)0.2387 (4)0.0595 (10)
H130.82511.32130.26550.071*
C140.7207 (5)1.1729 (3)0.2202 (4)0.0588 (10)
H140.60491.21540.23360.071*
C150.7608 (4)1.0463 (3)0.1817 (3)0.0483 (8)
H150.67061.00400.16980.058*
C160.3116 (7)0.8436 (6)0.5055 (5)0.126 (2)
H16A0.41080.79570.52150.188*
H16B0.32800.91660.44730.188*
H16C0.30260.87510.58290.188*
N10.4270 (4)0.5847 (3)0.1266 (3)0.0500 (7)
H1N0.381 (5)0.572 (4)0.068 (3)0.060*
N20.8803 (3)0.6631 (2)0.0693 (3)0.0388 (6)
H2N0.987 (3)0.625 (3)0.044 (3)0.047*
N30.8414 (3)0.7884 (2)0.1104 (2)0.0386 (6)
O10.3203 (3)0.3846 (2)0.2318 (3)0.0677 (8)
O20.4985 (3)0.5068 (3)0.3261 (3)0.0708 (8)
O30.7779 (3)0.4849 (2)0.0302 (2)0.0445 (6)
Cl11.28438 (12)0.97633 (10)0.14816 (11)0.0677 (3)
S10.36582 (11)0.50602 (8)0.25882 (9)0.0486 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0432 (18)0.0427 (18)0.0470 (19)0.0067 (14)0.0047 (15)0.0005 (15)
C20.047 (2)0.061 (2)0.058 (2)0.0089 (17)0.0117 (17)0.0025 (18)
C30.041 (2)0.107 (4)0.059 (3)0.002 (2)0.0046 (18)0.015 (3)
C40.070 (3)0.084 (3)0.052 (2)0.018 (2)0.006 (2)0.012 (2)
C50.101 (4)0.060 (3)0.063 (3)0.001 (2)0.008 (3)0.018 (2)
C60.065 (2)0.063 (3)0.065 (3)0.013 (2)0.001 (2)0.017 (2)
C70.0312 (16)0.0410 (18)0.067 (2)0.0049 (13)0.0036 (15)0.0137 (16)
C80.0335 (15)0.0321 (16)0.0429 (17)0.0045 (12)0.0077 (13)0.0036 (13)
C90.0335 (15)0.0310 (15)0.0487 (19)0.0035 (12)0.0062 (14)0.0036 (14)
C100.0371 (16)0.0293 (15)0.0456 (18)0.0065 (12)0.0080 (14)0.0005 (13)
C110.0409 (17)0.0337 (16)0.0515 (19)0.0070 (13)0.0125 (14)0.0014 (14)
C120.067 (2)0.0386 (19)0.063 (2)0.0193 (17)0.0191 (19)0.0059 (17)
C130.071 (3)0.0337 (18)0.073 (3)0.0028 (17)0.015 (2)0.0138 (18)
C140.052 (2)0.041 (2)0.076 (3)0.0058 (16)0.0056 (19)0.0110 (18)
C150.0385 (17)0.0392 (18)0.066 (2)0.0064 (14)0.0073 (16)0.0083 (16)
C160.101 (4)0.134 (5)0.090 (4)0.060 (4)0.022 (3)0.008 (3)
N10.0338 (14)0.0640 (19)0.0539 (18)0.0144 (13)0.0039 (13)0.0180 (15)
N20.0297 (13)0.0296 (13)0.0553 (17)0.0004 (10)0.0059 (12)0.0115 (12)
N30.0374 (14)0.0272 (13)0.0499 (16)0.0041 (10)0.0069 (12)0.0058 (11)
O10.0643 (17)0.0380 (13)0.100 (2)0.0060 (12)0.0151 (15)0.0128 (14)
O20.0538 (16)0.083 (2)0.081 (2)0.0014 (14)0.0306 (14)0.0075 (16)
O30.0352 (11)0.0325 (12)0.0662 (15)0.0013 (9)0.0107 (10)0.0148 (11)
Cl10.0408 (5)0.0574 (6)0.1094 (9)0.0058 (4)0.0234 (5)0.0156 (5)
S10.0380 (4)0.0432 (5)0.0646 (6)0.0030 (3)0.0122 (4)0.0084 (4)
Geometric parameters (Å, º) top
C1—C61.373 (5)C10—C111.387 (4)
C1—C21.378 (5)C10—C151.396 (4)
C1—S11.760 (3)C11—C121.388 (4)
C2—C31.390 (5)C11—Cl11.744 (3)
C2—H20.9300C12—C131.372 (5)
C3—C41.366 (7)C12—H120.9300
C3—H30.9300C13—C141.370 (5)
C4—C51.375 (7)C13—H130.9300
C4—C161.518 (6)C14—C151.377 (5)
C5—C61.385 (6)C14—H140.9300
C5—H50.9300C15—H150.9300
C6—H60.9300C16—H16A0.9600
C7—N11.449 (4)C16—H16B0.9600
C7—C81.517 (4)C16—H16C0.9600
C7—H7A0.9700N1—S11.603 (3)
C7—H7B0.9700N1—H1N0.843 (18)
C8—O31.232 (3)N2—N31.374 (3)
C8—N21.338 (4)N2—H2N0.863 (18)
C9—N31.272 (4)O1—S11.432 (3)
C9—C101.469 (4)O2—S11.424 (3)
C9—H90.9300
C6—C1—C2120.0 (3)C10—C11—Cl1120.7 (2)
C6—C1—S1120.1 (3)C12—C11—Cl1117.4 (3)
C2—C1—S1119.9 (3)C13—C12—C11119.1 (3)
C1—C2—C3119.5 (4)C13—C12—H12120.4
C1—C2—H2120.3C11—C12—H12120.4
C3—C2—H2120.3C14—C13—C12120.7 (3)
C4—C3—C2121.3 (4)C14—C13—H13119.6
C4—C3—H3119.4C12—C13—H13119.6
C2—C3—H3119.4C13—C14—C15119.7 (3)
C3—C4—C5118.3 (4)C13—C14—H14120.2
C3—C4—C16121.4 (5)C15—C14—H14120.2
C5—C4—C16120.3 (5)C14—C15—C10121.7 (3)
C4—C5—C6121.6 (4)C14—C15—H15119.2
C4—C5—H5119.2C10—C15—H15119.2
C6—C5—H5119.2C4—C16—H16A109.5
C1—C6—C5119.3 (4)C4—C16—H16B109.5
C1—C6—H6120.4H16A—C16—H16B109.5
C5—C6—H6120.4C4—C16—H16C109.5
N1—C7—C8112.3 (3)H16A—C16—H16C109.5
N1—C7—H7A109.1H16B—C16—H16C109.5
C8—C7—H7A109.1C7—N1—S1122.4 (3)
N1—C7—H7B109.1C7—N1—H1N120 (3)
C8—C7—H7B109.1S1—N1—H1N118 (3)
H7A—C7—H7B107.9C8—N2—N3119.2 (2)
O3—C8—N2120.9 (3)C8—N2—H2N118 (2)
O3—C8—C7122.6 (3)N3—N2—H2N123 (2)
N2—C8—C7116.5 (3)C9—N3—N2117.4 (2)
N3—C9—C10118.7 (3)O2—S1—O1120.41 (17)
N3—C9—H9120.6O2—S1—N1107.22 (16)
C10—C9—H9120.6O1—S1—N1106.85 (17)
C11—C10—C15116.9 (3)O2—S1—C1108.52 (17)
C11—C10—C9123.2 (3)O1—S1—C1107.29 (16)
C15—C10—C9119.9 (3)N1—S1—C1105.64 (16)
C10—C11—C12121.9 (3)
C6—C1—C2—C31.4 (6)C11—C12—C13—C140.0 (6)
S1—C1—C2—C3175.7 (3)C12—C13—C14—C150.6 (6)
C1—C2—C3—C40.8 (6)C13—C14—C15—C100.3 (6)
C2—C3—C4—C52.1 (6)C11—C10—C15—C140.6 (5)
C2—C3—C4—C16176.9 (4)C9—C10—C15—C14179.2 (3)
C3—C4—C5—C61.3 (7)C8—C7—N1—S184.5 (3)
C16—C4—C5—C6177.7 (4)O3—C8—N2—N3179.4 (3)
C2—C1—C6—C52.2 (6)C7—C8—N2—N32.0 (4)
S1—C1—C6—C5174.9 (3)C10—C9—N3—N2179.5 (3)
C4—C5—C6—C10.9 (7)C8—N2—N3—C9177.1 (3)
N1—C7—C8—O315.4 (5)C7—N1—S1—O217.0 (3)
N1—C7—C8—N2166.0 (3)C7—N1—S1—O1147.3 (3)
N3—C9—C10—C11176.2 (3)C7—N1—S1—C198.6 (3)
N3—C9—C10—C155.3 (5)C6—C1—S1—O237.5 (4)
C15—C10—C11—C121.2 (5)C2—C1—S1—O2145.4 (3)
C9—C10—C11—C12179.8 (3)C6—C1—S1—O1169.0 (3)
C15—C10—C11—Cl1177.5 (3)C2—C1—S1—O113.8 (3)
C9—C10—C11—Cl11.1 (5)C6—C1—S1—N177.2 (3)
C10—C11—C12—C130.9 (5)C2—C1—S1—N199.9 (3)
Cl1—C11—C12—C13177.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O3i0.84 (2)2.02 (2)2.839 (3)162 (4)
N2—H2N···O3ii0.86 (2)2.03 (2)2.884 (3)171 (3)
C12—H12···O1iii0.932.553.457 (4)165
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y+1, z; (iii) x+1, y+1, z.
(E)-N-{2-[2-(2-Methylbenzylidene)hydrazinyl]-2-oxoethyl}-4-methylbenzenesulfonamide (II) top
Crystal data top
C17H19N3O3SZ = 2
Mr = 345.41F(000) = 364
Triclinic, P1Dx = 1.319 Mg m3
a = 7.984 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.320 (2) ÅCell parameters from 2050 reflections
c = 11.081 (2) Åθ = 2.7–27.9°
α = 85.17 (1)°µ = 0.21 mm1
β = 74.89 (1)°T = 293 K
γ = 81.14 (1)°Prism, colourless
V = 870.0 (3) Å30.30 × 0.16 × 0.12 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer with Sapphire CCD detector
2019 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray SourceRint = 0.027
Rotation method data acquisition using ω scansθmax = 25.2°, θmin = 2.7°
Absorption correction: multi-scan
CrysAlis RED (Oxford Diffraction, 2009)
h = 59
Tmin = 0.941, Tmax = 0.976k = 1212
5265 measured reflectionsl = 1313
3115 independent reflections
Refinement top
Refinement on F28 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.053H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.141 w = 1/[σ2(Fo2) + (0.0571P)2 + 0.4335P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.006
3115 reflectionsΔρmax = 0.28 e Å3
225 parametersΔρmin = 0.26 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3267 (4)0.4077 (3)0.6615 (3)0.0531 (8)
C20.3217 (5)0.2980 (4)0.6002 (4)0.0746 (10)
H20.21530.27590.59500.089*
C30.4765 (7)0.2216 (4)0.5467 (4)0.0934 (13)
H30.47330.14770.50520.112*
C40.6359 (6)0.2521 (5)0.5531 (4)0.0929 (14)
C50.6381 (5)0.3645 (5)0.6099 (4)0.0863 (13)
H50.74490.38930.61080.104*
C60.4851 (4)0.4414 (4)0.6656 (3)0.0652 (9)
H60.48890.51600.70590.078*
C70.0626 (3)0.3333 (3)0.8958 (3)0.0552 (8)
H7A0.04280.26740.96010.066*
H7B0.05100.28840.82000.066*
C80.2477 (3)0.4048 (3)0.9366 (3)0.0410 (6)
C90.4635 (4)0.1560 (3)0.8824 (3)0.0458 (7)
H90.57750.19910.90480.055*
C100.4289 (4)0.0216 (3)0.8385 (3)0.0441 (7)
C110.5630 (4)0.0429 (3)0.8232 (3)0.0504 (7)
C120.5183 (5)0.1718 (3)0.7823 (3)0.0635 (9)
H120.60540.21620.77070.076*
C130.3499 (5)0.2332 (3)0.7591 (4)0.0707 (10)
H130.32420.31860.73210.085*
C140.2182 (5)0.1709 (3)0.7750 (4)0.0704 (10)
H140.10390.21370.75990.084*
C150.2575 (4)0.0438 (3)0.8136 (3)0.0576 (8)
H150.16810.00070.82320.069*
C160.8040 (7)0.1637 (5)0.4972 (5)0.1340 (19)
H16A0.77630.08390.47330.201*
H16B0.87170.14370.55800.201*
H16C0.87040.20780.42480.201*
C170.7500 (4)0.0184 (3)0.8499 (4)0.0708 (10)
H17A0.81990.04200.83230.106*
H17B0.76020.09720.79830.106*
H17C0.79010.03930.93640.106*
N10.0695 (3)0.4192 (3)0.8728 (3)0.0584 (7)
H1N0.117 (4)0.434 (3)0.928 (3)0.070*
N20.3764 (3)0.3385 (2)0.9324 (2)0.0452 (6)
H2N0.484 (2)0.373 (3)0.959 (3)0.054*
N30.3362 (3)0.2126 (2)0.8894 (2)0.0448 (6)
O10.0009 (3)0.4970 (3)0.6754 (3)0.0814 (8)
O20.1736 (3)0.6208 (2)0.7693 (3)0.0779 (8)
O30.2783 (2)0.51737 (17)0.9738 (2)0.0505 (5)
S10.13061 (10)0.49880 (8)0.74192 (9)0.0576 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0511 (18)0.0503 (18)0.0533 (19)0.0046 (14)0.0075 (14)0.0021 (15)
C20.073 (2)0.072 (2)0.073 (3)0.0126 (19)0.0026 (19)0.015 (2)
C30.120 (4)0.067 (3)0.070 (3)0.006 (2)0.008 (3)0.013 (2)
C40.079 (3)0.106 (4)0.060 (3)0.028 (3)0.012 (2)0.021 (2)
C50.054 (2)0.119 (4)0.073 (3)0.000 (2)0.0066 (19)0.022 (3)
C60.0460 (19)0.075 (2)0.071 (2)0.0074 (16)0.0118 (16)0.0067 (18)
C70.0345 (15)0.0471 (17)0.081 (2)0.0023 (12)0.0066 (14)0.0174 (16)
C80.0323 (14)0.0387 (16)0.0503 (17)0.0039 (12)0.0074 (12)0.0036 (13)
C90.0381 (15)0.0389 (16)0.0580 (19)0.0016 (12)0.0089 (13)0.0054 (13)
C100.0470 (16)0.0340 (15)0.0510 (18)0.0087 (12)0.0103 (13)0.0015 (13)
C110.0549 (18)0.0410 (16)0.0568 (19)0.0098 (13)0.0162 (15)0.0008 (14)
C120.076 (2)0.0443 (18)0.077 (2)0.0181 (16)0.0252 (19)0.0066 (16)
C130.082 (3)0.0419 (19)0.087 (3)0.0032 (17)0.020 (2)0.0126 (18)
C140.063 (2)0.050 (2)0.089 (3)0.0090 (16)0.0111 (19)0.0132 (19)
C150.0499 (18)0.0430 (17)0.075 (2)0.0011 (14)0.0085 (16)0.0098 (16)
C160.118 (3)0.132 (3)0.113 (3)0.043 (3)0.002 (2)0.004 (3)
C170.054 (2)0.067 (2)0.097 (3)0.0127 (16)0.0249 (19)0.006 (2)
N10.0384 (14)0.0756 (18)0.0637 (19)0.0194 (12)0.0066 (12)0.0165 (15)
N20.0315 (12)0.0340 (12)0.0678 (17)0.0010 (10)0.0076 (11)0.0119 (11)
N30.0409 (13)0.0310 (12)0.0610 (16)0.0019 (10)0.0103 (11)0.0084 (11)
O10.0602 (15)0.0930 (19)0.099 (2)0.0009 (13)0.0384 (14)0.0123 (16)
O20.0739 (16)0.0413 (13)0.119 (2)0.0044 (11)0.0254 (15)0.0112 (13)
O30.0393 (11)0.0349 (11)0.0787 (15)0.0017 (8)0.0153 (10)0.0159 (10)
S10.0435 (4)0.0522 (5)0.0781 (6)0.0020 (3)0.0178 (4)0.0089 (4)
Geometric parameters (Å, º) top
C1—C61.375 (4)C10—C151.398 (4)
C1—C21.380 (4)C11—C121.405 (4)
C1—S11.758 (3)C11—C171.492 (4)
C2—C31.377 (5)C12—C131.364 (5)
C2—H20.9300C12—H120.9300
C3—C41.378 (6)C13—C141.369 (5)
C3—H30.9300C13—H130.9300
C4—C51.370 (6)C14—C151.378 (4)
C4—C161.516 (6)C14—H140.9300
C5—C61.376 (5)C15—H150.9300
C5—H50.9300C16—H16A0.9600
C6—H60.9300C16—H16B0.9600
C7—N11.440 (4)C16—H16C0.9600
C7—C81.518 (4)C17—H17A0.9600
C7—H7A0.9700C17—H17B0.9600
C7—H7B0.9700C17—H17C0.9600
C8—O31.233 (3)N1—S11.604 (3)
C8—N21.331 (3)N1—H1N0.838 (17)
C9—N31.270 (3)N2—N31.384 (3)
C9—C101.470 (4)N2—H2N0.858 (17)
C9—H90.9300O1—S11.422 (2)
C10—C111.397 (4)O2—S11.431 (2)
C6—C1—C2119.9 (3)C13—C12—H12119.3
C6—C1—S1120.0 (2)C11—C12—H12119.3
C2—C1—S1120.0 (3)C12—C13—C14120.9 (3)
C3—C2—C1119.1 (4)C12—C13—H13119.5
C3—C2—H2120.4C14—C13—H13119.5
C1—C2—H2120.4C13—C14—C15119.0 (3)
C2—C3—C4121.6 (4)C13—C14—H14120.5
C2—C3—H3119.2C15—C14—H14120.5
C4—C3—H3119.2C14—C15—C10121.4 (3)
C5—C4—C3118.2 (4)C14—C15—H15119.3
C5—C4—C16121.3 (5)C10—C15—H15119.3
C3—C4—C16120.5 (5)C4—C16—H16A109.5
C4—C5—C6121.2 (4)C4—C16—H16B109.5
C4—C5—H5119.4H16A—C16—H16B109.5
C6—C5—H5119.4C4—C16—H16C109.5
C1—C6—C5119.8 (4)H16A—C16—H16C109.5
C1—C6—H6120.1H16B—C16—H16C109.5
C5—C6—H6120.1C11—C17—H17A109.5
N1—C7—C8113.2 (2)C11—C17—H17B109.5
N1—C7—H7A108.9H17A—C17—H17B109.5
C8—C7—H7A108.9C11—C17—H17C109.5
N1—C7—H7B108.9H17A—C17—H17C109.5
C8—C7—H7B108.9H17B—C17—H17C109.5
H7A—C7—H7B107.7C7—N1—S1122.9 (2)
O3—C8—N2121.5 (2)C7—N1—H1N122 (2)
O3—C8—C7122.1 (2)S1—N1—H1N115 (2)
N2—C8—C7116.5 (2)C8—N2—N3119.6 (2)
N3—C9—C10119.4 (2)C8—N2—H2N120 (2)
N3—C9—H9120.3N3—N2—H2N120 (2)
C10—C9—H9120.3C9—N3—N2117.0 (2)
C11—C10—C15119.3 (3)O1—S1—O2120.42 (15)
C11—C10—C9121.8 (2)O1—S1—N1106.98 (15)
C15—C10—C9118.9 (2)O2—S1—N1107.14 (15)
C10—C11—C12117.9 (3)O1—S1—C1108.74 (15)
C10—C11—C17123.0 (3)O2—S1—C1107.04 (15)
C12—C11—C17119.1 (3)N1—S1—C1105.61 (15)
C13—C12—C11121.4 (3)
C6—C1—C2—C31.8 (5)C11—C12—C13—C140.0 (6)
S1—C1—C2—C3174.6 (3)C12—C13—C14—C150.7 (6)
C1—C2—C3—C40.1 (6)C13—C14—C15—C101.0 (5)
C2—C3—C4—C52.8 (6)C11—C10—C15—C140.5 (5)
C2—C3—C4—C16177.9 (4)C9—C10—C15—C14178.5 (3)
C3—C4—C5—C63.7 (6)C8—C7—N1—S184.6 (3)
C16—C4—C5—C6177.0 (4)O3—C8—N2—N3179.7 (3)
C2—C1—C6—C50.9 (5)C7—C8—N2—N31.5 (4)
S1—C1—C6—C5175.5 (3)C10—C9—N3—N2179.4 (2)
C4—C5—C6—C11.9 (6)C8—N2—N3—C9177.1 (3)
N1—C7—C8—O315.8 (4)C7—N1—S1—O116.2 (3)
N1—C7—C8—N2165.4 (3)C7—N1—S1—O2146.6 (2)
N3—C9—C10—C11176.8 (3)C7—N1—S1—C199.6 (3)
N3—C9—C10—C154.3 (4)C6—C1—S1—O1148.8 (3)
C15—C10—C11—C120.3 (4)C2—C1—S1—O134.8 (3)
C9—C10—C11—C12179.3 (3)C6—C1—S1—O217.2 (3)
C15—C10—C11—C17178.8 (3)C2—C1—S1—O2166.4 (3)
C9—C10—C11—C170.2 (5)C6—C1—S1—N196.7 (3)
C10—C11—C12—C130.5 (5)C2—C1—S1—N179.7 (3)
C17—C11—C12—C13178.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O3i0.84 (2)2.03 (2)2.845 (3)166 (3)
N2—H2N···O3ii0.86 (2)2.05 (2)2.898 (3)170 (3)
Symmetry codes: (i) x, y+1, z+2; (ii) x1, y+1, z+2.
(E)-N-{2-[2-(2-Nitrobenzylidene)hydrazinyl]-2-oxoethyl}-4-methylbenzenesulfonamide (III) top
Crystal data top
C16H16N4O5SZ = 2
Mr = 376.39F(000) = 392
Triclinic, P1Dx = 1.446 Mg m3
a = 8.006 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.229 (1) ÅCell parameters from 1476 reflections
c = 11.181 (2) Åθ = 2.7–27.9°
α = 83.76 (1)°µ = 0.22 mm1
β = 72.86 (1)°T = 293 K
γ = 82.13 (1)°Rod, light yellow
V = 864.5 (2) Å30.48 × 0.48 × 0.28 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer with Sapphire CCD detector
2511 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray SourceRint = 0.020
Rotation method data acquisition using ω scansθmax = 26.4°, θmin = 2.7°
Absorption correction: multi-scan
CrysAlis RED (Oxford Diffraction, 2009)
h = 1010
Tmin = 0.900, Tmax = 0.940k = 812
5980 measured reflectionsl = 1313
3524 independent reflections
Refinement top
Refinement on F210 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.057H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.131 w = 1/[σ2(Fo2) + (0.0346P)2 + 0.6348P]
where P = (Fo2 + 2Fc2)/3
S = 1.16(Δ/σ)max < 0.001
3524 reflectionsΔρmax = 0.31 e Å3
252 parametersΔρmin = 0.30 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.1583 (4)0.0902 (3)0.3328 (3)0.0432 (7)
C20.0013 (4)0.0489 (3)0.3328 (3)0.0515 (7)
H20.00120.02910.29720.062*
C30.1551 (4)0.1232 (4)0.3853 (3)0.0646 (9)
H30.26030.09390.38570.078*
C40.1592 (5)0.2390 (4)0.4367 (3)0.0679 (9)
C50.0013 (5)0.2782 (3)0.4388 (3)0.0695 (9)
H50.00210.35580.47540.083*
C60.1581 (5)0.2045 (3)0.3877 (3)0.0603 (8)
H60.26300.23170.39030.072*
C70.5648 (3)0.1686 (3)0.1001 (3)0.0490 (7)
H7A0.54990.21320.17540.059*
H7B0.55080.23540.03420.059*
C80.7488 (3)0.0959 (2)0.0614 (2)0.0364 (6)
C90.9667 (3)0.3431 (2)0.1185 (2)0.0380 (6)
H9A1.08020.29980.10130.046*
C100.9269 (3)0.4777 (2)0.1623 (2)0.0362 (6)
C111.0452 (3)0.5481 (3)0.1918 (3)0.0416 (6)
C120.9983 (4)0.6727 (3)0.2364 (3)0.0543 (8)
H121.07970.71580.25740.065*
C130.8299 (4)0.7322 (3)0.2493 (3)0.0584 (9)
H130.79740.81660.27780.070*
C140.7102 (4)0.6671 (3)0.2202 (3)0.0544 (8)
H140.59660.70790.22830.065*
C150.7571 (4)0.5416 (3)0.1790 (3)0.0446 (7)
H150.67300.49810.16180.054*
C160.3304 (6)0.3242 (5)0.4884 (4)0.1112 (18)
H16A0.42180.26870.52780.167*
H16B0.36090.37950.42120.167*
H16C0.31720.37870.54900.167*
N10.4300 (3)0.0805 (3)0.1237 (2)0.0496 (6)
H1N0.385 (4)0.071 (3)0.066 (2)0.059*
N20.8798 (3)0.1627 (2)0.0649 (2)0.0386 (5)
H2N0.987 (2)0.125 (3)0.043 (3)0.046*
N30.8416 (3)0.2882 (2)0.1050 (2)0.0385 (5)
N41.2287 (3)0.4938 (3)0.1766 (3)0.0599 (7)
O10.3169 (3)0.12378 (19)0.2315 (2)0.0650 (6)
O20.4818 (3)0.0038 (2)0.3249 (2)0.0692 (7)
O30.7787 (2)0.01737 (17)0.02690 (19)0.0447 (5)
O41.3001 (3)0.4196 (3)0.0977 (3)0.0919 (9)
O51.2976 (6)0.5163 (5)0.2569 (6)0.102 (2)0.836 (12)
O5'1.3314 (19)0.5818 (18)0.157 (3)0.083 (9)0.164 (12)
S10.35831 (9)0.00025 (7)0.25622 (8)0.0478 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0411 (15)0.0425 (15)0.0418 (16)0.0022 (12)0.0074 (12)0.0006 (13)
C20.0421 (16)0.0555 (18)0.0552 (19)0.0072 (14)0.0111 (14)0.0017 (15)
C30.0407 (18)0.085 (3)0.060 (2)0.0004 (17)0.0080 (15)0.0025 (19)
C40.0641 (19)0.078 (2)0.0408 (18)0.0169 (17)0.0032 (16)0.0048 (17)
C50.090 (2)0.057 (2)0.0508 (19)0.0026 (18)0.0040 (19)0.0157 (16)
C60.060 (2)0.061 (2)0.058 (2)0.0107 (16)0.0077 (16)0.0144 (16)
C70.0309 (14)0.0424 (16)0.070 (2)0.0009 (12)0.0063 (13)0.0154 (14)
C80.0307 (13)0.0356 (14)0.0419 (15)0.0021 (11)0.0087 (11)0.0046 (12)
C90.0307 (13)0.0351 (14)0.0472 (16)0.0013 (11)0.0093 (12)0.0056 (12)
C100.0356 (14)0.0303 (13)0.0410 (15)0.0035 (11)0.0086 (11)0.0022 (11)
C110.0374 (15)0.0353 (14)0.0529 (17)0.0041 (11)0.0140 (13)0.0027 (13)
C120.0551 (19)0.0406 (16)0.072 (2)0.0115 (14)0.0204 (16)0.0126 (15)
C130.060 (2)0.0361 (16)0.076 (2)0.0019 (14)0.0137 (17)0.0178 (15)
C140.0436 (17)0.0430 (17)0.071 (2)0.0059 (13)0.0108 (15)0.0110 (15)
C150.0351 (14)0.0405 (15)0.0577 (18)0.0037 (12)0.0110 (13)0.0083 (13)
C160.090 (3)0.122 (4)0.078 (3)0.047 (3)0.013 (2)0.001 (3)
N10.0324 (13)0.0623 (16)0.0556 (16)0.0106 (11)0.0081 (11)0.0166 (13)
N20.0278 (11)0.0345 (12)0.0523 (14)0.0000 (9)0.0079 (10)0.0115 (10)
N30.0342 (12)0.0303 (11)0.0497 (14)0.0017 (9)0.0090 (10)0.0077 (10)
N40.0433 (15)0.0456 (15)0.100 (2)0.0046 (12)0.0302 (16)0.0160 (15)
O10.0550 (13)0.0384 (11)0.1000 (18)0.0020 (10)0.0181 (13)0.0126 (11)
O20.0496 (13)0.0867 (17)0.0790 (16)0.0004 (12)0.0331 (12)0.0076 (13)
O30.0331 (10)0.0361 (10)0.0667 (13)0.0007 (8)0.0142 (9)0.0177 (9)
O40.0441 (14)0.0826 (18)0.153 (3)0.0129 (13)0.0299 (16)0.0465 (19)
O50.077 (3)0.109 (4)0.154 (5)0.002 (2)0.076 (3)0.042 (4)
O5'0.046 (8)0.069 (11)0.139 (19)0.014 (7)0.027 (9)0.020 (11)
S10.0350 (4)0.0450 (4)0.0644 (5)0.0004 (3)0.0156 (3)0.0093 (3)
Geometric parameters (Å, º) top
C1—C61.377 (4)C10—C111.395 (4)
C1—C21.380 (4)C11—C121.383 (4)
C1—S11.762 (3)C11—N41.464 (4)
C2—C31.376 (4)C12—C131.373 (4)
C2—H20.9300C12—H120.9300
C3—C41.364 (5)C13—C141.369 (4)
C3—H30.9300C13—H130.9300
C4—C51.385 (5)C14—C151.377 (4)
C4—C161.513 (5)C14—H140.9300
C5—C61.387 (5)C15—H150.9300
C5—H50.9300C16—H16A0.9600
C6—H60.9300C16—H16B0.9600
C7—N11.446 (4)C16—H16C0.9600
C7—C81.518 (3)N1—S11.600 (3)
C7—H7A0.9700N1—H1N0.845 (17)
C7—H7B0.9700N2—N31.371 (3)
C8—O31.232 (3)N2—H2N0.865 (17)
C8—N21.340 (3)N4—O41.188 (3)
C9—N31.266 (3)N4—O51.239 (4)
C9—C101.474 (3)N4—O5'1.260 (13)
C9—H9A0.9300O1—S11.429 (2)
C10—C151.394 (4)O2—S11.426 (2)
C6—C1—C2119.9 (3)C10—C11—N4121.6 (2)
C6—C1—S1120.4 (2)C13—C12—C11119.2 (3)
C2—C1—S1119.6 (2)C13—C12—H12120.4
C3—C2—C1120.0 (3)C11—C12—H12120.4
C3—C2—H2120.0C14—C13—C12120.0 (3)
C1—C2—H2120.0C14—C13—H13120.0
C4—C3—C2121.4 (3)C12—C13—H13120.0
C4—C3—H3119.3C13—C14—C15120.3 (3)
C2—C3—H3119.3C13—C14—H14119.8
C3—C4—C5118.2 (3)C15—C14—H14119.8
C3—C4—C16121.4 (4)C14—C15—C10122.0 (3)
C5—C4—C16120.4 (4)C14—C15—H15119.0
C4—C5—C6121.5 (3)C10—C15—H15119.0
C4—C5—H5119.2C4—C16—H16A109.5
C6—C5—H5119.2C4—C16—H16B109.5
C1—C6—C5118.9 (3)H16A—C16—H16B109.5
C1—C6—H6120.6C4—C16—H16C109.5
C5—C6—H6120.6H16A—C16—H16C109.5
N1—C7—C8112.3 (2)H16B—C16—H16C109.5
N1—C7—H7A109.1C7—N1—S1122.9 (2)
C8—C7—H7A109.1C7—N1—H1N119 (2)
N1—C7—H7B109.1S1—N1—H1N118 (2)
C8—C7—H7B109.1C8—N2—N3119.4 (2)
H7A—C7—H7B107.9C8—N2—H2N119.2 (19)
O3—C8—N2121.0 (2)N3—N2—H2N121.4 (19)
O3—C8—C7122.7 (2)C9—N3—N2117.5 (2)
N2—C8—C7116.3 (2)O4—N4—C11120.1 (3)
N3—C9—C10118.0 (2)O5—N4—C11117.5 (3)
N3—C9—H9A121.0O5'—N4—C11113.1 (9)
C10—C9—H9A121.0O2—S1—O1120.10 (15)
C15—C10—C11115.8 (2)O2—S1—N1106.98 (14)
C15—C10—C9118.8 (2)O1—S1—N1107.32 (14)
C11—C10—C9125.4 (2)O2—S1—C1108.77 (14)
C12—C11—C10122.7 (3)O1—S1—C1107.00 (13)
C12—C11—N4115.7 (3)N1—S1—C1105.82 (13)
C6—C1—C2—C31.2 (5)C11—C10—C15—C141.0 (4)
S1—C1—C2—C3175.8 (2)C9—C10—C15—C14179.7 (3)
C1—C2—C3—C40.8 (5)C8—C7—N1—S185.4 (3)
C2—C3—C4—C52.2 (5)O3—C8—N2—N3179.4 (2)
C2—C3—C4—C16176.8 (3)C7—C8—N2—N31.6 (4)
C3—C4—C5—C61.5 (5)C10—C9—N3—N2179.7 (2)
C16—C4—C5—C6177.4 (3)C8—N2—N3—C9173.4 (2)
C2—C1—C6—C51.9 (5)C12—C11—N4—O4149.9 (3)
S1—C1—C6—C5175.2 (3)C10—C11—N4—O429.8 (5)
C4—C5—C6—C10.5 (5)C12—C11—N4—O538.0 (5)
N1—C7—C8—O315.4 (4)C10—C11—N4—O5142.3 (5)
N1—C7—C8—N2165.5 (2)C12—C11—N4—O5'27.0 (16)
N3—C9—C10—C154.1 (4)C10—C11—N4—O5'152.6 (16)
N3—C9—C10—C11174.5 (3)C7—N1—S1—O215.9 (3)
C15—C10—C11—C120.7 (4)C7—N1—S1—O1146.1 (2)
C9—C10—C11—C12177.9 (3)C7—N1—S1—C199.9 (2)
C15—C10—C11—N4178.9 (3)C6—C1—S1—O237.8 (3)
C9—C10—C11—N42.5 (4)C2—C1—S1—O2145.2 (2)
C10—C11—C12—C131.8 (5)C6—C1—S1—O1168.9 (2)
N4—C11—C12—C13177.9 (3)C2—C1—S1—O114.0 (3)
C11—C12—C13—C141.1 (5)C6—C1—S1—N176.8 (3)
C12—C13—C14—C150.6 (5)C2—C1—S1—N1100.2 (2)
C13—C14—C15—C101.7 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O3i0.85 (2)2.06 (2)2.869 (3)161 (3)
N2—H2N···O3ii0.87 (2)2.03 (2)2.881 (3)170 (3)
C7—H7B···O4iii0.972.553.100 (4)116
C9—H9A···O40.932.272.821 (4)118
C16—H16C···O5iv0.962.583.525 (6)168
Symmetry codes: (i) x+1, y, z; (ii) x+2, y, z; (iii) x1, y, z; (iv) x+1, y+1, z+1.
 

Acknowledgements

The authors thank the SAIF, Panjab University, for providing the NMR facility.

Funding information

HP thanks the Department of Science and Technology, Government of India, New Delhi, for a research fellowship under its INSPIRE Program and BTG thanks the University Grants Commission, Government of India, New Delhi, for a special grant under UGC–BSR one-time grant to faculty.

References

First citationGu, W., Wu, R., Qi, S., Gu, C., Si, F. & Chen, Z. (2012). Molecules, 17, 4634–4650.  Web of Science CSD CrossRef CAS PubMed
First citationLacerda, R. B., da Silva, L. L., de Lima, C. K. F., Miguez, E., Miranda, A. L. P., Laufer, S. A., Barreiro, E. J. & Fraga, C. A. M. (2012). PLoS One, 7, e46925.  Web of Science CrossRef PubMed
First citationLopes, A. B., Miguez, E., Kümmerle, A. E., Rumjanek, V. M., Fraga, C. A. M. & Barreiro, E. J. (2013). Molecules, 18, 11683–11704.  Web of Science CrossRef PubMed
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.
First citationPalla, G., Predieri, G., Domiano, P., Vignali, C. & Turner, W. (1986). Tetrahedron, 42, 3649–3654.  CrossRef CAS Web of Science
First citationPurandara, H., Foro, S. & Gowda, B. T. (2015a). Acta Cryst. E71, 602–605.  CrossRef IUCr Journals
First citationPurandara, H., Foro, S. & Gowda, B. T. (2015b). Acta Cryst. E71, 730–733.  Web of Science CSD CrossRef IUCr Journals
First citationPurandara, H., Foro, S. & Gowda, B. T. (2015c). Acta Cryst. E71, 795–798.  Web of Science CSD CrossRef IUCr Journals
First citationPurandara, H., Foro, S. & Thimme Gowda, B. (2017). Acta Cryst. E73, 1683–1686.  CrossRef IUCr Journals
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals
First citationTian, B., He, M., Tan, Z., Tang, S., Hewlett, I., Chen, S., Jin, Y. & Yang, M. (2011). Chem. Biol. Drug Des. 77, 189–198.  Web of Science CrossRef CAS PubMed
First citationTian, B., He, M., Tang, S., Hewlett, I., Tan, Z., Li, J., Jin, Y. & Yang, M. (2009). Bioorg. Med. Chem. Lett. 19, 2162–2167.  Web of Science CrossRef PubMed CAS

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds