research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of isomeric 3,5-di­chloro-N-(2,3-di­methyl­phen­yl)benzene­sulfonamide, 3,5-di­chloro-N-(2,6-di­methyl­phen­yl)benzene­sulfonamide and 3,5-di­chloro-N-(3,5-di­methyl­phen­yl)benzene­sulfonamide

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Sri Bhuvanendra College, Karkala 574 104, India, bInstitution of Excellence, University of Mysore, Manasagangotri, Mysuru 570 006, India, cDepartment of Studies in Physics, University of Mysore, Manasagangotri, Mysuru 570 006, India, and dDept. of Chemistry, University College of Science, Tumkur University, Tumkur, 572103, India
*Correspondence e-mail: pasuchetan@yahoo.co.in

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 29 March 2017; accepted 6 April 2017; online 11 April 2017)

The crystal structures of three isomeric compounds of formula C14H13Cl2NO2S, namely 3,5-di­chloro-N-(2,3-di­methyl­phen­yl)-benzene­sulfonamide (I), 3,5-di­chloro-N-(2,6-di­methyl­phen­yl)benzene­sulfonamide (II) and 3,5-di­chloro-N-(3,5-di­methyl­phen­yl)benzene­sulfonamide (III) are described. The mol­ecules of all the three compounds are U-shaped with the two aromatic rings inclined at 41.3 (6)° in (I), 42.1 (2)° in (II) and 54.4 (3)° in (III). The mol­ecular conformation of (II) is stabilized by intra­molecular C—H⋯O hydrogen bonds and C—H⋯π inter­actions. The crystal structure of (I) features N—H⋯O hydrogen-bonded R22(8) loops inter­connected via C(7) chains of C—H⋯O inter­actions, forming a three-dimensional architecture. The structure also features ππ inter­actions [CgCg = 3.6970 (14) Å]. In (II), N—H⋯O hydrogen-bonded R22(8) loops are inter­connected via ππ inter­actions [inter­centroid distance = 3.606 (3) Å] to form a one-dimensional architecture running parallel to the a axis. In (III), adjacent C(4) chains of N—H⋯O hydrogen-bonded mol­ecules running parallel to [010] are connected via C—H⋯π inter­actions, forming sheets parallel to the ab plane. Neighbouring sheets are linked via offset ππ inter­actions [inter­centroid distance = 3.8303 (16) Å] to form a three-dimensional architecture.

1. Chemical context

Sulfonamide drugs were the first chemotherapeutic agents to be used for curing and preventing bacterial infection in human beings (Shiva Prasad et al., 2011[Shiva Prasad, K., Shiva Kumar, L., Vinay, K. B., ChandraShekar, S., Jayalakshmi, B. & Revanasiddappa, H. D. (2011). Int. J. Chem. Res, 2, 1-6.]). They play a vital role as key constituents in a number of biologically active mol­ecules and are known to exhibit a wide variety of biological activities, such as anti­bacterial (Subhakara Reddy et al., 2012[Subhakara Reddy, N., Srinivas Rao, A., Adharvana Chari, M., Ravi Kumar, V., Jyothy, V. & Himabindu, V. (2012). J. Chem. Sci. 124, 723-730.]; Himel et al., 1971[Himel, C. M., Aboul-Saad, W. G. & Uk, S. (1971). J. Agric. Food Chem. 19, 1175-1180.]), anti­fungal (Hanafy et al., 2007[Hanafy, A., Uno, J., Mitani, H., Kang, Y. & Mikami, Y. (2007). Jpn. J. Med. Mycol. 48, 47-50.]), anti-inflammatory (Küçükgüzel et al., 2013[Küçükgüzel, Ş. G., Coşkun, İ., Aydın, S., Aktay, G., Gürsoy, Şule, Çevik, Ö., Özakpınar, Ö. B., Özsavcı, D., Şener, A., Kaushik-Basu, N., Basu, A. & Talele, T. T. (2013). Molecules, 18, 3595-3614.]), anti­tumor (Ghorab et al., 2011[Ghorab, M. M., Ragab, A. F., Heiba, I. H. & Agha, M. H. (2011). J. Basic Appl. Chem, 1, 8-14.]), anti­cancer (Al-Said et al., 2011[Al-Said, M. S., Ghorab, M. M., Al-Dosari, M. S. & Hamed, M. M. (2011). Eur. J. Med. Chem. 46, 201-207.]), anti-HIV (Sahu et al., 2007[Sahu, K. K., Ravichandran, V., Mourya, V. K. & Agrawal, R. K. (2007). Med. Chem. Res. 15, 418-430.]) and anti­tubercular activities (Vora & Mehta, 2012[Vora, P. J. & Mehta, A. G. (2012). IOSR J. Appl. Chem. 1, 34-39.]). In recent years, extensive research studies have been carried out on the synthesis and evaluation of the pharmacological properties of mol­ecules containing the sulfonamide moiety, which have been reported to be important pharmacophores (Mohan et al., 2013[Mohan, N. R., Sreenivasa, S., Manojkumar, K. E. & Chakrapani Rao, T. M. (2013). J. Appl. Chem, 2, 722-729.]).

With these considerations in mind and based on our structural study of 3,5-di­chloro-N-(substitutedphen­yl)benzene­sulfonamides (Shakuntala, Naveen et al., 2017[Shakuntala, K., Naveen, S., Lokanath, N. K. & Suchetan, P. A. (2017). IUCrData, 2, x170375.]; Shakuntala, Lokanath et al., 2017[Shakuntala, K., Lokanath, N. K., Naveen, S. & Suchetan, P. A. (2017). IUCrData, 2, x170372.]), we report herein the crystal structures of three isomers, viz. 3,5-di­chloro-N-(2,3-di­methyl­phen­yl)-benzene­sulfonamide (I)[link], 3,5-di­chloro-N-(2,6-di­methyl­phen­yl)benzene­sulfonamide (II)[link] and 3,5-di­chloro-N-(3,5-di­methyl­phen­yl)benzene­sulfonamide (III)[link].

[Scheme 1]

2. Structural commentary

The mol­ecule of (I)[link] (Fig. 1[link]) is U-shaped, with the sulfonyl­benzene ring and the aniline ring inclined by 41.3 (6)°. The N—C bond in the C–SO2–NH–C segment has a gauche torsion with respect to the S=O bonds, and the mol­ecule is twisted at the S—N bond, with a C1—S1—N1—C7 torsion angle of 60.9 (2)°.

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link] with displacement ellipsoids drawn at the 50% probability level.

In the U-shaped mol­ecules of (II)[link] (Fig. 2[link]), the dihedral angle between the sulfonyl­benzene ring and the aniline ring is 42.1 (2)°. The mol­ecule is twisted at the S—N bond, with a C1—S1—N1—C7 torsion angle of 69.8 (3)°. The mol­ecular conformation of (II)[link] is stabilized by an intra­molecular C—H⋯O hydrogen bond and a C—H⋯π inter­action (Table 2[link]). The N—C bond in the C–SO2–NH–C segment has a gauche torsion with respect to the S=O bonds.

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14C⋯O1 0.98 2.53 3.139 (8) 120
N1—H1⋯O2i 0.85 (4) 2.12 (4) 2.937 (5) 160 (4)
C13—H13ACg1 0.98 2.67 3.493 (5) 142
Symmetry code: (i) -x+1, -y+1, -z.
[Figure 2]
Figure 2
The mol­ecular structure of (II)[link] with displacement ellipsoids drawn at the 50% probability level. Intra­molecular C—H⋯O and C—H⋯π hydrogen inter­actions are shown as dotted lines.

The mol­ecule of (III)[link] (Fig. 3[link]) is also U-shaped, with the sulfonyl­benzene ring tilted at an angle of 54.4 (3)° with respect to the aniline ring. The N—C bond in the C–SO2–NH–C segment has a gauche torsion with respect to the S=O bonds, and the mol­ecule is twisted at the S—N bond, with a C1—S1—N1—C7 torsion angle of 71.3 (2)°.

[Figure 3]
Figure 3
The mol­ecular structure of (III)[link] with displacement ellipsoids drawn at the 50% probability level.

3. Supra­molecular features

The crystal structure of (I)[link] features inversion-related dimers linked by N1—H1⋯O2i hydrogen bonds forming R22(8) loops (Fig. 4[link], Table 1[link]). The R22(8) loops are inter­connected via C(7) chains of C4—H4⋯O1ii inter­molecular inter­actions, forming a three-dimensional supra­molecular architecture. The structure also features ππ inter­actions involving the benzene­sulfonyl ring and the aniline ring as illustrated in Fig. 4[link] [Cg1⋯Cg2iii = 3.6970 (14) Å; Cg1 and Cg2 are the centroids of the C1–C6 and C7–C12 rings, respectively; symmetry code: (iii) [{3\over 2}] − x, −[{1\over 2}] + y, [{3\over 2}] − z].

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.86 2.14 2.9590 159
C4—H4⋯O1ii 0.95 2.41 3.332 (3) 164
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 4]
Figure 4
The three-dimensional supra­molecular architecture of (I)[link] viewed along the c axis. The N—H⋯O and C—H⋯O hydrogen bonds and ππ inter­actions are shown as thin blue dotted lines. H atoms not involved in hydrogen bonding are omitted for clarity.

In (II)[link], N1—H1⋯O2i hydrogen-bonded R22(8) loops (Fig. 5[link], Table 2[link]) are connected via ππ inter­actions involving inversion-related benzene­sulfonyl rings, forming a one-dimensional architecture running parallel to the a axis, as shown in Fig. 5[link] [Cg1⋯Cg1ii = 3.606 (3) Å; Cg1 is the centroid of the C1–C6 ring; symmetry code: (ii) 2 − x, 1 − y, −z].

[Figure 5]
Figure 5
Partial crystal packing of (II)[link] showing the formation of a one-dimensional architecture through N—H⋯O hydrogen bonds and ππ inter­actions (thin blue dotted lines).

In the crystal structure of (III)[link], the mol­ecules are inter­linked via N1—H1⋯O1i hydrogen bonds (Fig. 6[link], Table 3[link]) to form C(4) chains running parallel to [010]. Adjacent chains are connected by C14—H14Bπ inter­actions involving the aniline ring, forming two-dimensional sheets parallel to the ab plane. Neighbouring sheets are further linked via offset ππ inter­actions involving inversion-related benzene­sulfonyl rings, forming a three dimensional architecture as as illustrated in Fig. 7[link] [Cg1⋯Cg1i = 3.8303 (16) Å, inter­planar distance = 3.3874 (11) Å, slippage 1.788 (3) Å; Cg1 is the centroid of the C1–C6 ring; symmetry code: (iii) 1 − x, −y, −z].

Table 3
Hydrogen-bond geometry (Å, °) for (III)[link]

Cg2 is the centroid of the aniline ring C7–C12

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.87 2.13 2.9848 167
C14—H14BCg2ii 0.98 2.86 3.5135 124
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 6]
Figure 6
Partial crystal packing of (III)[link] viewed down the c axis displaying two-dimensional sheets. Thin blue dotted lines denote N—H⋯O hydrogen bonds and C—H⋯π inter­actions. H atoms not involved in hydrogen bonding are omitted for clarity.
[Figure 7]
Figure 7
Crystal packing of (III)[link] viewed approximately along the a axis, showing the ππ inter­actions (black dotted lines) between adjacent sheets. For clarity, only H atoms involved in N—H⋯O hydrogen bonds and C—H⋯π inter­actions (thin blue dotted lines) are included.

4. Database survey

Two 3,5-di­chloro-N-(substitutedphen­yl)-benzene­sulfon­amides, namely 3,5-di­chloro-N-(4-methyl­phen­yl)benzene­sulfonamide [Shakuntala, Naveen et al., 2017[Shakuntala, K., Naveen, S., Lokanath, N. K. & Suchetan, P. A. (2017). IUCrData, 2, x170375.], (IV)] and 3,5-di­chloro-N-(2,4-di­chloro­phen­yl)benzene­sulfonamide [Shak­untala, Lokanath et al., 2017[Shakuntala, K., Lokanath, N. K., Naveen, S. & Suchetan, P. A. (2017). IUCrData, 2, x170372.], (V)], have been reported previously. The mol­ecules of both (IV) and (V) are U-shaped with the central C–S–N–C segment having a torsion angle of 67.2 (4)° in (IV) and 58.7 (3)° in (V). The dihedral angle between the benzene rings is 57.0 (2)° in (IV) and 40.23 (2)° in (V). The crystal structure of (IV) displays a three-dimensional supra­molecular structure constructed via N—H⋯O and C—H⋯O hydrogen bonds and C—H⋯π inter­actions, whereas in (V) the three-dimensional supra­molecular architecture is built through N—H⋯O and C—H⋯O hydrogen bonds, Cl⋯Cl contacts and ππ inter­actions.

5. Synthesis and crystallization

The title compounds were prepared according to a literature method (Rodrigues et al., 2015[Rodrigues, V. Z., Sreenivasa, S., Naveen, S., Lokanath, N. K. & Suchetan, P. A. (2015). J. Appl. Chem. 4, 127-135.]). The purities of all the compounds were checked by determining their melting points. Colourless prismatic single crystals suitable for X-ray diffraction studies were obtained by slow evaporation of ethano­lic solutions of the compounds at room temperature.

6. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. The amino H atoms were located in difference-Fourier maps and refined isotropically with the N—H bond length restrained to be 0.88 (2) Å. All other H atoms were positioned geometrically and refined as riding with C—H = 0.95–0.98 Å and Uiso(H) = 1.2 or 1.5Ueq(C). A rotating model was applied to the methyl groups. To improve considerably the values of R1, wR2, and S (goodness-of-fit), a low-angle reflection partially obscured by the beam-stop (100) was omitted from the final refinement of (III)[link].

Table 4
Experimental details

  (I) (II) (III)
Crystal data
Chemical formula C14H13Cl2NO2S C14H13Cl2NO2S C14H13Cl2NO2S
Mr 330.21 330.21 330.21
Crystal system, space group Monoclinic, P21/n Triclinic, P[\overline{1}] Monoclinic, P21/c
Temperature (K) 100 100 100
a, b, c (Å) 8.2223 (3), 14.1546 (5), 12.7933 (4) 8.4817 (15), 8.6149 (15), 12.167 (2) 12.2268 (6), 7.0399 (3), 17.3130 (8)
α, β, γ (°) 90, 91.188 (1), 90 109.875 (5), 91.900 (5), 114.190 (5) 90, 100.409 (1), 90
V3) 1488.61 (9) 747.1 (2) 1465.70 (12)
Z 4 2 4
Radiation type Cu Kα Cu Kα Cu Kα
μ (mm−1) 5.24 5.22 5.32
Crystal size (mm) 0.28 × 0.25 × 0.22 0.29 × 0.26 × 0.22 0.27 × 0.24 × 0.21
 
Data collection
Diffractometer Bruker APEXII CCD area detector Bruker APEXII CCD area detector Bruker APEXII CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker,2009[Bruker (2009). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.288, 0.316 0.275, 0.317 0.297, 0.327
No. of measured, independent and observed [I > 2σ(I)] reflections 10308, 2440, 2347 6977, 2400, 1960 11468, 2412, 2374
Rint 0.053 0.124 0.056
(sin θ/λ)max−1) 0.584 0.581 0.585
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.162, 1.07 0.074, 0.233, 1.02 0.058, 0.152, 0.99
No. of reflections 2440 2400 2412
No. of parameters 187 187 187
No. of restraints 1 1 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.64, −0.63 0.99, −0.60 0.82, −0.88
Computer programs: APEX2, SAINT-Plus and XPREP (Bruker, 2009[Bruker (2009). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT 2016/4 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2016/4 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2009) for (I); APEXII (Bruker, 2009) for (II), (III). For all compounds, cell refinement: APEX2 (Bruker, 2009) and SAINT-Plus (Bruker, 2009); data reduction: SAINT-Plus (Bruker, 2009) and XPREP (Bruker, 2009); program(s) used to solve structure: SHELXT 2016/4 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2016/4 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2016/4 (Sheldrick, 2015b).

(I) 3,5-Dichloro-N-(2,3-dimethylphenyl)benzenesulfonamide top
Crystal data top
C14H13Cl2NO2SPrism
Mr = 330.21Dx = 1.473 Mg m3
Monoclinic, P21/nMelting point: 431 K
Hall symbol: -P 2ynCu Kα radiation, λ = 1.54178 Å
a = 8.2223 (3) ÅCell parameters from 144 reflections
b = 14.1546 (5) Åθ = 6.2–64.2°
c = 12.7933 (4) ŵ = 5.24 mm1
β = 91.188 (1)°T = 100 K
V = 1488.61 (9) Å3Prism, colourless
Z = 40.28 × 0.25 × 0.22 mm
F(000) = 680
Data collection top
Bruker APEXII CCD area detector
diffractometer
2440 independent reflections
Radiation source: fine-focus sealed tube2347 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
phi and φ scansθmax = 64.2°, θmin = 6.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 99
Tmin = 0.288, Tmax = 0.316k = 1615
10308 measured reflectionsl = 1412
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.057H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.162 w = 1/[σ2(Fo2) + (0.1235P)2 + 0.7281P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2440 reflectionsΔρmax = 0.64 e Å3
187 parametersΔρmin = 0.63 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6064 (3)0.35091 (16)0.66816 (18)0.0170 (5)
C20.7069 (3)0.32517 (16)0.75161 (18)0.0189 (5)
H20.8215710.3324330.7486620.023*
C30.6346 (3)0.28862 (18)0.83908 (19)0.0222 (6)
C40.4689 (3)0.27523 (17)0.84477 (19)0.0230 (6)
H40.4219030.2486890.9052810.028*
C50.3733 (3)0.30179 (17)0.7592 (2)0.0214 (6)
C60.4380 (3)0.34137 (16)0.67041 (19)0.0191 (5)
H60.3704470.3611920.6133950.023*
C70.8409 (3)0.53406 (16)0.67541 (19)0.0200 (5)
C80.7774 (3)0.56423 (17)0.7703 (2)0.0214 (6)
C90.8878 (3)0.58319 (17)0.8534 (2)0.0255 (6)
C101.0528 (3)0.57152 (19)0.8392 (2)0.0299 (6)
H101.1263740.5839050.8958150.036*
C111.1130 (3)0.5422 (2)0.7444 (2)0.0294 (6)
H111.2268950.5350410.7360770.035*
C121.0071 (3)0.52333 (18)0.6620 (2)0.0249 (6)
H121.0475300.5032040.5965790.030*
C130.5980 (3)0.5761 (2)0.7852 (2)0.0291 (6)
H13A0.5422860.5789760.7168660.044*
H13B0.5781800.6347420.8236890.044*
H13C0.5564740.5223950.8249710.044*
C140.8264 (4)0.6143 (2)0.9586 (2)0.0349 (7)
H14A0.9189020.6235551.0070980.052*
H14B0.7542170.5656550.9862980.052*
H14C0.7664350.6737370.9505950.052*
N10.7344 (3)0.51231 (14)0.58726 (16)0.0194 (5)
O10.8517 (2)0.35517 (12)0.54650 (13)0.0237 (4)
O20.5832 (2)0.40294 (13)0.47232 (14)0.0241 (4)
S10.69924 (7)0.40208 (4)0.55760 (4)0.0177 (3)
CL10.75874 (9)0.25743 (5)0.94545 (5)0.0355 (3)
CL20.16538 (7)0.28217 (5)0.76316 (6)0.0356 (3)
H10.647 (3)0.5457 (18)0.585 (2)0.017 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0190 (12)0.0141 (11)0.0178 (11)0.0010 (8)0.0013 (9)0.0029 (9)
C20.0169 (12)0.0171 (12)0.0225 (12)0.0005 (9)0.0019 (9)0.0001 (9)
C30.0289 (14)0.0171 (12)0.0202 (13)0.0006 (10)0.0053 (10)0.0011 (9)
C40.0305 (15)0.0193 (12)0.0195 (13)0.0011 (10)0.0068 (11)0.0018 (10)
C50.0170 (12)0.0185 (12)0.0288 (13)0.0018 (9)0.0041 (10)0.0033 (10)
C60.0191 (12)0.0184 (12)0.0196 (12)0.0006 (9)0.0019 (10)0.0019 (9)
C70.0242 (13)0.0164 (12)0.0194 (12)0.0042 (9)0.0008 (10)0.0030 (9)
C80.0254 (13)0.0159 (12)0.0229 (13)0.0000 (10)0.0012 (10)0.0023 (9)
C90.0360 (15)0.0178 (13)0.0224 (14)0.0012 (10)0.0033 (11)0.0012 (9)
C100.0322 (15)0.0249 (14)0.0322 (15)0.0020 (11)0.0100 (12)0.0009 (11)
C110.0212 (13)0.0273 (14)0.0395 (16)0.0026 (10)0.0032 (12)0.0011 (12)
C120.0243 (13)0.0208 (13)0.0296 (14)0.0044 (10)0.0044 (10)0.0020 (10)
C130.0300 (15)0.0337 (15)0.0235 (14)0.0046 (11)0.0012 (11)0.0033 (11)
C140.0444 (18)0.0376 (17)0.0225 (14)0.0008 (13)0.0048 (13)0.0040 (12)
N10.0201 (11)0.0197 (11)0.0183 (10)0.0014 (8)0.0001 (8)0.0010 (8)
O10.0220 (9)0.0251 (10)0.0243 (9)0.0009 (7)0.0067 (7)0.0038 (7)
O20.0294 (10)0.0275 (10)0.0153 (9)0.0031 (7)0.0014 (7)0.0009 (7)
S10.0193 (4)0.0196 (4)0.0144 (4)0.0022 (2)0.0020 (3)0.0011 (2)
CL10.0443 (5)0.0343 (5)0.0270 (5)0.0034 (3)0.0159 (3)0.0102 (3)
CL20.0172 (4)0.0395 (5)0.0504 (5)0.0054 (2)0.0073 (3)0.0049 (3)
Geometric parameters (Å, º) top
C1—C21.385 (3)C9—C101.382 (4)
C1—C61.392 (3)C9—C141.512 (4)
C1—S11.776 (2)C10—C111.384 (4)
C2—C31.379 (4)C10—H100.9500
C2—H20.9500C11—C121.380 (4)
C3—C41.379 (4)C11—H110.9500
C3—CL11.741 (3)C12—H120.9500
C4—C51.387 (4)C13—H13A0.9800
C4—H40.9500C13—H13B0.9800
C5—C61.383 (3)C13—H13C0.9800
C5—CL21.734 (2)C14—H14A0.9800
C6—H60.9500C14—H14B0.9800
C7—C121.390 (4)C14—H14C0.9800
C7—C81.398 (4)N1—S11.630 (2)
C7—N11.446 (3)N1—H10.862 (17)
C8—C91.410 (4)O1—S11.4285 (18)
C8—C131.501 (4)O2—S11.4346 (19)
C2—C1—C6122.4 (2)C11—C10—H10119.3
C2—C1—S1117.50 (17)C12—C11—C10119.8 (2)
C6—C1—S1120.02 (18)C12—C11—H11120.1
C3—C2—C1117.6 (2)C10—C11—H11120.1
C3—C2—H2121.2C11—C12—C7119.4 (2)
C1—C2—H2121.2C11—C12—H12120.3
C2—C3—C4122.5 (2)C7—C12—H12120.3
C2—C3—CL1118.3 (2)C8—C13—H13A109.5
C4—C3—CL1119.19 (19)C8—C13—H13B109.5
C3—C4—C5117.8 (2)H13A—C13—H13B109.5
C3—C4—H4121.1C8—C13—H13C109.5
C5—C4—H4121.1H13A—C13—H13C109.5
C6—C5—C4122.4 (2)H13B—C13—H13C109.5
C6—C5—CL2119.05 (19)C9—C14—H14A109.5
C4—C5—CL2118.49 (19)C9—C14—H14B109.5
C5—C6—C1117.1 (2)H14A—C14—H14B109.5
C5—C6—H6121.4C9—C14—H14C109.5
C1—C6—H6121.4H14A—C14—H14C109.5
C12—C7—C8121.8 (2)H14B—C14—H14C109.5
C12—C7—N1117.5 (2)C7—N1—S1119.12 (16)
C8—C7—N1120.7 (2)C7—N1—H1113.9 (19)
C7—C8—C9117.8 (2)S1—N1—H1111.8 (19)
C7—C8—C13122.1 (2)O1—S1—O2119.99 (11)
C9—C8—C13120.1 (2)O1—S1—N1108.44 (11)
C10—C9—C8119.8 (2)O2—S1—N1106.30 (11)
C10—C9—C14119.9 (3)O1—S1—C1106.41 (11)
C8—C9—C14120.3 (2)O2—S1—C1108.61 (11)
C9—C10—C11121.4 (3)N1—S1—C1106.38 (10)
C9—C10—H10119.3
C6—C1—C2—C30.2 (3)C13—C8—C9—C140.9 (4)
S1—C1—C2—C3177.68 (17)C8—C9—C10—C110.5 (4)
C1—C2—C3—C41.5 (4)C14—C9—C10—C11179.3 (3)
C1—C2—C3—CL1179.10 (18)C9—C10—C11—C120.5 (4)
C2—C3—C4—C51.3 (4)C10—C11—C12—C70.0 (4)
CL1—C3—C4—C5179.28 (19)C8—C7—C12—C110.5 (4)
C3—C4—C5—C60.6 (4)N1—C7—C12—C11179.2 (2)
C3—C4—C5—CL2178.04 (19)C12—C7—N1—S176.0 (3)
C4—C5—C6—C12.2 (4)C8—C7—N1—S1103.7 (2)
CL2—C5—C6—C1176.42 (17)C7—N1—S1—O153.25 (19)
C2—C1—C6—C52.0 (3)C7—N1—S1—O2176.48 (17)
S1—C1—C6—C5179.40 (17)C7—N1—S1—C160.9 (2)
C12—C7—C8—C90.4 (4)C2—C1—S1—O136.2 (2)
N1—C7—C8—C9179.3 (2)C6—C1—S1—O1146.31 (18)
C12—C7—C8—C13179.9 (2)C2—C1—S1—O2166.63 (17)
N1—C7—C8—C130.4 (4)C6—C1—S1—O215.9 (2)
C7—C8—C9—C100.1 (4)C2—C1—S1—N179.3 (2)
C13—C8—C9—C10179.6 (2)C6—C1—S1—N198.2 (2)
C7—C8—C9—C14178.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.862.142.9590159
C4—H4···O1ii0.952.413.332 (3)164
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1/2, y+1/2, z+1/2.
(II) 3,5-Dichloro-N-(2,6-dimethylphenyl)benzenesulfonamide top
Crystal data top
C14H13Cl2NO2SF(000) = 340
Mr = 330.21Prism
Triclinic, P1Dx = 1.468 Mg m3
Hall symbol: -P 1Melting point: 445 K
a = 8.4817 (15) ÅCu Kα radiation, λ = 1.54178 Å
b = 8.6149 (15) ÅCell parameters from 127 reflections
c = 12.167 (2) Åθ = 7.7–63.7°
α = 109.875 (5)°µ = 5.22 mm1
β = 91.900 (5)°T = 100 K
γ = 114.190 (5)°Prism, colourless
V = 747.1 (2) Å30.29 × 0.26 × 0.22 mm
Z = 2
Data collection top
Bruker APEXII CCD area detector
diffractometer
2400 independent reflections
Radiation source: fine-focus sealed tube1960 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.124
phi and φ scansθmax = 63.7°, θmin = 7.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 99
Tmin = 0.275, Tmax = 0.317k = 99
6977 measured reflectionsl = 1414
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.074H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.233 w = 1/[σ2(Fo2) + (0.1757P)2 + 0.6254P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2400 reflectionsΔρmax = 0.99 e Å3
187 parametersΔρmin = 0.60 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8417 (4)0.5358 (5)0.1002 (4)0.0203 (9)
C20.7459 (5)0.3554 (5)0.0217 (4)0.0241 (10)
H20.6446510.3205220.0343350.029*
C30.8001 (5)0.2253 (6)0.0260 (4)0.0249 (10)
C40.9467 (5)0.2750 (6)0.1103 (4)0.0293 (11)
H40.9815550.1854620.1151990.035*
C51.0386 (5)0.4578 (6)0.1860 (4)0.0244 (9)
C60.9904 (5)0.5912 (6)0.1831 (4)0.0238 (10)
H61.0565230.7166770.2359180.029*
C70.6763 (5)0.7502 (5)0.3150 (4)0.0211 (9)
C80.6651 (5)0.6237 (6)0.3668 (4)0.0236 (9)
C90.7175 (5)0.6907 (7)0.4904 (5)0.0317 (10)
H90.7126840.6077660.5269090.038*
C100.7765 (7)0.8761 (8)0.5608 (5)0.0444 (13)
H100.8132970.9198810.6447150.053*
C110.7815 (7)0.9971 (7)0.5082 (5)0.0438 (13)
H110.8213411.1237580.5571530.053*
C120.7300 (6)0.9386 (6)0.3863 (4)0.0316 (10)
C130.5959 (5)0.4220 (6)0.2945 (4)0.0310 (11)
H13A0.6936390.3952080.2691740.046*
H13B0.5095940.3862720.2239630.046*
H13C0.5390970.3521680.3427080.046*
C140.7304 (8)1.0734 (7)0.3333 (6)0.0472 (14)
H14A0.7283561.1802970.3954260.071*
H14B0.6260241.0132500.2694850.071*
H14C0.8371451.1143370.3005520.071*
N10.6231 (4)0.6893 (4)0.1889 (3)0.0201 (8)
O10.9163 (3)0.8797 (4)0.1562 (3)0.0251 (7)
O20.6731 (3)0.6436 (4)0.0152 (3)0.0230 (7)
S10.76785 (10)0.70217 (12)0.10237 (9)0.0183 (4)
CL10.68515 (13)0.00070 (13)0.07437 (12)0.0365 (4)
CL21.22462 (13)0.52449 (17)0.28944 (10)0.0372 (4)
H10.529 (4)0.590 (4)0.154 (4)0.029 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0210 (17)0.0232 (19)0.021 (2)0.0095 (15)0.0048 (14)0.0138 (18)
C20.0242 (19)0.028 (2)0.026 (3)0.0125 (17)0.0086 (16)0.015 (2)
C30.0255 (19)0.025 (2)0.030 (3)0.0108 (16)0.0127 (17)0.017 (2)
C40.036 (2)0.037 (2)0.036 (3)0.0227 (19)0.018 (2)0.028 (2)
C50.0274 (19)0.036 (2)0.020 (3)0.0176 (17)0.0061 (16)0.017 (2)
C60.0248 (19)0.031 (2)0.021 (3)0.0132 (17)0.0061 (16)0.0152 (19)
C70.0243 (18)0.023 (2)0.017 (2)0.0111 (15)0.0018 (14)0.0093 (18)
C80.0214 (18)0.027 (2)0.027 (3)0.0112 (16)0.0060 (15)0.0163 (19)
C90.036 (2)0.039 (2)0.028 (3)0.0152 (19)0.0064 (17)0.024 (2)
C100.054 (3)0.047 (3)0.016 (3)0.009 (2)0.002 (2)0.011 (2)
C110.071 (3)0.025 (2)0.019 (3)0.012 (2)0.004 (2)0.003 (2)
C120.046 (2)0.026 (2)0.018 (3)0.0152 (18)0.0054 (17)0.0052 (19)
C130.037 (2)0.037 (2)0.035 (3)0.0208 (19)0.0160 (18)0.025 (2)
C140.084 (4)0.028 (2)0.038 (4)0.032 (2)0.014 (3)0.014 (2)
N10.0240 (16)0.0213 (17)0.014 (2)0.0091 (14)0.0001 (13)0.0080 (15)
O10.0289 (14)0.0217 (14)0.0246 (19)0.0094 (12)0.0039 (11)0.0114 (13)
O20.0277 (13)0.0266 (15)0.0197 (19)0.0136 (11)0.0048 (11)0.0128 (13)
S10.0223 (6)0.0178 (6)0.0160 (7)0.0090 (4)0.0011 (4)0.0080 (5)
CL10.0340 (6)0.0203 (6)0.0533 (10)0.0120 (5)0.0106 (5)0.0121 (6)
CL20.0392 (7)0.0598 (8)0.0266 (8)0.0335 (6)0.0034 (5)0.0189 (6)
Geometric parameters (Å, º) top
C1—C21.375 (6)C9—C101.386 (8)
C1—C61.389 (6)C9—H90.9500
C1—S11.777 (4)C10—C111.385 (8)
C2—C31.390 (6)C10—H100.9500
C2—H20.9500C11—C121.383 (7)
C3—C41.401 (6)C11—H110.9500
C3—CL11.726 (4)C12—C141.506 (7)
C4—C51.377 (6)C13—H13A0.9800
C4—H40.9500C13—H13B0.9800
C5—C61.379 (6)C13—H13C0.9800
C5—CL21.743 (4)C14—H14A0.9800
C6—H60.9500C14—H14B0.9800
C7—C81.407 (6)C14—H14C0.9800
C7—C121.417 (6)N1—S11.638 (3)
C7—N11.430 (5)N1—H10.85 (2)
C8—C91.395 (6)O1—S11.428 (3)
C8—C131.493 (6)O2—S11.431 (3)
C2—C1—C6122.0 (4)C11—C10—H10120.2
C2—C1—S1119.5 (3)C12—C11—C10121.8 (5)
C6—C1—S1118.3 (3)C12—C11—H11119.1
C1—C2—C3118.7 (4)C10—C11—H11119.1
C1—C2—H2120.7C11—C12—C7117.9 (5)
C3—C2—H2120.7C11—C12—C14120.1 (4)
C2—C3—C4120.9 (4)C7—C12—C14122.0 (4)
C2—C3—CL1119.4 (3)C8—C13—H13A109.5
C4—C3—CL1119.6 (3)C8—C13—H13B109.5
C5—C4—C3117.8 (4)H13A—C13—H13B109.5
C5—C4—H4121.1C8—C13—H13C109.5
C3—C4—H4121.1H13A—C13—H13C109.5
C6—C5—C4122.8 (4)H13B—C13—H13C109.5
C6—C5—CL2118.4 (3)C12—C14—H14A109.5
C4—C5—CL2118.8 (3)C12—C14—H14B109.5
C5—C6—C1117.6 (4)H14A—C14—H14B109.5
C5—C6—H6121.2C12—C14—H14C109.5
C1—C6—H6121.2H14A—C14—H14C109.5
C8—C7—C12121.2 (4)H14B—C14—H14C109.5
C8—C7—N1120.7 (4)C7—N1—S1120.9 (2)
C12—C7—N1118.0 (4)C7—N1—H1118 (4)
C9—C8—C7118.2 (4)S1—N1—H1109 (3)
C9—C8—C13119.6 (4)O1—S1—O2120.06 (18)
C7—C8—C13122.2 (4)O1—S1—N1108.41 (17)
C10—C9—C8121.2 (5)O2—S1—N1106.27 (16)
C10—C9—H9119.4O1—S1—C1107.28 (17)
C8—C9—H9119.4O2—S1—C1107.33 (18)
C9—C10—C11119.6 (5)N1—S1—C1106.81 (17)
C9—C10—H10120.2
C6—C1—C2—C30.1 (6)C9—C10—C11—C120.4 (8)
S1—C1—C2—C3176.4 (3)C10—C11—C12—C71.9 (8)
C1—C2—C3—C41.6 (6)C10—C11—C12—C14177.5 (5)
C1—C2—C3—CL1178.3 (3)C8—C7—C12—C113.8 (6)
C2—C3—C4—C52.2 (6)N1—C7—C12—C11180.0 (4)
CL1—C3—C4—C5177.7 (3)C8—C7—C12—C14175.5 (4)
C3—C4—C5—C61.1 (6)N1—C7—C12—C140.7 (6)
C3—C4—C5—CL2178.5 (3)C8—C7—N1—S196.3 (4)
C4—C5—C6—C10.5 (6)C12—C7—N1—S187.5 (4)
CL2—C5—C6—C1179.9 (3)C7—N1—S1—O145.5 (3)
C2—C1—C6—C51.1 (6)C7—N1—S1—O2175.8 (3)
S1—C1—C6—C5175.4 (3)C7—N1—S1—C169.8 (3)
C12—C7—C8—C93.4 (5)C2—C1—S1—O1159.3 (3)
N1—C7—C8—C9179.5 (3)C6—C1—S1—O124.1 (4)
C12—C7—C8—C13175.3 (4)C2—C1—S1—O229.0 (4)
N1—C7—C8—C130.8 (5)C6—C1—S1—O2154.4 (3)
C7—C8—C9—C101.0 (6)C2—C1—S1—N184.6 (4)
C13—C8—C9—C10177.7 (4)C6—C1—S1—N192.0 (3)
C8—C9—C10—C110.9 (7)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C14—H14C···O10.982.533.139 (8)120
N1—H1···O2i0.85 (4)2.12 (4)2.937 (5)160 (4)
C13—H13A···Cg10.982.673.493 (5)142
Symmetry code: (i) x+1, y+1, z.
(III) 3,5-dichloro-N-(3,5-dimethylphenyl)benzenesulfonamide top
Crystal data top
C14H13Cl2NO2SPrism
Mr = 330.21Dx = 1.496 Mg m3
Monoclinic, P21/cMelting point: 462 K
Hall symbol: -P 2ybcCu Kα radiation, λ = 1.54178 Å
a = 12.2268 (6) ÅCell parameters from 128 reflections
b = 7.0399 (3) Åθ = 6.8–64.4°
c = 17.3130 (8) ŵ = 5.32 mm1
β = 100.409 (1)°T = 100 K
V = 1465.70 (12) Å3Prism, colourless
Z = 40.27 × 0.24 × 0.21 mm
F(000) = 680
Data collection top
Bruker APEXII CCD area detector
diffractometer
2412 independent reflections
Radiation source: fine-focus sealed tube2374 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
phi and φ scansθmax = 64.4°, θmin = 6.8°
Absorption correction: multi-scan
(SADABS; Bruker,2009)
h = 1414
Tmin = 0.297, Tmax = 0.327k = 87
11468 measured reflectionsl = 1920
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.058H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.152 w = 1/[σ2(Fo2) + (0.1156P)2 + 2.094P]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max = 0.001
2412 reflectionsΔρmax = 0.82 e Å3
187 parametersΔρmin = 0.88 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4234 (2)0.1933 (4)0.62264 (15)0.0107 (6)
C20.5280 (2)0.2511 (4)0.61112 (15)0.0120 (6)
H20.5860160.2777770.6541870.014*
C30.5443 (2)0.2682 (4)0.53442 (15)0.0120 (6)
C40.4606 (2)0.2341 (4)0.47057 (15)0.0138 (6)
H40.4736470.2468120.4183560.017*
C50.3574 (2)0.1810 (4)0.48539 (16)0.0133 (6)
C60.3366 (2)0.1572 (4)0.56068 (16)0.0128 (6)
H60.2656740.1177380.5697060.015*
C70.2216 (2)0.4234 (4)0.69407 (14)0.0108 (6)
C80.2040 (2)0.5888 (4)0.64942 (15)0.0126 (6)
H80.2649300.6685270.6440840.015*
C90.0966 (2)0.6368 (4)0.61262 (16)0.0146 (6)
C100.0089 (2)0.5168 (4)0.62049 (15)0.0161 (6)
H100.0639810.5471860.5939590.019*
C110.0254 (2)0.3533 (4)0.66637 (16)0.0144 (6)
C120.1329 (2)0.3073 (4)0.70360 (15)0.0124 (6)
H120.1456620.1967780.7354480.015*
C130.0756 (3)0.8176 (4)0.5651 (2)0.0242 (7)
H13A0.0007120.8168630.5354890.036*
H13B0.1279630.8257360.5286050.036*
H13C0.0857780.9272600.6005620.036*
C140.0718 (2)0.2318 (5)0.67730 (18)0.0244 (7)
H14A0.1176500.3007520.7089340.037*
H14B0.0446400.1138720.7041780.037*
H14C0.1165660.2016090.6258950.037*
N10.33273 (18)0.3807 (3)0.73296 (12)0.0111 (5)
O10.49846 (16)0.1842 (3)0.77286 (11)0.0169 (5)
O20.31742 (16)0.0286 (3)0.72152 (11)0.0159 (5)
S10.39385 (5)0.18095 (9)0.71907 (3)0.0102 (3)
CL10.67420 (5)0.33657 (9)0.51672 (4)0.0189 (3)
CL20.24931 (6)0.14477 (11)0.40666 (4)0.0212 (3)
H10.379 (3)0.475 (4)0.739 (2)0.027 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0138 (14)0.0084 (12)0.0104 (13)0.0043 (10)0.0040 (10)0.0001 (9)
C20.0122 (13)0.0108 (14)0.0122 (13)0.0013 (10)0.0003 (10)0.0004 (10)
C30.0135 (13)0.0064 (13)0.0175 (14)0.0022 (10)0.0066 (11)0.0016 (10)
C40.0214 (14)0.0108 (13)0.0105 (13)0.0039 (11)0.0067 (11)0.0022 (10)
C50.0161 (14)0.0116 (14)0.0111 (14)0.0037 (10)0.0010 (11)0.0026 (10)
C60.0122 (13)0.0117 (13)0.0153 (14)0.0003 (9)0.0043 (11)0.0001 (10)
C70.0122 (13)0.0148 (14)0.0060 (11)0.0012 (10)0.0036 (10)0.0044 (10)
C80.0132 (13)0.0133 (13)0.0131 (13)0.0017 (10)0.0071 (10)0.0018 (10)
C90.0170 (14)0.0159 (14)0.0116 (13)0.0027 (11)0.0044 (11)0.0020 (10)
C100.0122 (13)0.0231 (15)0.0124 (13)0.0024 (11)0.0004 (10)0.0007 (11)
C110.0137 (14)0.0188 (14)0.0109 (13)0.0026 (11)0.0027 (11)0.0014 (10)
C120.0142 (13)0.0157 (14)0.0072 (12)0.0007 (10)0.0019 (10)0.0006 (10)
C130.0195 (15)0.0220 (16)0.0321 (18)0.0041 (12)0.0072 (13)0.0111 (13)
C140.0128 (13)0.0310 (17)0.0271 (16)0.0065 (13)0.0021 (12)0.0065 (13)
N10.0103 (11)0.0123 (12)0.0108 (11)0.0017 (9)0.0021 (9)0.0031 (9)
O10.0134 (10)0.0264 (11)0.0097 (10)0.0052 (8)0.0014 (8)0.0020 (8)
O20.0191 (10)0.0123 (10)0.0179 (10)0.0004 (8)0.0072 (8)0.0037 (7)
S10.0103 (4)0.0134 (4)0.0068 (4)0.0015 (2)0.0015 (3)0.0016 (2)
CL10.0142 (4)0.0199 (4)0.0255 (5)0.0004 (2)0.0112 (3)0.0027 (2)
CL20.0202 (4)0.0311 (5)0.0103 (4)0.0013 (3)0.0029 (3)0.0028 (3)
Geometric parameters (Å, º) top
C1—C61.389 (4)C9—C101.391 (4)
C1—C21.391 (4)C9—C131.512 (4)
C1—S11.773 (3)C10—C111.393 (4)
C2—C31.383 (4)C10—H100.9500
C2—H20.9500C11—C121.394 (4)
C3—C41.385 (4)C11—C141.504 (4)
C3—CL11.739 (3)C12—H120.9500
C4—C51.385 (4)C13—H13A0.9800
C4—H40.9500C13—H13B0.9800
C5—C61.382 (4)C13—H13C0.9800
C5—CL21.737 (3)C14—H14A0.9800
C6—H60.9500C14—H14B0.9800
C7—C121.392 (4)C14—H14C0.9800
C7—C81.393 (4)N1—S11.631 (2)
C7—N11.435 (3)N1—H10.869 (19)
C8—C91.394 (4)O1—S11.440 (2)
C8—H80.9500O2—S11.428 (2)
C6—C1—C2122.5 (2)C11—C10—H10119.2
C6—C1—S1117.4 (2)C10—C11—C12118.9 (3)
C2—C1—S1119.9 (2)C10—C11—C14120.3 (3)
C3—C2—C1117.3 (2)C12—C11—C14120.7 (3)
C3—C2—H2121.4C7—C12—C11119.9 (2)
C1—C2—H2121.4C7—C12—H12120.0
C4—C3—C2122.6 (2)C11—C12—H12120.0
C4—C3—CL1118.27 (19)C9—C13—H13A109.5
C2—C3—CL1119.2 (2)C9—C13—H13B109.5
C3—C4—C5117.7 (2)H13A—C13—H13B109.5
C3—C4—H4121.1C9—C13—H13C109.5
C5—C4—H4121.1H13A—C13—H13C109.5
C6—C5—C4122.4 (3)H13B—C13—H13C109.5
C6—C5—CL2118.6 (2)C11—C14—H14A109.5
C4—C5—CL2118.9 (2)C11—C14—H14B109.5
C5—C6—C1117.5 (3)H14A—C14—H14B109.5
C5—C6—H6121.3C11—C14—H14C109.5
C1—C6—H6121.3H14A—C14—H14C109.5
C12—C7—C8120.8 (2)H14B—C14—H14C109.5
C12—C7—N1120.9 (2)C7—N1—S1122.12 (18)
C8—C7—N1118.3 (2)C7—N1—H1116 (2)
C7—C8—C9119.7 (2)S1—N1—H1112 (2)
C7—C8—H8120.2O2—S1—O1120.14 (12)
C9—C8—H8120.2O2—S1—N1108.89 (11)
C10—C9—C8119.2 (2)O1—S1—N1105.56 (11)
C10—C9—C13120.4 (3)O2—S1—C1108.09 (12)
C8—C9—C13120.4 (3)O1—S1—C1107.45 (12)
C9—C10—C11121.5 (2)N1—S1—C1105.85 (11)
C9—C10—H10119.2
C6—C1—C2—C31.3 (4)C9—C10—C11—C121.5 (4)
S1—C1—C2—C3176.48 (19)C9—C10—C11—C14176.7 (3)
C1—C2—C3—C41.4 (4)C8—C7—C12—C111.9 (4)
C1—C2—C3—CL1179.05 (19)N1—C7—C12—C11178.9 (2)
C2—C3—C4—C50.0 (4)C10—C11—C12—C70.5 (4)
CL1—C3—C4—C5179.60 (19)C14—C11—C12—C7178.7 (2)
C3—C4—C5—C61.5 (4)C12—C7—N1—S159.0 (3)
C3—C4—C5—CL2177.90 (19)C8—C7—N1—S1123.9 (2)
C4—C5—C6—C11.5 (4)C7—N1—S1—O244.7 (2)
CL2—C5—C6—C1177.86 (19)C7—N1—S1—O1174.93 (19)
C2—C1—C6—C50.1 (4)C7—N1—S1—C171.3 (2)
S1—C1—C6—C5175.20 (19)C6—C1—S1—O237.4 (2)
C12—C7—C8—C91.2 (4)C2—C1—S1—O2147.2 (2)
N1—C7—C8—C9178.3 (2)C6—C1—S1—O1168.42 (19)
C7—C8—C9—C100.7 (4)C2—C1—S1—O116.2 (2)
C7—C8—C9—C13178.9 (2)C6—C1—S1—N179.1 (2)
C8—C9—C10—C112.1 (4)C2—C1—S1—N196.2 (2)
C13—C9—C10—C11177.5 (3)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the aniline ring C7–C12
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.872.132.9848167
C14—H14B···Cg2ii0.982.863.5135124
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x, y+1/2, z+1/2.
 

Footnotes

These authors contributed equally.

Acknowledgements

The authors are thankful to the Institution of Excellence, Vijnana Bhavana, University of Mysore, Mysore, for providing the single-crystal X-ray diffraction data. KS is thankful to the University Grants Commission (UGC), New Delhi for financial assistance under its MRP scheme.

References

First citationAl-Said, M. S., Ghorab, M. M., Al-Dosari, M. S. & Hamed, M. M. (2011). Eur. J. Med. Chem. 46, 201–207.  Web of Science CAS PubMed Google Scholar
First citationBruker (2009). APEX2, SADABS, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGhorab, M. M., Ragab, A. F., Heiba, I. H. & Agha, M. H. (2011). J. Basic Appl. Chem, 1, 8–14.  Google Scholar
First citationHanafy, A., Uno, J., Mitani, H., Kang, Y. & Mikami, Y. (2007). Jpn. J. Med. Mycol. 48, 47–50.  CrossRef CAS Google Scholar
First citationHimel, C. M., Aboul-Saad, W. G. & Uk, S. (1971). J. Agric. Food Chem. 19, 1175–1180.  CrossRef Web of Science Google Scholar
First citationKüçükgüzel, Ş. G., Coşkun, İ., Aydın, S., Aktay, G., Gürsoy, Şule, Çevik, Ö., Özakpınar, Ö. B., Özsavcı, D., Şener, A., Kaushik-Basu, N., Basu, A. & Talele, T. T. (2013). Molecules, 18, 3595–3614.  Web of Science PubMed Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMohan, N. R., Sreenivasa, S., Manojkumar, K. E. & Chakrapani Rao, T. M. (2013). J. Appl. Chem, 2, 722–729.  Google Scholar
First citationRodrigues, V. Z., Sreenivasa, S., Naveen, S., Lokanath, N. K. & Suchetan, P. A. (2015). J. Appl. Chem. 4, 127–135.  CAS Google Scholar
First citationSahu, K. K., Ravichandran, V., Mourya, V. K. & Agrawal, R. K. (2007). Med. Chem. Res. 15, 418–430.  Web of Science CrossRef CAS Google Scholar
First citationShakuntala, K., Lokanath, N. K., Naveen, S. & Suchetan, P. A. (2017). IUCrData, 2, x170372.  Google Scholar
First citationShakuntala, K., Naveen, S., Lokanath, N. K. & Suchetan, P. A. (2017). IUCrData, 2, x170375.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShiva Prasad, K., Shiva Kumar, L., Vinay, K. B., ChandraShekar, S., Jayalakshmi, B. & Revanasiddappa, H. D. (2011). Int. J. Chem. Res, 2, 1–6.  Google Scholar
First citationSubhakara Reddy, N., Srinivas Rao, A., Adharvana Chari, M., Ravi Kumar, V., Jyothy, V. & Himabindu, V. (2012). J. Chem. Sci. 124, 723–730.  Google Scholar
First citationVora, P. J. & Mehta, A. G. (2012). IOSR J. Appl. Chem. 1, 34–39.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds