research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of two platinum(II) complexes containing ethyl eugenoxyacetate and 2-amino­pyridine

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi, Vietnam, and bDepartment of Chemistry, KU Leuven, Biomolecular Architecture, Celestijnenlaan 200F, Leuven (Heverlee), B-3001, Belgium
*Correspondence e-mail: luc.vanmeervelt@kuleuven.be

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 9 March 2017; accepted 17 March 2017; online 24 March 2017)

In the title complexes, trans-(2-amino­pyridine-κN)di­chlorido­{4-eth­oxy­carbonyl­meth­oxy-3-meth­oxy-1-[(2,3-η)-prop-2-en-1-yl]benzene}­platinum(II), [PtCl2(C5H6N2)(C14H18O4)], (I), and (2-amino­pyridine-κN)chlorido{5-eth­oxy­car­bon­yl­meth­oxy-4-meth­oxy-1-[(2,3-η)-prop-2-en-1-yl]phenyl-κC1}­platinum(II), [Pt(C14H17O4)Cl(C5H6N2)], (II), the central PtII metal atom displays a distorted square-planar coordination, with the PtII atom coordinated by the pyridine N atom, the C=C double bond of the eugenol ligand and two Cl atoms for (I) or one Cl atom and a C atom of the phenyl ring for (II). The allyl fragment in (I) is disordered, with population parameters 0.614 (14) and 0.386 (14) for the two positions of the central C atom. The least-squares planes through the two aromatic ring systems make a dihedral angle of 51.10 (13)° for (I) and 78.5 (2)° for (II). Intra­molecular N—H⋯O and N—H⋯π inter­actions occur in (I). In (I), inversion dimers formed by C—H⋯Cl inter­actions are further linked into chains parallel to the b axis by C—H⋯O hydrogen bonds. Both aromatic rings are involved in ππ inter­actions, with centroid-to-centroid distances of 3.508 (3) and 3.791 (3) Å. In (II), inversion dimers form chains parallel to the b axis by C—H⋯O inter­actions.

1. Chemical context

Since the discovery of the anti­cancer activity and subsequent clinical success of cisplatin {cis-[PtCl2(NH3)2]}, platinum-based compounds have been widely synthesized and studied as potential chemotherapeutic agents (Wong & Giandomenico, 1999[Wong, E. & Giandomenico, C. M. (1999). Chem. Rev. 99, 2451-2466.]). Despite the great success in treating certain kinds of cancer, there are several side effects, and both intrinsic and acquired resistance limit the organotropic profile of the drug (Chabner & Roberts, 2005[Chabner, B. A. & Roberts, T. G. (2005). Nat. Rev. Cancer, 5, 65-72.]; Kelland, 2007[Kelland, L. (2007). Nat. Rev. Cancer, 7, 573-584.]; Wilson & Lippard, 2014[Wilson, J. J. & Lippard, S. J. (2014). Chem. Rev. 114, 4470-4495.]). Hence, there is continuing inter­est in the development of new platinum complexes that have high activities but low toxicity (Johnstone et al., 2014[Johnstone, T. C., Park, G. Y. & Lippard, S. J. (2014). Anticancer Res. 34, 471-476.]).

Several natural aryl­olefins, such as safrole (in sassafras oil), eugenol (in clove oil) and anethole (in anise and fennel oil), and their derivatives have been used as important inter­mediate materials to synthesize many compounds that have various applications in the flavouring, food and pharmaceutical industries (Jadhav et al., 2004[Jadhav, B. K., Khandelwal, K. R., Ketkar, A. R. & Pisal, S. S. (2004). Drug Dev. Ind. Pharm. 30(2), 195-203.]). Recently, a number of PtII complexes containing natural aryl­olefins as ligands, i.e. safrole or derivatives of eugenol such as methyl­eugenol and alkyl­eugenoxyacetate, have been prepared (Da et al., 2010[Da, T. T., Kim, Y. M., Mai, T. T. C., Cuong, N. C. & Dinh, N. H. (2010). J. Coord. Chem. 63, 473-483.], 2012[Da, T. T., Chien, L. X., Chi, N. T. T., Hai, L. T. H. & Dinh, N. H. (2012). J. Coord. Chem. 65, 131-142.]; Da, Chi et al., 2015[Da, T. T., Chi, N. T. T., Van Meervelt, L., Mangwala, K. P. & Dinh, N. H. (2015). Polyhedron, 85, 104-109.]; Da, Hai et al., 2015[Da, T. T., Hai, L. T. H., Van Meervelt, L. & Dinh, N. H. (2015). J. Coord. Chem. 68, 3525-3536.]; Nguyen Thi Thanh et al., 2016[Nguyen Thi Thanh, C., Pham Van, T., Le Thi Hong, H. & Van Meervelt, L. (2016). Acta Cryst. C72, 758-764.]; Le Thi Hong et al., 2016[Le Thi Hong, H., Dao Thi Bich, D., Nguyen Bich, N. & Van Meervelt, L. (2016). Acta Cryst. E72, 912-917.]). The insertion of these natural aryl­olefins into the coordination with PtII and their transformations formed complexes with novel structures and high applicability. In particular, many of these organoplatinum(II) complexes exhibit significant inhibitory activities against human cancer cells (Da et al., 2012[Da, T. T., Chien, L. X., Chi, N. T. T., Hai, L. T. H. & Dinh, N. H. (2012). J. Coord. Chem. 65, 131-142.]; Da, Chi et al., 2015[Da, T. T., Chi, N. T. T., Van Meervelt, L., Mangwala, K. P. & Dinh, N. H. (2015). Polyhedron, 85, 104-109.]; Da, Hai et al., 2015[Da, T. T., Hai, L. T. H., Van Meervelt, L. & Dinh, N. H. (2015). J. Coord. Chem. 68, 3525-3536.]).

[Scheme 1]

Herein, we report the syntheses and crystal structure determinations of organoplatinum(II) complexes formed by the complexation of 2-amino­pyridine as ligand with the mononuclear platinum(II) complex K[PtCl3(Eteug)] and the binuclear platinum(II) complex [Pt2(Eteug-1H)2Cl2] (Eteug is ethyl­eugenoxyl­acetate).

2. Structural commentary

In both title complexes, the central PtII metal atom displays a distorted square-planar coordination (Fig. 1[link]). In addition to the two Cl atoms in dichloride complex (I)[link], the pyridine N atom and the C=C double bond of the eugenol ligand coordinate to the central PtII atom. In monochloride complex (II)[link], one Cl atom is replaced by a C atom of the eugenol phenyl group. An overlay of the Pt–2-amino fragment present in both structures clearly shows the differences in coordination (Fig. 2[link]). Where in (I)[link] the Cl atoms are trans with respect to each other, this is the case for the two aromatic rings in (II)[link]. One Cl and the C=C coordinations in (I)[link] are replaced by, respectively, C=C and a phenyl C atom in (II)[link]. In both cases, the 2-amino­pyridine ligand only inter­acts via the ring N atom. In (I)[link], the CH2—CH=CH2 fragment is disordered, with population parameters of 0.614 (14) and 0.386 (14) for the two positions of the central C atom. The dihedral angles between the planes through the two aromatic rings are 78.5 (2) and 51.10 (13)° for (I)[link] and (II)[link], respectively. In (I)[link], the H atoms of the amino group are involved in a weak intra­molecular N—H⋯O inter­action (N8—H8B⋯O25, Table 1[link]) and an N—H⋯π inter­action (N8—H8ACg1, Table 1[link]; Cg1 is the centroid of the C14–C19 ring). Similar inter­actions are not possible in (II)[link] due to the different orientation of the ligands.

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

Cg1 is the centroid of the C14–C19 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N8—H8B⋯O25 0.88 2.19 3.054 (5) 167
C7—H7⋯O26i 0.95 2.49 3.258 (6) 138
C18—H18⋯Cl9ii 0.95 2.78 3.460 (5) 130
N8—H8ACg1 0.88 2.53 3.166 (4) 129
Symmetry codes: (i) x, y-1, z; (ii) -x, -y+1, -z+1.
[Figure 1]
Figure 1
Views of the asymmetric units in (a) (I)[link] and (b) (II)[link], showing the atom-labelling schemes. Displacement ellipsoids are drawn at the 50% probability level. Orange bonds in (a) show the allyl fragment with a population parameter of 0.386 (14). Blue dotted lines indicate intra­molecular inter­actions in (a).
[Figure 2]
Figure 2
Overlay of the Pt–2-amino­pyridine fragment present in (I)[link] (green bonds) and (II)[link] (red bonds).

3. Supra­molecular features

The complexes crystallize in different space groups, viz. P[\overline{1}] for di­chloride complex (I)[link] and P21/c for monochloride complex (II)[link].

The crystal packing of (I)[link] is dominated by hydrogen bonding and ππ inter­actions. Inversion dimers formed by C18—H18⋯Cl9i hydrogen bonds are further linked into chains parallel to the b axis by C7—H7⋯O26ii hydrogen bonds [Table 1[link] and Fig. 3[link]; symmetry codes: (i) x, y − 1, z; (ii) −x, −y + 1, −z + 1]. Both aromatic rings show ππ stacking, with Cg1⋯Cg1iii = 3.791 (3) Å for the phenyl ring and Cg2⋯Cg2iv = 3.508 (3) Å for the pyridine ring [Cg1 and Cg2 are the centroids of the C14–C19 and N2/C3–C7 rings; symmetry codes: (iii) −x + 1, −y + 1, −z + 1; (iv) −x, −y, −z + 2; Fig. 4[link]].

[Figure 3]
Figure 3
Packing diagram of (I)[link], showing the C—H⋯O (red dotted lines) and C—H⋯Cl inter­actions (green dotted lines). [Symmetry codes: (i) −x, −y + 1, −z + 1; (ii) x, y − 1, z.]
[Figure 4]
Figure 4
Partial packing diagram of (I)[link], showing ππ stacking (gray dotted lines). [Cg1 and Cg2 are the centroids of the C14–C19 and N2/C3–C7 rings; symmetry codes: (iii) −x + 1, −y + 1, −z + 1; (iv) −x, −y, −z + 2.]

The crystal packing of (II)[link] is built up by C—H⋯O, N—H⋯Cl and C—H⋯π inter­actions (Table 2[link] and Fig. 5[link]). Two types of inversion dimers are created by C—H⋯O inter­actions enclosing R22(10) and R22(16) ring motifs, and resulting in the formation of chains parallel to the b axis. No ππ inter­actions are observed in the packing of (II)[link].

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

Cg2 is the centroid of the C12–C17 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17⋯O24i 0.95 2.60 3.501 (3) 159
C25—H25B⋯O23ii 0.99 2.60 3.449 (3) 144
N8—H8B⋯Cl27iii 0.88 2.67 3.413 (2) 143
C19—H19ACg2i 0.98 2.63 3.476 (3) 145
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x+1, -y+1, -z+1; (iii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 5]
Figure 5
Partial packing diagram of (II)[link], showing the C—H⋯O (red dotted lines), N—H⋯Cl (green dotted lines) and C—H⋯π (gray dotted lines) inter­actions. [Symmetry codes: (i) −x + 1, −y, −z + 1; (ii) −x + 1, −y + 1, −z + 1; (iii) −x, y + [{1\over 2}], −z + [{1\over 2}].]

4. Database survey

The Pt—N distances of 2.066 (3) Å in (I)[link] and 2.143 (2) Å in (II)[link] agree well with the average Pt—N distance of 2.06 (7) Å for Pt–pyridine fragments present in the Cambridge Structural Database (CSD, Version 5.38, last update February 2017; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]).

The CSD contains 34 Pt complexes with Pt coordinated by Cl, pyridine and C=C, with 28 complexes having an additional Cl atom as the fourth ligand (27 trans and one cis coordination), three a C atom and another three an N atom.

The synthesis of (II)[link], starting from the dinuclear complex [Pt2Cl2(Eteug-1H)2], can be rationalized by the replacement of the Cl atom in the trans position with respect to the C=C bond. Verification of the Pt—Cl distances in the dinuclear complex di-μ-chlorido-bis­[(η2-2-allyl-4-meth­oxy-5-{[(propan-2-yl­oxy)carbon­yl]meth­oxy}phenyl-κC1)platinum(II)], [Pt2(IsoPreug-1H)2Cl2] (IsoPreug-1H is isopropyleugenoxylacetate; CSD refcode EWAVIJ; Nguyen Thi Thanh et al., 2016[Nguyen Thi Thanh, C., Pham Van, T., Le Thi Hong, H. & Van Meervelt, L. (2016). Acta Cryst. C72, 758-764.]) indicates that the longest Pt—Cl bond [2.4773 (7) versus 2.3527 (7) Å] is cleaved, leading to a cis position of 2-amino­pyridine with respect to the C=C bond.

5. Synthesis and crystallization

5.1. Synthesis of K[PtCl3(Eteug)] and [Pt2Cl2(Eteug-1H)2]

The mononuclear complex K[PtCl3(Eteug)] and the dinuclear chelate ring complex [Pt2Cl2(Eteug-1H)2] were synthesized following the protocol of Da and co-workers (Da et al., 2012[Da, T. T., Chien, L. X., Chi, N. T. T., Hai, L. T. H. & Dinh, N. H. (2012). J. Coord. Chem. 65, 131-142.]; Da, Chi et al., 2015[Da, T. T., Chi, N. T. T., Van Meervelt, L., Mangwala, K. P. & Dinh, N. H. (2015). Polyhedron, 85, 104-109.]; Da, Hai et al., 2015[Da, T. T., Hai, L. T. H., Van Meervelt, L. & Dinh, N. H. (2015). J. Coord. Chem. 68, 3525-3536.]).

5.2. Synthesis of trans-[PtCl2(Eteug)(C5H6N2)], (I)

While stirring, a solution of 2-amino­pyridine (0.22 mmol) in acetone (2 ml) was added slowly to a solution of K[PtCl3(Eteug)] (0.2 mmol) in acetone (15 ml). After 2 h, a white precipitate of KCl was separated out. After stirring for 3 h at room temperature, ethanol (2 ml) was added to the obtained solution. Slow evaporation of the solvent at room temperature afforded the desired product as bright orange–yellow crystals. The yield was 80%. The product is soluble in acetone and chloro­form, but only slightly soluble in ethanol and insoluble in water. Single crystals suitable for X-ray diffraction were obtained from an acetone/ethanol (3:1 v/v) solution via slow evaporation of the solvents at 277–278 K.

5.3. Data for trans-[PtCl2(Eteug)(C5H6N2)], (I)

IR (Impack-410 Nicolet spectrometer, KBr, cm−1): 3454, 3341 (νNH); 3060, 2930 (νCH); 1739 (νC=O); 1598, 1512 (aromatic, νC=C, νC= N).

1H NMR (δ p.p.m.; Bruker AVANCE 500 MHz, CDCl3): 7.15 (1H, d, 4J = 1.5 Hz, Ar), 7.00 (1H, t, 3J = 8.0 Hz, 4J = 1.5 Hz, Ar), 6.77 (1H, d, 3J = 8 Hz, Ar), 4.82 (1H, d, 2J = 17 Hz, OCH2), 4.77 (1H, d, 2J = 16.5 Hz, OCH2) , 3.91 (3H, s, OCH3), 4.28 (2H, q, 3J = 7 Hz, -CH2CH3), 1.33 (3H, t, 3J = 7 Hz, CH2CH3), 3.26 (1H, dd, 2J = 15 Hz, 3J = 7.5 Hz, CH2CH), 3.39 (1H, dd, 2J = 15 Hz, 3J = 7.5 Hz, CH2CH), 5.99 (1H, m, 2JPtH = 70 Hz, CH=CH2), 4.69 (1H, d, 3J = 8, 2JPtH = 70 Hz, cis-alkene), 4.78 (1H, ov, trans-alkene), 6.47 (1H, d, 3J = 8.5 Hz, Ar of 2-amino­pyridine), 6.6 (1H, t, 3J = 6 Hz, Ar), 7.35 (1H, m, 3J = 7.5 Hz, 4J = 1.5 Hz, Ar), 7.86 (1H, d, 3J = 6 Hz, Ar), 5.21 (ov, NH2).

5.4. Synthesis of [Pt(Eteug-1H)Cl(C5H6N2)], (II)

A solution of 2-amino­pyridine (0.22 mmol) in acetone (2 ml) was added slowly to a mixture of [Pt2(Eteug-1H)2Cl2] (0.1 mmol) and acetone/ethanol (6 ml, 1:2 v/v). After stirring for 2 h at room temperature, a yellow solution was obtained. A white precipitate was formed by slow evaporation of the solvent at 277–278 K. The precipitate was collected by filtration and washed with ethanol. The product is soluble in acetone and chloro­form, but only slightly soluble in ethanol and insoluble in water. The yield was 75%. Single crystals suitable for X-ray diffraction were obtained from a acetone/ethanol (1:1 v/v) solution via slow evaporation of the solvents at 277–278 K.

5.5. Data for [Pt(Eteug-1H)Cl(C5H6N2)], (II)

IR (Impack-410 Nicolet spectrometer, KBr, cm−1): 3446, 3332 (νNH); 3070, 2941, 2849 (νCH); 1756 (νC=O); 1566 (aromatic, νC=C, νC=N).

1H NMR (δ p.p.m.; Bruker AVANCE 500 MHz, CD3COCD3): 6.66 (1H, s, Ar), 7.04 (1H, s, 3JPtH = 40 Hz, Ar), 4.59 (1H, d, 2J = 16 Hz, 2H, OCH2), 4.55 (1H, d, 2J = 16 Hz, OCH2), 3.73 (3H, s, 3J = 7 Hz, OCH3), 4.21 (2H, m, 3J = 7 Hz, CH2CH3), 1.28 (3H, t, 3J = 7.0 Hz, CH2CH3), 2.65 (1H, d, 2J = 16.5; 3JPtH = 100 Hz, CH2CH), 3.78 (1H, ov, CH2CH), 4.74 (1H, m, 2JPtH = 75 Hz, CH=CH2), 3.72 (1H, ov, cis-alkene), 3.82 (1H, d, 3J = 13.5 Hz, trans-alkene), 6.85 (1H, d, 3J = 8.5 Hz, Ar of 2-amino­pyridine), 6.72 (1H, m, Ar), 7.56 (1H, m, Ar), 8.07 (1H, d, 3J = 6 Hz, Ar), 6.43 (ov, NH2).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. All H atoms were placed in idealized positions and refined in the riding mode, with Uiso(H) values assigned as 1.2Ueq of the parent atoms (1.5 times for methyl groups), and with C—H distances of 0.95 (aromatic and =CH2), 0.98 (CH3), 0.99 (CH2) and 1.00 Å (CH), and N—H distances of 0.88 Å (NH2).

Table 3
Experimental details

  (I) (II)
Crystal data
Chemical formula [PtCl2(C5H6N2)(C14H18O4)] [Pt(C14H17O4)Cl(C5H6N2)]
Mr 610.39 573.93
Crystal system, space group Triclinic, P[\overline{1}] Monoclinic, P21/c
Temperature (K) 100 100
a, b, c (Å) 8.3187 (3), 11.4119 (3), 12.1012 (4) 15.1198 (5), 10.0855 (2), 14.1855 (4)
α, β, γ (°) 70.437 (3), 73.688 (3), 87.038 (2) 90, 117.329 (4), 90
V3) 1037.76 (6) 1921.72 (11)
Z 2 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 7.05 7.47
Crystal size (mm) 0.30 × 0.30 × 0.15 0.30 × 0.30 × 0.20
 
Data collection
Diffractometer Agilent SuperNova diffractometer (single source at offset, Eos detector) Agilent SuperNova diffractometer (single source at offset, Eos detector)
Absorption correction Multi-scan (CrysAlis PRO; Rigaku Oxford Diffraction, 2015[Rigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, Oxfordshire, England.]) Multi-scan (CrysAlis PRO; Rigaku Oxford Diffraction, 2015[Rigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, Oxfordshire, England.])
Tmin, Tmax 0.406, 1.000 0.314, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 21329, 4241, 4006 20268, 3928, 3715
Rint 0.052 0.033
(sin θ/λ)max−1) 0.625 0.624
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.065, 1.04 0.016, 0.038, 1.06
No. of reflections 4241 3928
No. of parameters 265 246
No. of restraints 26 0
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.41, −2.25 0.69, −1.04
Computer programs: CrysAlis PRO (Rigaku Oxford Diffraction, 2015[Rigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, Oxfordshire, England.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]), SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

In (I)[link], the central C atom in the CH2—CH=CH2 fragment is disordered over two positions [population parameters = 0.614 (14) and 0.386 (14)] and was refined with constraints for bond lengths and anisotropic displacement parameters present in this fragment.

Supporting information


Computing details top

For both compounds, data collection: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); cell refinement: CrysAlis PRO (Rigaku Oxford Diffraction, 2015); data reduction: CrysAlis PRO (Rigaku Oxford Diffraction, 2015). Program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) for (I); SUPERFLIP (Palatinus & Chapuis, 2007) for (II). For both compounds, program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

(I) trans-(2-Aminopyridine-κN)dichlorido{4-ethoxycarbonylmethoxy-3-methoxy-1-[(2,3-η)-prop-2-en-1-yl]benzene}platinum(II) top
Crystal data top
[PtCl2(C5H6N2)(C14H18O4)]Z = 2
Mr = 610.39F(000) = 592
Triclinic, P1Dx = 1.953 Mg m3
a = 8.3187 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.4119 (3) ÅCell parameters from 13838 reflections
c = 12.1012 (4) Åθ = 2.7–29.0°
α = 70.437 (3)°µ = 7.05 mm1
β = 73.688 (3)°T = 100 K
γ = 87.038 (2)°Block, orange
V = 1037.76 (6) Å30.3 × 0.3 × 0.15 mm
Data collection top
Agilent SuperNova
diffractometer (single source at offset, Eos detector)
4241 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Mo) X-ray Source4006 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.052
Detector resolution: 15.9631 pixels mm-1θmax = 26.4°, θmin = 2.6°
ω scansh = 1010
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku Oxford Diffraction, 2015)
k = 1414
Tmin = 0.406, Tmax = 1.000l = 1515
21329 measured reflections
Refinement top
Refinement on F226 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.065 w = 1/[σ2(Fo2) + (0.0193P)2 + 4.6851P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
4241 reflectionsΔρmax = 1.41 e Å3
265 parametersΔρmin = 2.25 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pt10.11518 (2)0.08277 (2)0.62392 (2)0.02167 (7)
N20.0430 (4)0.0375 (3)0.7993 (3)0.0155 (7)
C30.0741 (5)0.1198 (4)0.8603 (4)0.0146 (8)
C40.1797 (5)0.0846 (4)0.9812 (4)0.0170 (8)
H40.20410.14321.02320.020*
C50.2465 (5)0.0343 (4)1.0371 (4)0.0205 (9)
H50.31670.05911.11870.025*
C60.2119 (6)0.1198 (4)0.9745 (4)0.0208 (9)
H60.25730.20301.01240.025*
C70.1108 (5)0.0804 (4)0.8570 (4)0.0175 (9)
H70.08700.13800.81390.021*
N80.0004 (4)0.2351 (3)0.8045 (3)0.0174 (7)
H8A0.06660.25560.72960.021*
H8B0.01930.28980.84290.021*
Cl90.0885 (2)0.20013 (13)0.55243 (12)0.0524 (5)
Cl100.30457 (16)0.05058 (16)0.70053 (13)0.0431 (4)
C110.2551 (6)0.0923 (4)0.4411 (4)0.0277 (11)
H11A0.19650.13110.38220.033*0.614 (14)
H11B0.25250.00410.47470.033*0.614 (14)
H11C0.35640.04940.43780.033*0.386 (14)
H11D0.15670.05270.44230.033*0.386 (14)
C12A0.3491 (9)0.1682 (6)0.4797 (6)0.023 (2)0.614 (14)
H12A0.45080.12630.50000.028*0.614 (14)
C12B0.2510 (13)0.2166 (8)0.4441 (9)0.017 (3)0.386 (14)
H12B0.16980.26510.40120.020*0.386 (14)
C130.3685 (9)0.2936 (6)0.4434 (6)0.063 (2)
H13A0.29550.32890.38930.075*0.614 (14)
H13B0.48570.31670.39230.075*0.614 (14)
H13C0.39910.35860.36160.075*0.386 (14)
H13D0.46930.24500.45100.075*0.386 (14)
C140.3340 (7)0.3596 (5)0.5366 (4)0.0345 (13)
C150.4254 (6)0.3359 (4)0.6219 (4)0.0270 (11)
H150.51090.27750.62170.032*
C160.3922 (5)0.3972 (4)0.7070 (4)0.0175 (9)
C170.2668 (5)0.4837 (4)0.7075 (4)0.0170 (8)
C180.1784 (6)0.5086 (4)0.6213 (4)0.0243 (10)
H180.09400.56790.62010.029*
C190.2133 (7)0.4467 (5)0.5364 (4)0.0315 (12)
H190.15270.46490.47730.038*
O200.4752 (4)0.3819 (3)0.7940 (3)0.0220 (7)
C210.6142 (6)0.3034 (5)0.7900 (5)0.0313 (12)
H21A0.69470.33340.70870.047*
H21B0.57480.21800.80680.047*
H21C0.66870.30470.85160.047*
O220.2431 (4)0.5390 (3)0.7957 (3)0.0178 (6)
C230.1152 (5)0.6250 (4)0.8002 (4)0.0187 (9)
H23A0.12450.68270.71650.022*
H23B0.13090.67500.84970.022*
C240.0586 (5)0.5614 (4)0.8548 (4)0.0163 (8)
O250.0878 (4)0.4502 (3)0.9044 (3)0.0201 (6)
O260.1749 (3)0.6460 (3)0.8437 (3)0.0170 (6)
C270.3490 (5)0.5976 (4)0.9030 (4)0.0188 (9)
H27A0.36700.55900.99230.023*
H27B0.37370.53330.87100.023*
C280.4627 (5)0.7039 (4)0.8770 (4)0.0192 (9)
H28A0.44250.74250.78850.029*
H28B0.43990.76570.91130.029*
H28C0.57980.67270.91430.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.03045 (11)0.01466 (10)0.01438 (10)0.00576 (7)0.00493 (7)0.00608 (7)
N20.0166 (17)0.0131 (17)0.0137 (17)0.0016 (14)0.0029 (14)0.0015 (14)
C30.0140 (19)0.013 (2)0.018 (2)0.0038 (15)0.0069 (16)0.0051 (16)
C40.016 (2)0.020 (2)0.015 (2)0.0041 (16)0.0037 (16)0.0067 (17)
C50.014 (2)0.027 (2)0.017 (2)0.0024 (17)0.0031 (17)0.0031 (18)
C60.023 (2)0.015 (2)0.020 (2)0.0071 (17)0.0048 (18)0.0001 (17)
C70.021 (2)0.015 (2)0.016 (2)0.0006 (17)0.0051 (17)0.0042 (17)
N80.0212 (18)0.0122 (17)0.0168 (18)0.0005 (14)0.0011 (14)0.0054 (14)
Cl90.1016 (13)0.0365 (8)0.0210 (6)0.0429 (8)0.0248 (7)0.0113 (6)
Cl100.0236 (6)0.0824 (11)0.0382 (7)0.0192 (7)0.0099 (5)0.0404 (8)
C110.038 (3)0.022 (2)0.014 (2)0.007 (2)0.0094 (19)0.0080 (18)
C12A0.020 (4)0.024 (4)0.016 (4)0.007 (3)0.009 (3)0.006 (3)
C12B0.024 (6)0.020 (5)0.005 (5)0.001 (4)0.003 (4)0.004 (4)
C130.071 (4)0.072 (4)0.038 (3)0.051 (4)0.030 (3)0.040 (3)
C140.040 (3)0.039 (3)0.018 (2)0.031 (3)0.015 (2)0.015 (2)
C150.022 (2)0.023 (2)0.028 (3)0.0113 (19)0.0111 (19)0.012 (2)
C160.016 (2)0.013 (2)0.019 (2)0.0036 (16)0.0001 (17)0.0037 (17)
C170.015 (2)0.017 (2)0.015 (2)0.0030 (16)0.0003 (16)0.0024 (17)
C180.024 (2)0.022 (2)0.020 (2)0.0099 (19)0.0062 (19)0.0024 (19)
C190.038 (3)0.036 (3)0.014 (2)0.023 (2)0.004 (2)0.001 (2)
O200.0160 (15)0.0223 (16)0.0280 (17)0.0099 (13)0.0059 (13)0.0104 (14)
C210.020 (2)0.028 (3)0.038 (3)0.012 (2)0.001 (2)0.007 (2)
O220.0159 (14)0.0168 (15)0.0246 (16)0.0060 (12)0.0075 (12)0.0112 (13)
C230.016 (2)0.012 (2)0.028 (2)0.0032 (16)0.0051 (18)0.0079 (18)
C240.018 (2)0.015 (2)0.016 (2)0.0015 (16)0.0059 (16)0.0042 (17)
O250.0216 (16)0.0144 (15)0.0222 (16)0.0002 (12)0.0033 (13)0.0057 (13)
O260.0130 (14)0.0128 (14)0.0220 (16)0.0001 (11)0.0015 (12)0.0044 (12)
C270.013 (2)0.019 (2)0.021 (2)0.0030 (17)0.0005 (17)0.0057 (18)
C280.015 (2)0.024 (2)0.017 (2)0.0017 (17)0.0038 (17)0.0062 (18)
Geometric parameters (Å, º) top
Pt1—N22.066 (3)C13—H13C0.9900
Pt1—Cl92.2860 (14)C13—H13D0.9900
Pt1—Cl102.2990 (14)C13—C141.513 (7)
Pt1—C112.161 (4)C14—C151.395 (8)
Pt1—C12A2.221 (7)C14—C191.376 (8)
Pt1—C12B2.217 (10)C15—H150.9500
N2—C31.352 (5)C15—C161.389 (6)
N2—C71.358 (5)C16—C171.399 (6)
C3—C41.412 (6)C16—O201.375 (5)
C3—N81.348 (5)C17—C181.386 (6)
C4—H40.9500C17—O221.377 (5)
C4—C51.364 (6)C18—H180.9500
C5—H50.9500C18—C191.391 (7)
C5—C61.397 (6)C19—H190.9500
C6—H60.9500O20—C211.426 (5)
C6—C71.367 (6)C21—H21A0.9800
C7—H70.9500C21—H21B0.9800
N8—H8A0.8800C21—H21C0.9800
N8—H8B0.8800O22—C231.413 (5)
C11—H11A0.9500C23—H23A0.9900
C11—H11B0.9500C23—H23B0.9900
C11—H11C0.9500C23—C241.518 (6)
C11—H11D0.9500C24—O251.211 (5)
C11—C12A1.458 (8)C24—O261.333 (5)
C11—C12B1.429 (9)O26—C271.467 (5)
C12A—H12A1.0000C27—H27A0.9900
C12A—C131.353 (9)C27—H27B0.9900
C12B—H12B1.0000C27—C281.502 (6)
C12B—C131.344 (9)C28—H28A0.9800
C13—H13A0.9900C28—H28B0.9800
C13—H13B0.9900C28—H28C0.9800
N2—Pt1—Cl989.18 (10)C12A—C13—H13B107.2
N2—Pt1—Cl1088.85 (10)C12A—C13—C14120.4 (6)
N2—Pt1—C11167.04 (16)C12B—C13—H13C107.2
N2—Pt1—C12A153.0 (2)C12B—C13—H13D107.2
N2—Pt1—C12B153.2 (3)C12B—C13—C14120.7 (6)
Cl9—Pt1—Cl10174.90 (6)H13A—C13—H13B106.8
C11—Pt1—Cl991.10 (15)H13C—C13—H13D106.8
C11—Pt1—Cl1089.77 (15)C14—C13—H13A107.2
C11—Pt1—C12A38.8 (2)C14—C13—H13B107.2
C11—Pt1—C12B38.1 (2)C14—C13—H13C107.2
C12A—Pt1—Cl9103.0 (2)C14—C13—H13D107.2
C12A—Pt1—Cl1080.8 (2)C15—C14—C13121.1 (6)
C12B—Pt1—Cl975.1 (3)C19—C14—C13119.9 (6)
C12B—Pt1—Cl10108.4 (3)C19—C14—C15119.0 (5)
C3—N2—Pt1122.0 (3)C14—C15—H15119.8
C3—N2—C7119.1 (4)C16—C15—C14120.5 (5)
C7—N2—Pt1118.9 (3)C16—C15—H15119.8
N2—C3—C4120.4 (4)C15—C16—C17120.0 (4)
N8—C3—N2118.8 (4)O20—C16—C15125.3 (4)
N8—C3—C4120.8 (4)O20—C16—C17114.6 (4)
C3—C4—H4120.3C18—C17—C16119.3 (4)
C5—C4—C3119.4 (4)O22—C17—C16115.6 (4)
C5—C4—H4120.3O22—C17—C18125.1 (4)
C4—C5—H5119.9C17—C18—H18120.0
C4—C5—C6120.1 (4)C17—C18—C19120.0 (5)
C6—C5—H5119.9C19—C18—H18120.0
C5—C6—H6120.9C14—C19—C18121.2 (5)
C7—C6—C5118.1 (4)C14—C19—H19119.4
C7—C6—H6120.9C18—C19—H19119.4
N2—C7—C6122.9 (4)C16—O20—C21116.7 (4)
N2—C7—H7118.5O20—C21—H21A109.5
C6—C7—H7118.5O20—C21—H21B109.5
C3—N8—H8A120.0O20—C21—H21C109.5
C3—N8—H8B120.0H21A—C21—H21B109.5
H8A—N8—H8B120.0H21A—C21—H21C109.5
Pt1—C11—H11A112.8H21B—C21—H21C109.5
Pt1—C11—H11B84.7C17—O22—C23117.0 (3)
Pt1—C11—H11C113.4O22—C23—H23A109.2
Pt1—C11—H11D83.9O22—C23—H23B109.2
H11A—C11—H11B120.0O22—C23—C24112.2 (3)
H11C—C11—H11D120.0H23A—C23—H23B107.9
C12A—C11—Pt172.8 (3)C24—C23—H23A109.2
C12A—C11—H11A120.0C24—C23—H23B109.2
C12A—C11—H11B120.0O25—C24—C23125.1 (4)
C12B—C11—Pt173.1 (4)O25—C24—O26124.8 (4)
C12B—C11—H11C120.0O26—C24—C23110.1 (3)
C12B—C11—H11D120.0C24—O26—C27115.6 (3)
Pt1—C12A—H12A111.8O26—C27—H27A110.0
C11—C12A—Pt168.3 (3)O26—C27—H27B110.0
C11—C12A—H12A111.8O26—C27—C28108.4 (3)
C13—C12A—Pt1116.3 (5)H27A—C27—H27B108.4
C13—C12A—C11129.2 (6)C28—C27—H27A110.0
C13—C12A—H12A111.8C28—C27—H27B110.0
Pt1—C12B—H12B110.3C27—C28—H28A109.5
C11—C12B—Pt168.8 (4)C27—C28—H28B109.5
C11—C12B—H12B110.3C27—C28—H28C109.5
C13—C12B—Pt1116.9 (6)H28A—C28—H28B109.5
C13—C12B—C11132.6 (8)H28A—C28—H28C109.5
C13—C12B—H12B110.3H28B—C28—H28C109.5
C12A—C13—H13A107.2
Pt1—N2—C3—C4178.4 (3)C13—C14—C19—C18179.8 (4)
Pt1—N2—C3—N80.5 (5)C14—C15—C16—C170.2 (6)
Pt1—N2—C7—C6177.6 (3)C14—C15—C16—O20179.4 (4)
Pt1—C11—C12A—C13106.9 (7)C15—C14—C19—C181.7 (7)
Pt1—C11—C12B—C13107.7 (11)C15—C16—C17—C180.9 (6)
Pt1—C12A—C13—C1446.1 (8)C15—C16—C17—O22179.7 (4)
Pt1—C12B—C13—C1444.9 (10)C15—C16—O20—C214.8 (6)
N2—C3—C4—C51.8 (6)C16—C17—C18—C190.8 (6)
C3—N2—C7—C61.0 (6)C16—C17—O22—C23178.8 (4)
C3—C4—C5—C60.7 (6)C17—C16—O20—C21174.4 (4)
C4—C5—C6—C70.2 (6)C17—C18—C19—C140.5 (7)
C5—C6—C7—N20.1 (7)C17—O22—C23—C2474.6 (5)
C7—N2—C3—C41.9 (6)C18—C17—O22—C231.9 (6)
C7—N2—C3—N8177.0 (4)C19—C14—C15—C161.5 (7)
N8—C3—C4—C5177.1 (4)O20—C16—C17—C18178.4 (4)
C11—C12A—C13—C14128.7 (7)O20—C16—C17—O221.0 (5)
C11—C12B—C13—C14130.1 (10)O22—C17—C18—C19179.9 (4)
C12A—C13—C14—C1561.2 (8)O22—C23—C24—O259.5 (6)
C12A—C13—C14—C19120.3 (7)O22—C23—C24—O26172.5 (3)
C12B—C13—C14—C15116.1 (8)C23—C24—O26—C27174.6 (3)
C12B—C13—C14—C1965.4 (9)C24—O26—C27—C28177.6 (3)
C13—C14—C15—C16180.0 (4)O25—C24—O26—C273.5 (6)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C14–C19 ring.
D—H···AD—HH···AD···AD—H···A
N8—H8B···O250.882.193.054 (5)167
C7—H7···O26i0.952.493.258 (6)138
C18—H18···Cl9ii0.952.783.460 (5)130
N8—H8A···Cg10.882.533.166 (4)129
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z+1.
(II) (2-Aminopyridine-κN)chlorido{5-ethoxycarbonylmethoxy-4-methoxy-1-[(2,3-η)-prop-2-en-1-yl]phenyl-κC1}platinum(II) top
Crystal data top
[Pt(C14H17O4)Cl(C5H6N2)]F(000) = 1112
Mr = 573.93Dx = 1.984 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 15.1198 (5) ÅCell parameters from 14326 reflections
b = 10.0855 (2) Åθ = 3.2–29.1°
c = 14.1855 (4) ŵ = 7.47 mm1
β = 117.329 (4)°T = 100 K
V = 1921.72 (11) Å3Block, white
Z = 40.3 × 0.3 × 0.2 mm
Data collection top
Agilent SuperNova
diffractometer (single source at offset, Eos detector)
3928 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Mo) X-ray Source3715 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.033
Detector resolution: 15.9631 pixels mm-1θmax = 26.3°, θmin = 2.5°
ω scansh = 1818
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku Oxford Diffraction, 2015)
k = 1212
Tmin = 0.314, Tmax = 1.000l = 1717
20268 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.016H-atom parameters constrained
wR(F2) = 0.038 w = 1/[σ2(Fo2) + (0.0159P)2 + 1.3858P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
3928 reflectionsΔρmax = 0.69 e Å3
246 parametersΔρmin = 1.04 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.10189 (2)0.16233 (2)0.26543 (2)0.00950 (4)
N20.03286 (15)0.2169 (2)0.12855 (16)0.0120 (4)
C30.10502 (19)0.1243 (3)0.0838 (2)0.0152 (5)
H30.09340.03800.11410.018*
C40.1940 (2)0.1495 (3)0.0030 (2)0.0184 (6)
H40.24370.08280.03200.022*
C50.2097 (2)0.2756 (3)0.0476 (2)0.0185 (6)
H50.27050.29580.10840.022*
C60.1378 (2)0.3701 (3)0.0039 (2)0.0172 (6)
H60.14790.45610.03440.021*
C70.0487 (2)0.3395 (2)0.0864 (2)0.0131 (5)
N80.02411 (16)0.4301 (2)0.13082 (18)0.0190 (5)
H8A0.08040.40870.18610.023*
H8B0.01540.51090.10460.023*
C90.1753 (2)0.1410 (3)0.1694 (2)0.0165 (6)
H9A0.24340.16270.21220.020*
H9B0.13200.20330.11910.020*
C100.13895 (19)0.0178 (3)0.18011 (19)0.0141 (5)
H100.08180.01760.11460.017*
C110.20439 (19)0.0853 (3)0.25867 (19)0.0140 (5)
H11A0.16260.15850.26260.017*
H11B0.25110.12270.23450.017*
C120.26227 (18)0.0239 (2)0.36696 (18)0.0106 (5)
C130.22571 (18)0.0934 (2)0.38748 (19)0.0105 (5)
C140.27648 (18)0.1489 (2)0.48888 (19)0.0102 (5)
H140.25360.22980.50430.012*
C150.35958 (18)0.0873 (2)0.56683 (18)0.0104 (5)
C160.39390 (17)0.0322 (2)0.54590 (18)0.0099 (5)
C170.34544 (18)0.0865 (2)0.44517 (19)0.0105 (5)
H170.36910.16660.42950.013*
O180.47426 (13)0.08947 (17)0.62958 (13)0.0129 (4)
C190.52470 (19)0.1911 (3)0.6034 (2)0.0148 (5)
H19A0.54610.15660.55260.022*
H19B0.47970.26640.57190.022*
H19C0.58310.22020.66790.022*
O200.40683 (13)0.14275 (17)0.66777 (13)0.0113 (4)
C210.50526 (18)0.1854 (2)0.6969 (2)0.0124 (5)
H21A0.53750.12110.66970.015*
H21B0.54360.18670.77520.015*
C220.50842 (19)0.3214 (3)0.65427 (19)0.0135 (5)
O230.43843 (14)0.39064 (19)0.60292 (15)0.0208 (4)
O240.60368 (13)0.35149 (17)0.68185 (14)0.0140 (4)
C250.6206 (2)0.4778 (3)0.6433 (2)0.0177 (6)
H25A0.58060.54820.65430.021*
H25B0.60070.47190.56650.021*
C260.7291 (2)0.5093 (3)0.7039 (2)0.0240 (6)
H26A0.74360.58980.67490.036*
H26B0.76810.43530.69780.036*
H26C0.74660.52340.77880.036*
Cl270.04241 (4)0.25459 (6)0.37522 (5)0.01518 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.00860 (6)0.00919 (6)0.00852 (6)0.00084 (3)0.00203 (4)0.00005 (3)
N20.0111 (10)0.0127 (11)0.0102 (10)0.0025 (9)0.0033 (8)0.0001 (8)
C30.0147 (13)0.0158 (13)0.0155 (13)0.0001 (11)0.0074 (11)0.0018 (11)
C40.0147 (14)0.0216 (15)0.0171 (13)0.0003 (11)0.0058 (11)0.0074 (11)
C50.0140 (13)0.0283 (16)0.0101 (12)0.0096 (12)0.0029 (10)0.0020 (11)
C60.0182 (14)0.0192 (14)0.0134 (13)0.0088 (11)0.0066 (11)0.0030 (11)
C70.0150 (13)0.0148 (14)0.0122 (12)0.0055 (10)0.0084 (11)0.0014 (10)
N80.0184 (12)0.0116 (11)0.0218 (12)0.0009 (9)0.0047 (10)0.0043 (9)
C90.0136 (13)0.0237 (15)0.0113 (12)0.0045 (11)0.0051 (11)0.0000 (11)
C100.0145 (13)0.0167 (14)0.0093 (11)0.0025 (11)0.0039 (10)0.0050 (10)
C110.0127 (13)0.0128 (13)0.0129 (12)0.0019 (10)0.0028 (10)0.0034 (10)
C120.0103 (12)0.0133 (13)0.0088 (11)0.0013 (10)0.0049 (10)0.0018 (10)
C130.0086 (12)0.0111 (13)0.0125 (12)0.0000 (10)0.0054 (10)0.0015 (10)
C140.0106 (12)0.0090 (12)0.0122 (12)0.0005 (9)0.0063 (10)0.0004 (9)
C150.0109 (12)0.0128 (13)0.0088 (11)0.0051 (10)0.0056 (10)0.0019 (9)
C160.0080 (11)0.0117 (13)0.0093 (11)0.0004 (10)0.0034 (9)0.0033 (9)
C170.0123 (12)0.0083 (12)0.0127 (12)0.0015 (10)0.0072 (10)0.0009 (10)
O180.0132 (9)0.0119 (9)0.0107 (8)0.0044 (7)0.0031 (7)0.0026 (7)
C190.0134 (13)0.0159 (13)0.0154 (13)0.0049 (11)0.0069 (11)0.0043 (11)
O200.0100 (9)0.0159 (9)0.0079 (8)0.0030 (7)0.0039 (7)0.0033 (7)
C210.0103 (12)0.0146 (13)0.0103 (12)0.0017 (10)0.0031 (10)0.0010 (10)
C220.0142 (13)0.0156 (14)0.0088 (12)0.0022 (10)0.0036 (10)0.0051 (10)
O230.0140 (10)0.0204 (10)0.0204 (10)0.0014 (8)0.0014 (8)0.0044 (8)
O240.0126 (9)0.0120 (9)0.0178 (9)0.0010 (7)0.0072 (8)0.0013 (7)
C250.0212 (14)0.0124 (14)0.0179 (13)0.0023 (11)0.0076 (11)0.0017 (11)
C260.0211 (15)0.0194 (15)0.0300 (16)0.0059 (12)0.0103 (13)0.0030 (12)
Cl270.0151 (3)0.0148 (3)0.0144 (3)0.0038 (2)0.0058 (2)0.0020 (2)
Geometric parameters (Å, º) top
Pt1—N22.143 (2)C12—C171.389 (3)
Pt1—C92.127 (3)C13—C141.399 (3)
Pt1—C102.127 (2)C14—H140.9500
Pt1—C132.003 (2)C14—C151.382 (3)
Pt1—Cl272.3209 (6)C15—C161.397 (4)
N2—C31.353 (3)C15—O201.391 (3)
N2—C71.346 (3)C16—C171.385 (3)
C3—H30.9500C16—O181.376 (3)
C3—C41.367 (4)C17—H170.9500
C4—H40.9500O18—C191.425 (3)
C4—C51.392 (4)C19—H19A0.9800
C5—H50.9500C19—H19B0.9800
C5—C61.363 (4)C19—H19C0.9800
C6—H60.9500O20—C211.416 (3)
C6—C71.402 (4)C21—H21A0.9900
C7—N81.345 (3)C21—H21B0.9900
N8—H8A0.8800C21—C221.509 (4)
N8—H8B0.8800C22—O231.196 (3)
C9—H9A0.9500C22—O241.343 (3)
C9—H9B0.9500O24—C251.454 (3)
C9—C101.395 (4)C25—H25A0.9900
C10—H101.0000C25—H25B0.9900
C10—C111.514 (3)C25—C261.495 (4)
C11—H11A0.9900C26—H26A0.9800
C11—H11B0.9900C26—H26B0.9800
C11—C121.509 (3)C26—H26C0.9800
C12—C131.391 (4)
N2—Pt1—Cl2790.28 (6)C13—C12—C11117.5 (2)
C9—Pt1—N290.24 (9)C17—C12—C11121.0 (2)
C9—Pt1—C1038.29 (10)C17—C12—C13121.3 (2)
C9—Pt1—Cl27161.33 (7)C12—C13—Pt1114.69 (17)
C10—Pt1—N292.85 (9)C12—C13—C14118.2 (2)
C10—Pt1—Cl27160.20 (7)C14—C13—Pt1127.13 (19)
C13—Pt1—N2174.40 (9)C13—C14—H14119.6
C13—Pt1—C987.89 (10)C15—C14—C13120.7 (2)
C13—Pt1—C1082.42 (10)C15—C14—H14119.6
C13—Pt1—Cl2793.18 (7)C14—C15—C16120.5 (2)
C3—N2—Pt1118.29 (17)C14—C15—O20119.5 (2)
C7—N2—Pt1122.69 (17)O20—C15—C16120.0 (2)
C7—N2—C3119.0 (2)C17—C16—C15119.2 (2)
N2—C3—H3118.6O18—C16—C15116.5 (2)
N2—C3—C4122.8 (3)O18—C16—C17124.3 (2)
C4—C3—H3118.6C12—C17—H17120.0
C3—C4—H4120.9C16—C17—C12120.0 (2)
C3—C4—C5118.1 (3)C16—C17—H17120.0
C5—C4—H4120.9C16—O18—C19116.32 (19)
C4—C5—H5120.1O18—C19—H19A109.5
C6—C5—C4119.9 (2)O18—C19—H19B109.5
C6—C5—H5120.1O18—C19—H19C109.5
C5—C6—H6120.2H19A—C19—H19B109.5
C5—C6—C7119.6 (3)H19A—C19—H19C109.5
C7—C6—H6120.2H19B—C19—H19C109.5
N2—C7—C6120.6 (2)C15—O20—C21113.37 (19)
N8—C7—N2118.4 (2)O20—C21—H21A109.1
N8—C7—C6121.0 (2)O20—C21—H21B109.1
C7—N8—H8A120.0O20—C21—C22112.4 (2)
C7—N8—H8B120.0H21A—C21—H21B107.9
H8A—N8—H8B120.0C22—C21—H21A109.1
Pt1—C9—H9A107.3C22—C21—H21B109.1
Pt1—C9—H9B91.7O23—C22—C21126.4 (2)
H9A—C9—H9B120.0O23—C22—O24125.2 (2)
C10—C9—Pt170.86 (15)O24—C22—C21108.4 (2)
C10—C9—H9A120.0C22—O24—C25116.0 (2)
C10—C9—H9B120.0O24—C25—H25A110.1
Pt1—C10—H10115.6O24—C25—H25B110.1
C9—C10—Pt170.85 (15)O24—C25—C26107.8 (2)
C9—C10—H10115.6H25A—C25—H25B108.5
C9—C10—C11122.4 (2)C26—C25—H25A110.1
C11—C10—Pt1107.81 (16)C26—C25—H25B110.1
C11—C10—H10115.6C25—C26—H26A109.5
C10—C11—H11A109.6C25—C26—H26B109.5
C10—C11—H11B109.6C25—C26—H26C109.5
H11A—C11—H11B108.1H26A—C26—H26B109.5
C12—C11—C10110.2 (2)H26A—C26—H26C109.5
C12—C11—H11A109.6H26B—C26—H26C109.5
C12—C11—H11B109.6
Pt1—N2—C3—C4179.4 (2)C13—C12—C17—C160.2 (4)
Pt1—N2—C7—C6179.41 (18)C13—C14—C15—C160.5 (4)
Pt1—N2—C7—N81.5 (3)C13—C14—C15—O20178.1 (2)
Pt1—C9—C10—C1199.4 (2)C14—C15—C16—C171.9 (4)
Pt1—C10—C11—C1228.5 (2)C14—C15—C16—O18177.0 (2)
Pt1—C13—C14—C15177.68 (18)C14—C15—O20—C21115.9 (2)
N2—C3—C4—C51.0 (4)C15—C16—C17—C121.5 (4)
C3—N2—C7—C61.3 (4)C15—C16—O18—C19164.7 (2)
C3—N2—C7—N8179.2 (2)C15—O20—C21—C2283.1 (3)
C3—C4—C5—C60.7 (4)C16—C15—O20—C2166.4 (3)
C4—C5—C6—C70.5 (4)C17—C12—C13—Pt1177.47 (19)
C5—C6—C7—N21.5 (4)C17—C12—C13—C141.5 (4)
C5—C6—C7—N8179.4 (3)C17—C16—O18—C1916.5 (3)
C7—N2—C3—C40.0 (4)O18—C16—C17—C12177.3 (2)
C9—C10—C11—C1249.7 (3)O20—C15—C16—C17179.5 (2)
C10—C11—C12—C1321.0 (3)O20—C15—C16—O180.6 (3)
C10—C11—C12—C17162.9 (2)O20—C21—C22—O231.2 (4)
C11—C12—C13—Pt11.4 (3)O20—C21—C22—O24177.57 (19)
C11—C12—C13—C14177.6 (2)C21—C22—O24—C25177.5 (2)
C11—C12—C17—C16176.2 (2)C22—O24—C25—C26165.5 (2)
C12—C13—C14—C151.2 (4)O23—C22—O24—C251.3 (4)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C12-C17 ring.
D—H···AD—HH···AD···AD—H···A
C17—H17···O24i0.952.603.501 (3)159
C25—H25B···O23ii0.992.603.449 (3)144
N8—H8B···Cl27iii0.882.673.413 (2)143
C19—H19A···Cg2i0.982.633.476 (3)145
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+1; (iii) x, y+1/2, z+1/2.
 

Acknowledgements

The authors thank VLIR-UOS for financial support and the Hercules Foundation for supporting the purchase of the diffractometer.

Funding information

Funding for this research was provided by: Vlaamse Interuniversitaire Raad (VLIR-UOS) Belgium (award No. ZEIN2014Z182); Hercules Foundation Belgium (award No. AKUL/09/0035).

References

First citationChabner, B. A. & Roberts, T. G. (2005). Nat. Rev. Cancer, 5, 65–72.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDa, T. T., Chi, N. T. T., Van Meervelt, L., Mangwala, K. P. & Dinh, N. H. (2015). Polyhedron, 85, 104–109.  CSD CrossRef CAS Google Scholar
First citationDa, T. T., Chien, L. X., Chi, N. T. T., Hai, L. T. H. & Dinh, N. H. (2012). J. Coord. Chem. 65, 131–142.  Web of Science CrossRef CAS Google Scholar
First citationDa, T. T., Hai, L. T. H., Van Meervelt, L. & Dinh, N. H. (2015). J. Coord. Chem. 68, 3525–3536.  Web of Science CrossRef CAS Google Scholar
First citationDa, T. T., Kim, Y. M., Mai, T. T. C., Cuong, N. C. & Dinh, N. H. (2010). J. Coord. Chem. 63, 473–483.  CrossRef CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJadhav, B. K., Khandelwal, K. R., Ketkar, A. R. & Pisal, S. S. (2004). Drug Dev. Ind. Pharm. 30(2), 195–203.  CrossRef Google Scholar
First citationJohnstone, T. C., Park, G. Y. & Lippard, S. J. (2014). Anticancer Res. 34, 471–476.  Web of Science CAS PubMed Google Scholar
First citationKelland, L. (2007). Nat. Rev. Cancer, 7, 573–584.  CrossRef PubMed CAS Google Scholar
First citationLe Thi Hong, H., Dao Thi Bich, D., Nguyen Bich, N. & Van Meervelt, L. (2016). Acta Cryst. E72, 912–917.  CSD CrossRef IUCr Journals Google Scholar
First citationNguyen Thi Thanh, C., Pham Van, T., Le Thi Hong, H. & Van Meervelt, L. (2016). Acta Cryst. C72, 758–764.  CSD CrossRef IUCr Journals Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRigaku Oxford Diffraction (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWilson, J. J. & Lippard, S. J. (2014). Chem. Rev. 114, 4470–4495.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWong, E. & Giandomenico, C. M. (1999). Chem. Rev. 99, 2451–2466.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds