research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (2R*,3aR*)-2-phenyl­sulfonyl-2,3,3a,4,5,6-hexa­hydro­pyrrolo­[1,2-b]isoxazole

CROSSMARK_Color_square_no_text.svg

aDepartamento de Química Orgánica, Universidad de Salamanca, Plaza de los Caidos, 37008 Salamanca, Spain, and bServicio de Difracción de Rayos X, Universidad de Salamanca, Plaza de los Caidos, 37008 Salamanca, Spain
*Correspondence e-mail: ddm@usal.es

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 30 November 2016; accepted 15 December 2016; online 1 January 2017)

The title compound, C12H15NO3S, was prepared by 1,3-dipolar cyclo­addition of 3,4-di­hydro-2H-pyrrole 1-oxide and phenyl vinyl sulfone. In the mol­ecule, both fused five-membered rings display a twisted conformation. In the crystal, C—H⋯O hydrogen bonds link neighbouring mol­ecules, forming chains running parallel to the b axis.

1. Chemical context

1,3-Dipolar cyclo­addition is one of the most useful reaction in organic synthesis (Pellissier, 2007[Pellissier, H. (2007). Tetrahedron, 63, 3235-3285.]). Nitro­nes have been used in the synthesis of many kinds of isoxazolidines (Falkowska et al., 2015[Falkowska, E., Laurent, M. Y., Tognetti, V., Joubert, L., Jubault, P., Bouillon, J.-P. & Pannecoucke, X. (2015). Tetrahedron, 71, 8067-8076.]) by 1,3-dipolar cyclo­addition of nitro­nes with sulfones (Flores, García, Garrido, Nieto et al., 2012[Flores, M., García, P., Garrido, N. M., Nieto, C. T., Basabe, P., Marcos, I. S., Sanz-González, F., Goodman, J. M. & Díez, D. (2012). Tetrahedron Asymmetry, 23, 76-85.]) and have demonstrate a range of biological activities including anti­biotic, gene expression regulation and cancer cell cytotoxicity (Karyakarte et al., 2012[Karyakarte, S. D., Smith, T. P. & Chemler, S. R. (2012). J. Org. Chem. 77, 7755-7760.]). Our research group is inter­ested in the synthesis of isoxazolidines such as the title compound, for application in organic synthesis (Flores et al., 2011a[Flores, M. F., Garcia, P., Garrido, N. M., Sanz, F. & Diez, D. (2011a). Acta Cryst. E67, o1115.],b[Flores, M. F., Garcia, P., Garrido, N. M., Sanz, F. & Diez, D. (2011b). Acta Cryst. E67, o1116-o1117.]; Flores, García-García et al., 2012[Flores, M., García-García, P., Garrido, N. M., Marcos, I. S., Sanz, F. & Díez, D. (2012). RSC Adv. 2, 11040-11048.]; Flores, García, Garrido, Sanz et al., 2012[Flores, M. F., Garcia, P., Garrido, N. M., Sanz, F. & Diez, D. (2012). Acta Cryst. E68, o2560.]; Flores et al., 2013[Flores, M., García-García, P., Garrido, N. M., Marcos, I. S., Sanz-González, F. & Díez, D. (2013). J. Org. Chem. 78, 7068-7075.]).

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound, which consists of an anisoxazol derivative with a phenyl sulfone group as substituent, is shown in Fig. 1[link]. Both the fused five-membered rings assume a twist conformation, as indicated by puckering parameters Q = 0.338 (3) Å, φ = −73.5 (7)° for the pyrrole ring and Q = 0.209 (2) Å, φ = −97.5 (6)° for the isoxazole ring. The dihedral angle between the mean planes of the five-membered rings is 64.91 (10)°. All the bond lengths are within normal ranges. The C—S—C and O—S—O angles are 104.34 (9) and 118.54 (11)°, respectively. The large O—S—O angle, and its deviation from the ideal 109.5° angle, can be explained by the repulsion of the lone pairs of the oxygen atoms as far away from each other as possible minimizing the C—S—C angle. The C5—C6—S1—C7 torsion angle is 171.26 (15)°.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius.

3. Supra­molecular features

In the extended structure of the title compound, inter­molecular C—H⋯O hydrogen bonds involving the O1 isoxazole and the O3 phenyl sulfone O atoms as donors (Table 1[link]) lead to mol­ecular chains running parallel to the b axis (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O3i 0.98 2.35 3.314 (3) 168
C11—H11⋯O1ii 0.93 2.49 3.364 (3) 157
Symmetry codes: (i) x, y-1, z; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Crystal packing of the title compound viewed along the [100] direction, showing inter­molecular hydrogen bonding (dashed lines).

4. Synthesis and crystallization

In the synthesis, 5 g of phenyl vinyl sulfone (II) (29.40 mmol) was added to a solution of 2 g of 3,4-di­hydro-2H-pyrrole 1-oxide (I)[link] (23.50 mmol) in toluene (75 mL) at room temperature. The resulting mixture was stirred for 6 h, then it was quenched with a saturated aqueous solution of NH4Cl and the product was extracted with EtOAc. The combined organic layers were washed with brine, dried over Na2SO4, filtered, and concentrated, yielding the crude product (III) (8.93 mmol, 38%). The resulting crude residue was purified by flash chromatography (silica gel, hexa­ne/EtOAc 6:4 v/v) and crystallized from hexa­ne/ethyl acetate solution. IR (film): 3436 (broad), 3068, 2946, 2868, 1442, 1377, 1307, 1148, 1074 cm−1. 1H NMR (400 MHz, CDCl3, δ p.p.m.): 7.99 (2H, d, J = 8.0 Hz, Hortho), 7.70 (1H, t, J = 7.9Hz, Hpara), 7.58 (2H, t, J = 8.0 Hz, Hmeta), 5.04 (1H, dd, J = 4.0 y 8.4 Hz, H-2), 3.85–3.81(1H, m, H-3a), 3.36–3.31 (1H, m, HB-6), 3.23 (1H, ddd, J = 4.0, 7.0 y 12.4 Hz, HB-3), 3.05 (1H, dt, J = 8.3 y 13.8 Hz, HA-6), 2.50 (1H, ddd, J = 4.0, 8.4 y 12.4 Hz, HA-3), 2.04–1.93 (2H, m, HA-4 y HA-5), 1.76–1.74 (1H, m, HB-5), 1.60-1.57 (1H, m, HB-4). 13CNMR (100 MHz, CDCl3 δ p.p.m.): 136.7 (C-ipso), 133.9 (CHpara), 129.5 (2CHmeta),128.9 (2CHortho), 92.5 (CH-2), 65.5 (CH-3a), 57.3 (CH2-6), 36.8 (CH2-3), 30.8(CH2-4), 23.8 (CH2-5). HRMS (EI): C12H15NO3NaS requires (M+Na)+, 276.0665, found 276.0682.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The hydrogen atoms were positioned geometrically, with C–H distances constrained to 0.93 Å (aromatic CH), 0.97 Å (methyl­ene CH2), 0.98 (methyne CH) and refined using a riding mode with Uiso(H) = 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula C12H15NO3S
Mr 253.31
Crystal system, space group Monoclinic, P21/c
Temperature (K) 298
a, b, c (Å) 12.5730 (4), 5.4443 (2), 18.2266 (6)
β (°) 97.754 (2)
V3) 1236.22 (7)
Z 4
Radiation type Cu Kα
μ (mm−1) 2.31
Crystal size (mm) 0.25 × 0.20 × 0.10
 
Data collection
Diffractometer Bruker APEXII CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.603, 0.794
No. of measured, independent and observed [I > 2σ(I)] reflections 9571, 2074, 1949
Rint 0.032
(sin θ/λ)max−1) 0.596
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.109, 1.04
No. of reflections 2074
No. of parameters 154
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.23, −0.25
Computer programs: APEX2 and SAINT (Bruker 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97, SHELXL97 and SHELXTL/PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker 2006); cell refinement: SAINT (Bruker 2006); data reduction: SAINT (Bruker 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL/PC (Sheldrick, 2008).

(2R*,3aR*)-2-Phenylsulfonyl-2,3,3a,4,5,6-hexahydropyrrolo[1,2-b]isoxazole top
Crystal data top
C12H15NO3SF(000) = 536
Mr = 253.31Dx = 1.361 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 1548 reflections
a = 12.5730 (4) Åθ = 8.7–66.1°
b = 5.4443 (2) ŵ = 2.31 mm1
c = 18.2266 (6) ÅT = 298 K
β = 97.754 (2)°Prismatic, colorless
V = 1236.22 (7) Å30.25 × 0.20 × 0.10 mm
Z = 4
Data collection top
Bruker APEXII CCD area detector
diffractometer
2074 independent reflections
Radiation source: fine-focus sealed tube1949 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
phi and ω scansθmax = 66.8°, θmin = 8.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
h = 1413
Tmin = 0.603, Tmax = 0.794k = 66
9571 measured reflectionsl = 1721
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.048P)2 + 0.5869P]
where P = (Fo2 + 2Fc2)/3
2074 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.25 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.18509 (4)0.20282 (9)0.19580 (3)0.0506 (2)
O10.27595 (12)0.0779 (4)0.33002 (8)0.0780 (5)
O20.10289 (12)0.0979 (4)0.14263 (9)0.0745 (5)
O30.17911 (13)0.4582 (3)0.21257 (10)0.0722 (5)
N10.24857 (16)0.2358 (4)0.38806 (12)0.0767 (6)
C10.2723 (3)0.0922 (13)0.45671 (19)0.173 (3)
H1A0.30950.05790.44690.207*
H1B0.31850.18630.49330.207*
C20.1731 (3)0.0332 (7)0.48481 (17)0.1044 (11)
H2A0.18210.04220.53840.125*
H2B0.14870.13030.46960.125*
C30.0964 (3)0.2227 (6)0.45154 (17)0.0932 (9)
H3A0.10180.37170.48100.112*
H3B0.02310.16290.44660.112*
C40.13178 (19)0.2665 (5)0.37671 (14)0.0653 (6)
H40.11340.43430.36020.078*
C50.08854 (17)0.0856 (5)0.31715 (13)0.0669 (6)
H5A0.06050.06000.33850.080*
H5B0.03220.15920.28240.080*
C60.18549 (16)0.0244 (4)0.27984 (11)0.0548 (5)
H60.18480.15100.26770.066*
C70.31162 (15)0.1448 (4)0.16793 (11)0.0489 (5)
C80.3261 (2)0.0590 (5)0.12636 (15)0.0748 (7)
H80.26990.16800.11290.090*
C90.4260 (3)0.0996 (6)0.10473 (19)0.0949 (9)
H90.43710.23750.07660.114*
C100.5086 (2)0.0610 (7)0.12436 (18)0.0902 (9)
H100.57540.03200.10950.108*
C110.4932 (2)0.2622 (6)0.16530 (18)0.0843 (8)
H110.54950.37120.17830.101*
C120.39431 (18)0.3066 (4)0.18785 (14)0.0650 (6)
H120.38390.44440.21620.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0409 (3)0.0501 (3)0.0601 (3)0.00016 (19)0.0047 (2)0.0026 (2)
O10.0465 (8)0.1268 (15)0.0598 (9)0.0238 (9)0.0034 (7)0.0082 (10)
O20.0485 (8)0.1031 (13)0.0677 (9)0.0149 (8)0.0079 (7)0.0020 (9)
O30.0706 (10)0.0466 (8)0.1034 (12)0.0115 (7)0.0265 (9)0.0072 (8)
N10.0565 (12)0.0980 (16)0.0779 (13)0.0213 (11)0.0169 (10)0.0249 (12)
C10.102 (3)0.350 (8)0.0652 (18)0.079 (4)0.0086 (18)0.015 (3)
C20.146 (3)0.098 (2)0.0722 (17)0.015 (2)0.0272 (19)0.0106 (16)
C30.094 (2)0.111 (2)0.0831 (18)0.0098 (18)0.0415 (17)0.0043 (17)
C40.0646 (14)0.0611 (13)0.0743 (14)0.0105 (11)0.0250 (11)0.0033 (11)
C50.0437 (11)0.0849 (16)0.0728 (14)0.0104 (11)0.0101 (10)0.0128 (12)
C60.0541 (11)0.0495 (11)0.0603 (12)0.0008 (9)0.0062 (9)0.0008 (9)
C70.0446 (10)0.0478 (11)0.0539 (10)0.0008 (8)0.0054 (8)0.0021 (9)
C80.0772 (16)0.0601 (14)0.0901 (17)0.0040 (12)0.0223 (13)0.0145 (13)
C90.104 (2)0.0832 (19)0.105 (2)0.0252 (18)0.0439 (18)0.0077 (17)
C100.0640 (16)0.108 (2)0.105 (2)0.0248 (16)0.0352 (15)0.0315 (19)
C110.0447 (13)0.100 (2)0.108 (2)0.0088 (13)0.0087 (13)0.0152 (17)
C120.0512 (12)0.0650 (14)0.0782 (15)0.0091 (10)0.0064 (11)0.0057 (11)
Geometric parameters (Å, º) top
S1—O31.4277 (16)C4—C51.511 (4)
S1—O21.4364 (16)C4—H40.9800
S1—C71.763 (2)C5—C61.511 (3)
S1—C61.813 (2)C5—H5A0.9700
O1—C61.391 (3)C5—H5B0.9700
O1—N11.440 (3)C6—H60.9800
N1—C41.465 (3)C7—C81.370 (3)
N1—C11.472 (5)C7—C121.374 (3)
C1—C21.446 (5)C8—C91.384 (4)
C1—H1A0.9700C8—H80.9300
C1—H1B0.9700C9—C101.367 (5)
C2—C31.485 (4)C9—H90.9300
C2—H2A0.9700C10—C111.354 (5)
C2—H2B0.9700C10—H100.9300
C3—C41.510 (4)C11—C121.382 (4)
C3—H3A0.9700C11—H110.9300
C3—H3B0.9700C12—H120.9300
O3—S1—O2118.54 (11)C3—C4—H4109.8
O3—S1—C7108.17 (9)C5—C4—H4109.8
O2—S1—C7109.24 (10)C6—C5—C4103.48 (17)
O3—S1—C6109.58 (10)C6—C5—H5A111.1
O2—S1—C6106.06 (10)C4—C5—H5A111.1
C7—S1—C6104.34 (9)C6—C5—H5B111.1
C6—O1—N1110.65 (15)C4—C5—H5B111.1
O1—N1—C4107.39 (17)H5A—C5—H5B109.0
O1—N1—C1105.4 (3)O1—C6—C5107.19 (17)
C4—N1—C1105.4 (2)O1—C6—S1110.63 (15)
C2—C1—N1109.5 (3)C5—C6—S1110.59 (15)
C2—C1—H1A109.8O1—C6—H6109.5
N1—C1—H1A109.8C5—C6—H6109.5
C2—C1—H1B109.8S1—C6—H6109.5
N1—C1—H1B109.8C8—C7—C12120.9 (2)
H1A—C1—H1B108.2C8—C7—S1119.84 (17)
C1—C2—C3104.2 (3)C12—C7—S1119.31 (16)
C1—C2—H2A110.9C7—C8—C9118.8 (3)
C3—C2—H2A110.9C7—C8—H8120.6
C1—C2—H2B110.9C9—C8—H8120.6
C3—C2—H2B110.9C10—C9—C8120.6 (3)
H2A—C2—H2B108.9C10—C9—H9119.7
C2—C3—C4103.0 (2)C8—C9—H9119.7
C2—C3—H3A111.2C11—C10—C9120.1 (2)
C4—C3—H3A111.2C11—C10—H10119.9
C2—C3—H3B111.2C9—C10—H10119.9
C4—C3—H3B111.2C10—C11—C12120.4 (3)
H3A—C3—H3B109.1C10—C11—H11119.8
N1—C4—C3105.5 (2)C12—C11—H11119.8
N1—C4—C5106.48 (18)C7—C12—C11119.2 (2)
C3—C4—C5115.1 (2)C7—C12—H12120.4
N1—C4—H4109.8C11—C12—H12120.4
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O3i0.982.353.314 (3)168
C11—H11···O1ii0.932.493.364 (3)157
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1/2, z+1/2.
 

Acknowledgements

The authors gratefully acknowledge help from A. Lithgow (NMR) and C. Raposo (MS) of the Universidad de Salamanca.

References

First citationBruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFalkowska, E., Laurent, M. Y., Tognetti, V., Joubert, L., Jubault, P., Bouillon, J.-P. & Pannecoucke, X. (2015). Tetrahedron, 71, 8067–8076.  CSD CrossRef CAS Google Scholar
First citationFlores, M., García, P., Garrido, N. M., Nieto, C. T., Basabe, P., Marcos, I. S., Sanz-González, F., Goodman, J. M. & Díez, D. (2012). Tetrahedron Asymmetry, 23, 76–85.  CSD CrossRef CAS Google Scholar
First citationFlores, M., García-García, P., Garrido, N. M., Marcos, I. S., Sanz, F. & Díez, D. (2012). RSC Adv. 2, 11040–11048.  CSD CrossRef CAS Google Scholar
First citationFlores, M., García-García, P., Garrido, N. M., Marcos, I. S., Sanz-González, F. & Díez, D. (2013). J. Org. Chem. 78, 7068–7075.  CSD CrossRef CAS Google Scholar
First citationFlores, M. F., Garcia, P., Garrido, N. M., Sanz, F. & Diez, D. (2011a). Acta Cryst. E67, o1115.  CSD CrossRef IUCr Journals Google Scholar
First citationFlores, M. F., Garcia, P., Garrido, N. M., Sanz, F. & Diez, D. (2011b). Acta Cryst. E67, o1116–o1117.  CSD CrossRef IUCr Journals Google Scholar
First citationFlores, M. F., Garcia, P., Garrido, N. M., Sanz, F. & Diez, D. (2012). Acta Cryst. E68, o2560.  CSD CrossRef IUCr Journals Google Scholar
First citationKaryakarte, S. D., Smith, T. P. & Chemler, S. R. (2012). J. Org. Chem. 77, 7755–7760.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPellissier, H. (2007). Tetrahedron, 63, 3235–3285.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds