research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 1-ferrocenyl-2-(4-methyl­benzo­yl)spiro­[11H-pyrrolidizine-3,11′-indeno[1,2-b]quinoxaline]

aResearch Department of Physics, S. D. N. B. Vaishnav College for Women, Chromepet, Chennai 600 044, India, and bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: lakssdnbvc@gmail.com

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 17 July 2014; accepted 31 July 2014; online 9 August 2014)

In the title compound, [Fe(C5H5)(C34H28N3O)], the four-fused-rings system of the 11H-indeno­[1,2-b]quinoxaline unit is approximately planar [maximum deviation = 0.167 (4) Å] and forms a dihedral angle of 37.25 (6)° with the plane of the benzene ring of the methyl­benzoyl group. Both pyrrolidine rings adopt a twist conformation. An intra­molecular C—H⋯O hydrogen bond is observed. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds and weak C—H⋯π inter­actions, forming double chains extending parallel to the c axis.

1. Chemical Context

Spiro­oxindoles are an important class of naturally occurring substances characterized by highly pronounced biological properties (Sureshbabu & Raghunathan, 2008[Sureshbabu, A. R. & Raghunathan, R. (2008). Tetrahedron Lett. 49, 4487-4490.]). Ferrocene derivatives have anti­malarial (Biot et al., 2004[Biot, C., Dessolin, J., Richard, I. & Drive, D. (2004). J. Organomet. Chem. 689, 4678-4682.]) and anti­bacterial (Chohan, 2002[Chohan, Z. H. (2002). Appl. Organomet. Chem. 16, 17-20.]) activities. The use of ferrocene in bio-organometallic chemistry has promising applications since ferrocene is a stable non-toxic compound and has good redox properties (Fouda et al., 2007[Fouda, M. F. R., Abd-Elzaher, M. M., Abdelsamaia, R. A. & Labib, A. A. (2007). Appl. Organomet. Chem. 21, 613-625.]). Ferrocenyloxindoles have also been found to have anti­cancer (Silva et al., 2010[Silva, B. V., Ribeiro, N. M., Vargas, M. D., Lanznaster, M., Carneiro, J. W. M., Krogh, R., Andricopulo, A. D., Dias, L. C. & Pinto, A. C. (2010). Dalton Trans. 39, 7338-7344.]) and anti­proliferative activities (Gasser et al., 2011[Gasser, G., Ott, I. & Metzler-Nolte, N. (2011). J. Med. Chem. 54, 3-25.]).

[Scheme 1]

The synthesis of novel ferrocenyl-spiro-indanedione-N-methyl­pyrrolidines by employing various unusual ferrocene derivatives as efficient 2π-components in 1,3-dipolar cyclo­addition reactions of azomethine ylides demonstrate that ferrocene-derived dipo­lar­o­philes can further be exploited for the synthesis of a variety of complex heterocycles through cyclo­addition reactions (Sureshbabu et al., 2009[Sureshbabu, A. R., Raghunathan, R. & Satiskumar, B. K. (2009). Tetrahedron Lett. 50, 2818-2821.]). A wide range of substituted pyrrolizidine scaffolds offers a high level of functional, structural and stereochemical diversity. It has been demonstrated that multicomponent reactions (MCR) could be used for the synthesis of novel ferrocene-grafted di­spiro­pyrrolidine and pyrrolizidine scaffolds through one-pot three-component inter­molecular [3 + 2] cyclo­addition of azomethine ylides with an unusual ferrocene Baylis–Hillman adduct (Kathiravan & Raghunathan, 2009[Kathiravan, S. & Raghunathan, R. (2009). Tetrahedron Lett. 50, 6116-6120.]). The one-pot four-component cyclo­addition reaction method was used to synthesize substituted pyrrolizidines containing ferrocene and a spiro-indeno­quinoxaline moiety of biological significance (Sureshbabu et al., 2012[Sureshbabu, A. R., Gavaskar, D. & Raghunathan, R. (2012). Tetrahedron Lett. 53, 6676-6681.]). In view of the importance of this class of compounds, the synthesis of the title compound was undertaken and its crystal structure is reported herein.

2. Structural commentary

In the title compound (Fig. 1[link]), the four-fused-rings system of the 11H-indeno­[1,2-b]quinoxaline unit is approximately planar [maximum deviation = 0.167 (4) Å for C13] and forms a dihedral angle of 37.25 (6)° with the C33–C38 benzene ring of the methyl­benzoyl group. In the fused pyrrolidine system, both five-membered rings adopt a twist conformation, as indicated by the puckering parameters (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) θ = 0.382 (3) Å, φ = 107.1 (4)° for C19/C18/C17/C16/N3 and θ = 0.359 (2) Å, φ = 106.1 (3)° for C19/C20/C21/C7/N3. The dihedral angle between the least-squares mean planes through the pyrrolidine rings is 56.89 (7)°. The mean plane through the C19/C20/C21/C7/N3 pyrrolidine ring is nearly orthogonal to the C5/C6/C7/C8/C9 cyclo­pentane ring, forming a dihedral angle of 88.84 (8)°. The dihedral angle between the cyclo­pentane rings in the ferrocene fragment is 2.18 (8)°. Bond lengths and angles are not unusual and in good agreement with those recently reported for the related compound 2-(4-bromo­benzo­yl)-1-ferrocenyl­spiro­[11H-pyrrolidizine-3,11′-indeno­[1,2-b]quinoxaline] (Suhitha et al., 2013[Suhitha, S., Gunasekaran, K., Sureshbabu, A. R., Raghunathan, R. & Velmurugan, D. (2013). Acta Cryst. E69, m512-m513.]). The mol­ecular conformation is stabilized by an intra­molecular C—H⋯O hydrogen bond (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of C33–C39 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C27—H27⋯O1 0.98 2.57 3.332 (4) 134
C28—H28⋯O1i 0.98 2.55 3.474 (3) 157
C25—H25⋯Cg1ii 0.98 2.83 3.781 (3) 163
Symmetry codes: (i) [x, -y, z-{\script{1\over 2}}]; (ii) x, y, z-1.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level. H atoms are shown as small spheres of arbitrary radius.

3. Supra­molecular features

In the crystal structure, mol­ecules are linked into double chains running parallel to the c axis by inter­molecular non-classical C—H⋯O hydrogen bonds and weak C—H⋯π inter­actions (Table 1[link]) involving H atoms of the cyclo­penta­dienyl groups as donors (Fig. 2[link]).

[Figure 2]
Figure 2
Partial crystal packing of the title compound, showing the formation of a double chain running parallel to the c axis via C—H⋯O hydrogen bonds (violet dashed lines) and C—H⋯π inter­actions (red dashed lines). H atoms not involved in hydrogen-bond inter­actions have been omitted.

4. Synthesis and crystallization

Ninhydrin (1 mmol) and 1,2-phenyl­enedi­amine (1 mmol) were mixed and stirred with methanol (10 ml) for 10 min. To this mixture, proline (1 mmol) and 1-ferrocenyl-3-(4-methyl­benzo­yl)prop-2-ene dipolarophile (1 mmol) were added and refluxed up to the end of the reaction as observed by thin-layer chromatography. The solvent was removed from the mixture under reduced pressure and the crude product was obtained using column chromatography. The crude extract was purified by petroleum ether and ethyl acetate (4:1 v/v). Single crystals suitable for the X-ray diffraction analysis were obtained by slow evaporation of the solvent at room temperature.

5. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were placed in calculated positions, with C—H = 0.93–0.98 Å, and refined using a riding-model approximation, with Uiso(H) = 1.5Ueq(C) for methyl groups or 1.2Ueq(C) otherwise. DELU restraints were applied to atoms C24 and C25.

Table 2
Experimental details

Crystal data
Chemical formula [Fe(C5H5)(C34H28N3O)]
Mr 615.53
Crystal system, space group Monoclinic, Cc
Temperature (K) 293
a, b, c (Å) 12.0017 (4), 30.2487 (10), 9.3597 (3)
β (°) 116.179 (1)
V3) 3049.35 (17)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.53
Crystal size (mm) 0.35 × 0.30 × 0.25
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.836, 0.879
No. of measured, independent and observed [I > 2σ(I)] reflections 17682, 5362, 5128
Rint 0.021
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.062, 1.03
No. of reflections 5362
No. of parameters 399
No. of restraints 3
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.16, −0.15
Absolute structure Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2669 Friedel pairs
Absolute structure parameter −0.007 (9)
Computer programs: APEX2, SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), SCHAKAL99 (Keller, 1999[Keller, E. (1999). SCHAKAL99. University of Freiburg, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Chemical Context top

Spiro­oxindoles are an important class of naturally occurring substances characterized by highly pronounced biological properties (Sureshbabu & Raghunathan, 2008). Ferrocene derivatives have anti­malarial (Biot et al., 2004) and anti­bacterial (Chohan, 2002) activities. The use of ferrocene in bio-organometallic chemistry has promising applications since ferrocene is a stable non-toxic compound and has good redox properties (Fouda et al., 2007). Ferrocenyloxindoles have also been found to have anti­cancer (Silva et al., 2010) and anti­proliferative activities (Gasser et al., 2011). The synthesis of novel ferrocenyl-spiro-indanedione-N-methyl­pyrrolidines by employing various unusual ferrocene derivatives as efficient 2π-components in 1,3-dipolar cyclo­addition reactions of azomethine ylides demonstrate that ferrocene-derived dipolarophiles can further be exploited for the synthesis of a variety of complex heterocycles through cyclo­addition reactions (Sureshbabu et al., 2009). A wide range of substituted pyrrolizidine scaffolds offers a high level of functional, structural and stereochemical diversity. It was demonstrated that multicomponent reactions (MCR) could be used for synthesizing novel ferrocene-grafted di­spiro­pyrrolidine and pyrrolizidine scaffolds through one-pot three-component inter­molecular [3+2] cyclo­addition of azomethine ylides with an unusual ferrocene Baylis–Hillman adduct (Kathiravan & Raghunathan, 2009). The one-pot four-component cyclo­addition reaction method was used to synthesize substituted pyrrolizidines containing ferrocene and a spiro-indeno­quinoxaline moiety of biological significance (Sureshbabu et al., 2012). In view of the importance of this class of compounds, the synthesis of the title compound was undertaken and its crystal structure is reported herein.

Structural commentary top

In the title compound (Fig. 1), the four-fused-rings system of the 11H-indeno­[1,2-b]quinoxaline unit is approximately planar [maximum deviation = 0.167 (4) Å for C13] and forms a dihedral angle of 37.25 (6)° with the C33–C38 benzene ring of the methyl­benzoyl group. In the fused pyrrolidine system, both five-membered rings adopt a twist conformation, as indicated by the puckering parameters (Cremer & Pople, 1975) θ = 0.382 (3) Å, ϕ = 107.1 (4)° for C19/C18/C17/C16/N3 and θ = 0.359 (2) Å, ϕ = 106.1 (3)° for C19/C20/C21/C7/N3. The dihedral angle between the least-squares mean planes through the pyrrolidine rings is 56.89 (7)°. The mean plane through the C19/C20/C21/C7/N3 pyrrolidine ring is nearly orthogonal to the C5/C6/C7/C8/C9 cyclo­pentane ring, forming a dihedral angle of 88.84 (8)°. The dihedral angle between the cyclo­pentane rings in the ferrocene fragment is 2.18 (8)°. Bond lengths and angles are not unusual and in good agreement with those recently reported for the related compound 2-(4-bromo­benzoyl)-1-ferrocenyl­spiro­[11H-pyrrolidizine-3,11'-indeno­[1,2-b]quinoxaline] (Suhitha et al., 2013). The molecular conformation is stabilized by an intra­molecular C—H···O hydrogen bond (Table 1).

Supra­molecular features top

In the crystal structure, molecules are linked into double chains running parallel to the c axis by inter­molecular non-classical C—H···O hydrogen bonds and weak C—H···π inter­actions (Table 1) involving H atoms of the cyclo­penta­dienyl groups as donors (Fig. 2).

Synthesis and crystallization top

Ninhydrin (1 mmol) and 1,2-phenyl­enedi­amine (1 mmol) were mixed and stirred with methanol (10 ml) for 10 min. To this mixture, proline (1 mmol) and 1-ferrocenyl-3-(4-methyl­benzoyl)­prop-2-ene dipolarophile (1 mmol) were added and refluxed up to the end of the reaction as observed by thin-layer chromatography. The solvent was removed from the mixture under reduced pressure and the crude product was obtained using column chromatography. The crude extract was purified by petroleum ether and ethyl acetate (4:1 v/v). Single crystals suitable for the X-ray diffraction analysis were obtained by slow evaporation of the solvent at room temperature.

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms were placed in calculated positions, with C—H = 0.93–0.98 Å, and refined using a riding-model approximation, with Uiso(H) = 1.5Ueq(C) for methyl groups or 1.2Ueq(C) otherwise. DELU restraints were applied to atoms C24 and C25.

Related literature top

For related literature, see: Biot et al. (2004); Chohan (2002); Cremer & Pople (1975); Fouda et al. (2007); Gasser et al. (2011); Kathiravan & Raghunathan (2009); Silva et al. (2010); Suhitha et al. (2013); Sureshbabu & Raghunathan (2008); Sureshbabu et al. (2009, 2012).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and SCHAKAL99 (Keller, 1999); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level. H atoms are shown as small spheres of arbitrary radius.
[Figure 2] Fig. 2. Partial crystal packing of the title compound, showing the formation of a double chain running parallel to the c axis via C—H···O hydrogen bonds (violet dashed lines) and C—H···π interactions (red dashed lines). H atoms not involved in hydrogen-bond interactions have been omitted.
1-Ferrocenyl-2-(4-methylbenzoyl)spiro[11H-pyrrolidizine-3,11'-indeno[1,2-b]quinoxaline] top
Crystal data top
[Fe(C5H5)(C34H28N3O)]Z = 4
Mr = 615.53F(000) = 1288
Monoclinic, CcDx = 1.341 Mg m3
Hall symbol: C -2ycMo Kα radiation, λ = 0.71073 Å
a = 12.0017 (4) Åθ = 4.8–56.4°
b = 30.2487 (10) ŵ = 0.53 mm1
c = 9.3597 (3) ÅT = 293 K
β = 116.179 (1)°Block, colourless
V = 3049.35 (17) Å30.35 × 0.30 × 0.25 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5362 independent reflections
Radiation source: fine-focus sealed tube5128 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
Bruker axs kappa apex2 CCD Diffractometer scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1414
Tmin = 0.836, Tmax = 0.879k = 3535
17682 measured reflectionsl = 1111
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.024 w = 1/[σ2(Fo2) + (0.0347P)2 + 0.3631P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.062(Δ/σ)max = 0.002
S = 1.03Δρmax = 0.16 e Å3
5362 reflectionsΔρmin = 0.15 e Å3
399 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
3 restraintsExtinction coefficient: 0.00070 (15)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 2669 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.007 (9)
Crystal data top
[Fe(C5H5)(C34H28N3O)]V = 3049.35 (17) Å3
Mr = 615.53Z = 4
Monoclinic, CcMo Kα radiation
a = 12.0017 (4) ŵ = 0.53 mm1
b = 30.2487 (10) ÅT = 293 K
c = 9.3597 (3) Å0.35 × 0.30 × 0.25 mm
β = 116.179 (1)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5362 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
5128 reflections with I > 2σ(I)
Tmin = 0.836, Tmax = 0.879Rint = 0.021
17682 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.024H-atom parameters constrained
wR(F2) = 0.062Δρmax = 0.16 e Å3
S = 1.03Δρmin = 0.15 e Å3
5362 reflectionsAbsolute structure: Flack (1983), 2669 Friedel pairs
399 parametersAbsolute structure parameter: 0.007 (9)
3 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.01108 (2)0.077233 (8)0.28428 (2)0.03569 (8)
O10.07741 (15)0.06919 (5)0.67565 (18)0.0530 (4)
N10.30744 (14)0.19423 (5)0.21696 (19)0.0373 (3)
N20.47392 (15)0.17673 (6)0.10980 (19)0.0427 (4)
N30.39342 (15)0.13086 (5)0.39825 (19)0.0398 (4)
C10.47492 (19)0.04151 (7)0.1670 (3)0.0483 (5)
H10.43980.02830.26690.058*
C20.5562 (2)0.01800 (8)0.0334 (3)0.0567 (6)
H20.57680.01100.04490.068*
C30.6066 (2)0.03731 (8)0.1163 (3)0.0567 (6)
H30.66080.02110.20380.068*
C40.57798 (19)0.07972 (7)0.1372 (3)0.0469 (5)
H40.61090.09230.23810.056*
C50.49823 (16)0.10371 (7)0.0040 (2)0.0370 (4)
C60.44732 (16)0.08500 (6)0.1482 (2)0.0352 (4)
C70.35942 (16)0.11702 (6)0.2715 (2)0.0332 (4)
C80.36774 (15)0.15702 (6)0.1682 (2)0.0326 (4)
C90.44990 (16)0.14829 (6)0.0059 (2)0.0351 (4)
C100.40833 (18)0.21570 (7)0.0633 (2)0.0419 (5)
C110.4220 (2)0.24758 (8)0.1796 (3)0.0579 (6)
H110.47720.24270.28560.070*
C120.3537 (2)0.28584 (8)0.1361 (3)0.0646 (7)
H120.36230.30670.21330.078*
C130.2712 (3)0.29375 (8)0.0231 (3)0.0629 (6)
H130.22500.31970.05040.075*
C140.2576 (2)0.26398 (7)0.1388 (3)0.0521 (5)
H140.20340.26990.24450.063*
C150.32574 (17)0.22426 (6)0.0982 (2)0.0400 (4)
C160.4350 (3)0.09612 (10)0.4739 (3)0.0665 (7)
H16A0.38730.06920.48850.080*
H16B0.52240.08960.41150.080*
C170.4115 (3)0.11636 (12)0.6293 (4)0.0865 (10)
H17A0.40500.09380.70620.104*
H17B0.47760.13670.61730.104*
C180.2913 (2)0.14035 (10)0.6803 (3)0.0665 (7)
H18A0.22260.12210.75130.080*
H18B0.29170.16760.73490.080*
C190.28009 (18)0.15018 (7)0.5261 (2)0.0410 (4)
H190.28230.18230.51110.049*
C200.16588 (16)0.13083 (6)0.5049 (2)0.0321 (4)
H200.12490.15520.47780.039*
C210.22308 (16)0.09977 (6)0.3613 (2)0.0313 (4)
H210.22520.06980.40010.038*
C220.16107 (16)0.09780 (7)0.2525 (2)0.0349 (4)
C230.17042 (19)0.06193 (9)0.1483 (3)0.0512 (6)
H230.20960.03320.14450.061*
C240.1133 (2)0.07513 (9)0.0524 (3)0.0606 (7)
H240.10580.05690.02950.073*
C250.0684 (2)0.11832 (9)0.0928 (3)0.0581 (6)
H250.02470.13550.04440.070*
C260.09819 (18)0.13257 (7)0.2151 (3)0.0433 (5)
H260.07690.16140.26800.052*
C270.0989 (2)0.04430 (9)0.4942 (3)0.0587 (6)
H270.06060.03360.56080.070*
C280.1084 (2)0.02060 (7)0.3691 (3)0.0622 (7)
H280.07770.00940.33450.075*
C290.1692 (2)0.04753 (7)0.3035 (3)0.0549 (6)
H290.18850.03970.21530.066*
C300.19731 (19)0.08743 (8)0.3866 (3)0.0512 (6)
H300.23940.11260.36570.061*
C310.1536 (2)0.08591 (9)0.5048 (3)0.0531 (6)
H310.16080.10940.58040.064*
C320.07122 (18)0.10845 (6)0.6539 (2)0.0347 (4)
C330.02945 (18)0.13584 (6)0.7763 (2)0.0351 (4)
C340.1321 (2)0.11481 (7)0.8939 (2)0.0437 (5)
H340.13690.08410.89500.052*
C350.22726 (19)0.13901 (8)1.0094 (3)0.0486 (5)
H350.29550.12441.08630.058*
C360.2222 (2)0.18463 (8)1.0119 (3)0.0515 (5)
C370.1191 (2)0.20554 (7)0.8961 (3)0.0575 (6)
H370.11350.23620.89670.069*
C380.0244 (2)0.18150 (6)0.7795 (3)0.0479 (5)
H380.04350.19620.70240.057*
C390.3290 (2)0.21089 (11)1.1340 (3)0.0760 (8)
H39A0.38160.19161.21840.114*
H39B0.29710.23381.17670.114*
H39C0.37600.22391.08440.114*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.03174 (13)0.04076 (14)0.02999 (13)0.00726 (12)0.00945 (10)0.00137 (13)
O10.0648 (10)0.0386 (8)0.0384 (8)0.0019 (7)0.0072 (8)0.0075 (6)
N10.0373 (8)0.0346 (8)0.0374 (8)0.0060 (7)0.0141 (7)0.0034 (7)
N20.0392 (9)0.0513 (9)0.0333 (9)0.0067 (7)0.0120 (7)0.0089 (7)
N30.0347 (8)0.0528 (10)0.0333 (8)0.0024 (7)0.0161 (7)0.0008 (7)
C10.0442 (12)0.0484 (11)0.0473 (12)0.0071 (9)0.0156 (10)0.0039 (10)
C20.0516 (13)0.0498 (13)0.0662 (15)0.0198 (10)0.0235 (12)0.0083 (11)
C30.0470 (13)0.0692 (15)0.0490 (14)0.0231 (11)0.0167 (11)0.0176 (12)
C40.0345 (10)0.0655 (14)0.0357 (11)0.0089 (10)0.0110 (9)0.0044 (10)
C50.0260 (9)0.0473 (11)0.0364 (10)0.0005 (8)0.0127 (8)0.0006 (8)
C60.0242 (9)0.0455 (11)0.0333 (10)0.0003 (7)0.0105 (8)0.0007 (8)
C70.0310 (9)0.0354 (9)0.0319 (9)0.0003 (7)0.0127 (8)0.0009 (8)
C80.0249 (8)0.0398 (10)0.0308 (9)0.0056 (7)0.0102 (7)0.0019 (8)
C90.0265 (9)0.0458 (11)0.0317 (9)0.0036 (7)0.0117 (8)0.0029 (8)
C100.0388 (10)0.0432 (11)0.0455 (12)0.0110 (9)0.0202 (9)0.0122 (9)
C110.0572 (14)0.0612 (14)0.0539 (14)0.0146 (11)0.0231 (12)0.0213 (11)
C120.0754 (16)0.0483 (13)0.0813 (19)0.0135 (12)0.0446 (15)0.0291 (13)
C130.0687 (16)0.0388 (11)0.0858 (19)0.0051 (11)0.0383 (15)0.0140 (12)
C140.0532 (12)0.0374 (11)0.0643 (14)0.0050 (9)0.0246 (11)0.0031 (10)
C150.0372 (10)0.0383 (10)0.0472 (12)0.0099 (8)0.0211 (9)0.0050 (9)
C160.0757 (17)0.0808 (17)0.0611 (16)0.0188 (14)0.0467 (15)0.0029 (13)
C170.098 (2)0.120 (3)0.0646 (19)0.0150 (19)0.0563 (18)0.0006 (17)
C180.0567 (14)0.110 (2)0.0376 (13)0.0111 (14)0.0251 (11)0.0015 (13)
C190.0408 (10)0.0474 (11)0.0337 (10)0.0069 (9)0.0155 (9)0.0003 (9)
C200.0350 (9)0.0329 (9)0.0258 (9)0.0009 (7)0.0109 (8)0.0020 (7)
C210.0291 (9)0.0329 (9)0.0274 (9)0.0020 (7)0.0082 (7)0.0031 (7)
C220.0266 (9)0.0447 (10)0.0267 (10)0.0073 (8)0.0057 (8)0.0036 (8)
C230.0336 (11)0.0722 (15)0.0353 (12)0.0000 (10)0.0039 (9)0.0194 (11)
C240.0422 (13)0.1079 (17)0.0259 (12)0.0157 (11)0.0098 (11)0.0101 (12)
C250.0455 (12)0.0903 (14)0.0424 (13)0.0241 (11)0.0230 (11)0.0269 (11)
C260.0388 (11)0.0508 (12)0.0423 (11)0.0167 (9)0.0198 (9)0.0170 (9)
C270.0497 (13)0.0673 (15)0.0489 (14)0.0198 (12)0.0124 (11)0.0250 (12)
C280.0623 (15)0.0347 (11)0.0722 (17)0.0160 (11)0.0137 (13)0.0040 (11)
C290.0465 (12)0.0565 (13)0.0574 (14)0.0210 (10)0.0191 (11)0.0052 (11)
C300.0300 (10)0.0560 (13)0.0595 (16)0.0058 (9)0.0123 (11)0.0027 (12)
C310.0386 (12)0.0655 (15)0.0373 (13)0.0129 (11)0.0004 (10)0.0112 (11)
C320.0371 (10)0.0379 (10)0.0269 (9)0.0031 (8)0.0122 (8)0.0030 (8)
C330.0353 (10)0.0424 (9)0.0269 (9)0.0028 (8)0.0131 (8)0.0017 (8)
C340.0417 (11)0.0486 (12)0.0368 (11)0.0050 (9)0.0136 (9)0.0025 (9)
C350.0315 (10)0.0676 (14)0.0395 (12)0.0051 (10)0.0090 (9)0.0035 (10)
C360.0408 (11)0.0716 (15)0.0437 (12)0.0157 (10)0.0201 (10)0.0145 (11)
C370.0654 (15)0.0433 (12)0.0574 (14)0.0087 (10)0.0213 (13)0.0075 (11)
C380.0483 (12)0.0443 (10)0.0404 (10)0.0028 (11)0.0098 (9)0.0030 (11)
C390.0551 (15)0.0917 (19)0.0712 (17)0.0232 (14)0.0187 (13)0.0278 (15)
Geometric parameters (Å, º) top
Fe1—C242.021 (2)C17—H17A0.9700
Fe1—C282.028 (2)C17—H17B0.9700
Fe1—C302.030 (2)C18—C191.536 (3)
Fe1—C232.033 (2)C18—H18A0.9700
Fe1—C272.034 (2)C18—H18B0.9700
Fe1—C312.035 (2)C19—C201.582 (3)
Fe1—C292.035 (2)C19—H190.9800
Fe1—C252.039 (2)C20—C321.515 (2)
Fe1—C262.0473 (19)C20—C211.532 (2)
Fe1—C222.0500 (18)C20—H200.9800
O1—C321.213 (2)C21—C221.504 (3)
N1—C81.307 (2)C21—H210.9800
N1—C151.376 (2)C22—C261.425 (3)
N2—C91.312 (2)C22—C231.430 (3)
N2—C101.377 (3)C23—C241.407 (4)
N3—C161.472 (3)C23—H230.9800
N3—C71.475 (2)C24—C251.400 (4)
N3—C191.479 (3)C24—H240.9800
C1—C61.386 (3)C25—C261.409 (3)
C1—C21.394 (3)C25—H250.9800
C1—H10.9300C26—H260.9800
C2—C31.387 (3)C27—C311.402 (4)
C2—H20.9300C27—C281.419 (4)
C3—C41.364 (3)C27—H270.9800
C3—H30.9300C28—C291.403 (4)
C4—C51.394 (3)C28—H280.9800
C4—H40.9300C29—C301.394 (3)
C5—C61.399 (3)C29—H290.9800
C5—C91.455 (3)C30—C311.420 (4)
C6—C71.519 (3)C30—H300.9800
C7—C81.524 (3)C31—H310.9800
C7—C211.563 (2)C32—C331.496 (3)
C8—C91.424 (3)C33—C381.384 (3)
C10—C111.409 (3)C33—C341.392 (3)
C10—C151.418 (3)C34—C351.385 (3)
C11—C121.372 (3)C34—H340.9300
C11—H110.9300C35—C361.382 (3)
C12—C131.399 (4)C35—H350.9300
C12—H120.9300C36—C371.387 (3)
C13—C141.361 (3)C36—C391.512 (3)
C13—H130.9300C37—C381.385 (3)
C14—C151.408 (3)C37—H370.9300
C14—H140.9300C38—H380.9300
C16—C171.485 (4)C39—H39A0.9600
C16—H16A0.9700C39—H39B0.9600
C16—H16B0.9700C39—H39C0.9600
C17—C181.492 (4)
C24—Fe1—C28114.77 (11)C17—C18—H18A110.7
C24—Fe1—C30130.48 (11)C19—C18—H18A110.7
C28—Fe1—C3067.62 (10)C17—C18—H18B110.7
C24—Fe1—C2340.62 (11)C19—C18—H18B110.7
C28—Fe1—C23109.02 (10)H18A—C18—H18B108.8
C30—Fe1—C23169.36 (10)N3—C19—C18104.69 (18)
C24—Fe1—C27147.63 (12)N3—C19—C20106.90 (14)
C28—Fe1—C2740.90 (11)C18—C19—C20119.08 (17)
C30—Fe1—C2767.97 (11)N3—C19—H19108.6
C23—Fe1—C27116.67 (11)C18—C19—H19108.6
C24—Fe1—C31170.27 (13)C20—C19—H19108.6
C28—Fe1—C3168.32 (10)C32—C20—C21113.42 (14)
C30—Fe1—C3140.89 (11)C32—C20—C19112.91 (15)
C23—Fe1—C31148.57 (11)C21—C20—C19105.04 (14)
C27—Fe1—C3140.32 (10)C32—C20—H20108.4
C24—Fe1—C29107.41 (10)C21—C20—H20108.4
C28—Fe1—C2940.40 (10)C19—C20—H20108.4
C30—Fe1—C2940.12 (9)C22—C21—C20117.01 (15)
C23—Fe1—C29130.92 (9)C22—C21—C7111.26 (14)
C27—Fe1—C2968.42 (10)C20—C21—C7102.99 (13)
C31—Fe1—C2968.50 (10)C22—C21—H21108.4
C24—Fe1—C2540.34 (10)C20—C21—H21108.4
C28—Fe1—C25145.53 (11)C7—C21—H21108.4
C30—Fe1—C25108.23 (10)C26—C22—C23106.43 (19)
C23—Fe1—C2568.41 (11)C26—C22—C21127.66 (18)
C27—Fe1—C25171.78 (12)C23—C22—C21125.33 (19)
C31—Fe1—C25132.14 (12)C26—C22—Fe169.54 (11)
C29—Fe1—C25113.78 (10)C23—C22—Fe168.86 (11)
C24—Fe1—C2667.63 (10)C21—C22—Fe1132.99 (12)
C28—Fe1—C26173.02 (11)C24—C23—C22107.8 (2)
C30—Fe1—C26116.33 (9)C24—C23—Fe169.23 (14)
C23—Fe1—C2668.17 (10)C22—C23—Fe170.14 (11)
C27—Fe1—C26133.86 (9)C24—C23—H23126.1
C31—Fe1—C26110.48 (9)C22—C23—H23126.1
C29—Fe1—C26146.24 (9)Fe1—C23—H23126.1
C25—Fe1—C2640.33 (9)C25—C24—C23109.3 (2)
C24—Fe1—C2268.55 (9)C25—C24—Fe170.53 (14)
C28—Fe1—C22133.07 (10)C23—C24—Fe170.15 (13)
C30—Fe1—C22148.43 (8)C25—C24—H24125.4
C23—Fe1—C2240.99 (8)C23—C24—H24125.4
C27—Fe1—C22110.41 (9)Fe1—C24—H24125.4
C31—Fe1—C22116.75 (9)C24—C25—C26107.4 (2)
C29—Fe1—C22171.09 (9)C24—C25—Fe169.13 (15)
C25—Fe1—C2268.71 (8)C26—C25—Fe170.14 (12)
C26—Fe1—C2240.71 (8)C24—C25—H25126.3
C8—N1—C15114.85 (16)C26—C25—H25126.3
C9—N2—C10114.42 (16)Fe1—C25—H25126.3
C16—N3—C7117.20 (17)C25—C26—C22109.0 (2)
C16—N3—C19106.19 (17)C25—C26—Fe169.52 (12)
C7—N3—C19106.32 (14)C22—C26—Fe169.74 (11)
C6—C1—C2118.8 (2)C25—C26—H26125.5
C6—C1—H1120.6C22—C26—H26125.5
C2—C1—H1120.6Fe1—C26—H26125.5
C3—C2—C1120.8 (2)C31—C27—C28107.9 (2)
C3—C2—H2119.6C31—C27—Fe169.88 (13)
C1—C2—H2119.6C28—C27—Fe169.33 (13)
C4—C3—C2121.0 (2)C31—C27—H27126.1
C4—C3—H3119.5C28—C27—H27126.1
C2—C3—H3119.5Fe1—C27—H27126.1
C3—C4—C5118.6 (2)C29—C28—C27108.3 (2)
C3—C4—H4120.7C29—C28—Fe170.07 (12)
C5—C4—H4120.7C27—C28—Fe169.76 (12)
C4—C5—C6121.28 (19)C29—C28—H28125.9
C4—C5—C9129.57 (18)C27—C28—H28125.9
C6—C5—C9109.10 (16)Fe1—C28—H28125.9
C1—C6—C5119.44 (18)C30—C29—C28107.6 (2)
C1—C6—C7129.30 (18)C30—C29—Fe169.74 (12)
C5—C6—C7111.14 (16)C28—C29—Fe169.53 (13)
N3—C7—C6116.47 (15)C30—C29—H29126.2
N3—C7—C8108.71 (14)C28—C29—H29126.2
C6—C7—C8101.26 (14)Fe1—C29—H29126.2
N3—C7—C21104.93 (14)C29—C30—C31109.0 (2)
C6—C7—C21114.01 (14)C29—C30—Fe170.14 (13)
C8—C7—C21111.49 (14)C31—C30—Fe169.74 (13)
N1—C8—C9123.25 (17)C29—C30—H30125.5
N1—C8—C7126.25 (16)C31—C30—H30125.5
C9—C8—C7110.48 (15)Fe1—C30—H30125.5
N2—C9—C8123.75 (17)C27—C31—C30107.2 (2)
N2—C9—C5128.23 (18)C27—C31—Fe169.80 (13)
C8—C9—C5108.02 (16)C30—C31—Fe169.37 (13)
N2—C10—C11119.08 (19)C27—C31—H31126.4
N2—C10—C15121.78 (17)C30—C31—H31126.4
C11—C10—C15119.1 (2)Fe1—C31—H31126.4
C12—C11—C10119.8 (2)O1—C32—C33120.16 (17)
C12—C11—H11120.1O1—C32—C20121.03 (18)
C10—C11—H11120.1C33—C32—C20118.80 (16)
C11—C12—C13120.7 (2)C38—C33—C34118.1 (2)
C11—C12—H12119.7C38—C33—C32122.76 (19)
C13—C12—H12119.7C34—C33—C32119.13 (16)
C14—C13—C12120.9 (2)C35—C34—C33120.86 (19)
C14—C13—H13119.5C35—C34—H34119.6
C12—C13—H13119.5C33—C34—H34119.6
C13—C14—C15119.9 (2)C36—C35—C34120.9 (2)
C13—C14—H14120.1C36—C35—H35119.5
C15—C14—H14120.1C34—C35—H35119.5
N1—C15—C14118.58 (19)C35—C36—C37118.2 (2)
N1—C15—C10121.85 (17)C35—C36—C39120.6 (2)
C14—C15—C10119.55 (19)C37—C36—C39121.2 (2)
N3—C16—C17102.6 (2)C38—C37—C36121.0 (2)
N3—C16—H16A111.2C38—C37—H37119.5
C17—C16—H16A111.2C36—C37—H37119.5
N3—C16—H16B111.2C33—C38—C37120.8 (2)
C17—C16—H16B111.2C33—C38—H38119.6
H16A—C16—H16B109.2C37—C38—H38119.6
C16—C17—C18104.7 (2)C36—C39—H39A109.5
C16—C17—H17A110.8C36—C39—H39B109.5
C18—C17—H17A110.8H39A—C39—H39B109.5
C16—C17—H17B110.8C36—C39—H39C109.5
C18—C17—H17B110.8H39A—C39—H39C109.5
H17A—C17—H17B108.9H39B—C39—H39C109.5
C17—C18—C19105.4 (2)
C6—C1—C2—C31.4 (3)C22—Fe1—C24—C2338.04 (14)
C1—C2—C3—C40.2 (4)C23—C24—C25—C260.3 (3)
C2—C3—C4—C51.1 (3)Fe1—C24—C25—C2659.95 (15)
C3—C4—C5—C60.5 (3)C23—C24—C25—Fe159.65 (17)
C3—C4—C5—C9177.6 (2)C28—Fe1—C25—C2455.1 (2)
C2—C1—C6—C52.0 (3)C30—Fe1—C25—C24131.93 (15)
C2—C1—C6—C7177.6 (2)C23—Fe1—C25—C2437.33 (15)
C4—C5—C6—C11.1 (3)C31—Fe1—C25—C24171.09 (17)
C9—C5—C6—C1176.54 (17)C29—Fe1—C25—C2489.21 (16)
C4—C5—C6—C7177.49 (17)C26—Fe1—C25—C24118.6 (2)
C9—C5—C6—C70.2 (2)C22—Fe1—C25—C2481.52 (15)
C16—N3—C7—C645.0 (2)C24—Fe1—C25—C26118.6 (2)
C19—N3—C7—C6163.50 (15)C28—Fe1—C25—C26173.73 (17)
C16—N3—C7—C8158.52 (18)C30—Fe1—C25—C26109.48 (14)
C19—N3—C7—C882.99 (17)C23—Fe1—C25—C2681.26 (15)
C16—N3—C7—C2182.1 (2)C31—Fe1—C25—C2670.32 (18)
C19—N3—C7—C2136.39 (18)C29—Fe1—C25—C26152.20 (14)
C1—C6—C7—N366.0 (3)C22—Fe1—C25—C2637.07 (13)
C5—C6—C7—N3118.03 (17)C24—C25—C26—C220.6 (2)
C1—C6—C7—C8176.3 (2)Fe1—C25—C26—C2258.69 (13)
C5—C6—C7—C80.35 (19)C24—C25—C26—Fe159.31 (16)
C1—C6—C7—C2156.4 (3)C23—C22—C26—C250.7 (2)
C5—C6—C7—C21119.49 (17)C21—C22—C26—C25172.28 (17)
C15—N1—C8—C92.2 (2)Fe1—C22—C26—C2558.56 (14)
C15—N1—C8—C7176.29 (16)C23—C22—C26—Fe159.25 (13)
N3—C7—C8—N157.8 (2)C21—C22—C26—Fe1129.16 (18)
C6—C7—C8—N1179.06 (17)C24—Fe1—C26—C2537.92 (15)
C21—C7—C8—N157.4 (2)C30—Fe1—C26—C2587.50 (17)
N3—C7—C8—C9123.62 (16)C23—Fe1—C26—C2581.92 (16)
C6—C7—C8—C90.43 (18)C27—Fe1—C26—C25171.48 (17)
C21—C7—C8—C9121.19 (15)C31—Fe1—C26—C25131.82 (17)
C10—N2—C9—C82.9 (3)C29—Fe1—C26—C2550.2 (2)
C10—N2—C9—C5176.79 (17)C22—Fe1—C26—C25120.6 (2)
N1—C8—C9—N20.7 (3)C24—Fe1—C26—C2282.64 (14)
C7—C8—C9—N2179.35 (16)C30—Fe1—C26—C22151.93 (12)
N1—C8—C9—C5179.05 (16)C23—Fe1—C26—C2238.65 (13)
C7—C8—C9—C50.37 (19)C27—Fe1—C26—C2267.95 (17)
C4—C5—C9—N22.2 (3)C31—Fe1—C26—C22107.62 (14)
C6—C5—C9—N2179.57 (18)C29—Fe1—C26—C22170.73 (16)
C4—C5—C9—C8177.53 (19)C25—Fe1—C26—C22120.6 (2)
C6—C5—C9—C80.1 (2)C24—Fe1—C27—C31170.5 (2)
C9—N2—C10—C11176.55 (18)C28—Fe1—C27—C31119.2 (2)
C9—N2—C10—C152.3 (3)C30—Fe1—C27—C3138.42 (14)
N2—C10—C11—C12177.5 (2)C23—Fe1—C27—C31152.10 (14)
C15—C10—C11—C121.4 (3)C29—Fe1—C27—C3181.78 (16)
C10—C11—C12—C130.6 (4)C26—Fe1—C27—C3167.52 (19)
C11—C12—C13—C140.6 (4)C22—Fe1—C27—C31107.69 (15)
C12—C13—C14—C151.0 (4)C24—Fe1—C27—C2851.3 (3)
C8—N1—C15—C14175.64 (17)C30—Fe1—C27—C2880.78 (16)
C8—N1—C15—C102.7 (2)C23—Fe1—C27—C2888.70 (17)
C13—C14—C15—N1178.2 (2)C31—Fe1—C27—C28119.2 (2)
C13—C14—C15—C100.2 (3)C29—Fe1—C27—C2837.43 (15)
N2—C10—C15—N10.5 (3)C26—Fe1—C27—C28173.28 (15)
C11—C10—C15—N1179.31 (18)C22—Fe1—C27—C28133.11 (15)
N2—C10—C15—C14177.81 (18)C31—C27—C28—C290.2 (3)
C11—C10—C15—C141.0 (3)Fe1—C27—C28—C2959.69 (16)
C7—N3—C16—C17157.8 (2)C31—C27—C28—Fe159.46 (15)
C19—N3—C16—C1739.2 (3)C24—Fe1—C28—C2988.07 (16)
N3—C16—C17—C1839.0 (3)C30—Fe1—C28—C2937.61 (15)
C16—C17—C18—C1924.4 (3)C23—Fe1—C28—C29131.59 (14)
C16—N3—C19—C1823.9 (2)C27—Fe1—C28—C29119.3 (2)
C7—N3—C19—C18149.40 (17)C31—Fe1—C28—C2981.88 (16)
C16—N3—C19—C20103.32 (19)C25—Fe1—C28—C2952.3 (2)
C7—N3—C19—C2022.20 (19)C22—Fe1—C28—C29171.18 (14)
C17—C18—C19—N30.5 (3)C24—Fe1—C28—C27152.62 (16)
C17—C18—C19—C20119.9 (2)C30—Fe1—C28—C2781.71 (16)
N3—C19—C20—C32124.84 (16)C23—Fe1—C28—C27109.10 (16)
C18—C19—C20—C326.7 (3)C31—Fe1—C28—C2737.44 (15)
N3—C19—C20—C210.76 (19)C29—Fe1—C28—C27119.3 (2)
C18—C19—C20—C21117.4 (2)C25—Fe1—C28—C27171.58 (19)
C32—C20—C21—C2292.15 (19)C22—Fe1—C28—C2769.50 (19)
C19—C20—C21—C22144.09 (16)C27—C28—C29—C300.1 (3)
C32—C20—C21—C7145.49 (15)Fe1—C28—C29—C3059.56 (15)
C19—C20—C21—C721.73 (17)C27—C28—C29—Fe159.51 (16)
N3—C7—C21—C22162.14 (15)C24—Fe1—C29—C30133.14 (17)
C6—C7—C21—C2269.26 (19)C28—Fe1—C29—C30118.9 (2)
C8—C7—C21—C2244.6 (2)C23—Fe1—C29—C30171.79 (18)
N3—C7—C21—C2036.00 (17)C27—Fe1—C29—C3080.99 (17)
C6—C7—C21—C20164.60 (15)C31—Fe1—C29—C3037.49 (17)
C8—C7—C21—C2081.50 (17)C25—Fe1—C29—C3090.42 (18)
C20—C21—C22—C2632.5 (2)C26—Fe1—C29—C3057.5 (2)
C7—C21—C22—C2685.5 (2)C24—Fe1—C29—C28108.00 (16)
C20—C21—C22—C23157.43 (18)C30—Fe1—C29—C28118.9 (2)
C7—C21—C22—C2384.6 (2)C23—Fe1—C29—C2869.34 (19)
C20—C21—C22—Fe164.2 (2)C27—Fe1—C29—C2837.88 (15)
C7—C21—C22—Fe1177.84 (14)C31—Fe1—C29—C2881.38 (16)
C24—Fe1—C22—C2680.20 (15)C25—Fe1—C29—C28150.71 (15)
C28—Fe1—C22—C26175.39 (15)C26—Fe1—C29—C28176.39 (17)
C30—Fe1—C22—C2653.7 (2)C28—C29—C30—C310.3 (3)
C23—Fe1—C22—C26117.90 (19)Fe1—C29—C30—C3159.11 (16)
C27—Fe1—C22—C26134.51 (13)C28—C29—C30—Fe159.43 (16)
C31—Fe1—C22—C2690.85 (15)C24—Fe1—C30—C2966.3 (2)
C25—Fe1—C22—C2636.74 (14)C28—Fe1—C30—C2937.87 (16)
C24—Fe1—C22—C2337.71 (16)C23—Fe1—C30—C2935.7 (7)
C28—Fe1—C22—C2366.71 (19)C27—Fe1—C30—C2982.21 (17)
C30—Fe1—C22—C23171.6 (2)C31—Fe1—C30—C29120.1 (2)
C27—Fe1—C22—C23107.58 (16)C25—Fe1—C30—C29105.55 (17)
C31—Fe1—C22—C23151.24 (16)C22—Fe1—C30—C29175.65 (16)
C25—Fe1—C22—C2381.17 (16)C24—Fe1—C30—C31173.62 (16)
C26—Fe1—C22—C23117.90 (19)C28—Fe1—C30—C3182.25 (17)
C24—Fe1—C22—C21156.9 (2)C23—Fe1—C30—C31155.8 (6)
C28—Fe1—C22—C2152.4 (2)C27—Fe1—C30—C3137.90 (15)
C30—Fe1—C22—C2169.3 (3)C29—Fe1—C30—C31120.1 (2)
C23—Fe1—C22—C21119.2 (3)C25—Fe1—C30—C31134.33 (16)
C27—Fe1—C22—C2111.6 (2)C26—Fe1—C30—C3191.43 (16)
C31—Fe1—C22—C2132.1 (2)C22—Fe1—C30—C3155.5 (2)
C25—Fe1—C22—C21159.7 (2)C28—C27—C31—C300.4 (2)
C26—Fe1—C22—C21122.9 (2)Fe1—C27—C31—C3059.54 (16)
C26—C22—C23—C240.5 (2)C28—C27—C31—Fe159.12 (16)
C21—C22—C23—C24172.34 (18)C29—C30—C31—C270.5 (3)
Fe1—C22—C23—C2459.19 (16)Fe1—C30—C31—C2759.82 (16)
C26—C22—C23—Fe159.69 (13)C29—C30—C31—Fe159.35 (16)
C21—C22—C23—Fe1128.47 (17)C28—Fe1—C31—C2737.96 (15)
C28—Fe1—C23—C24106.18 (17)C30—Fe1—C31—C27118.4 (2)
C30—Fe1—C23—C2436.4 (7)C23—Fe1—C31—C2753.3 (2)
C27—Fe1—C23—C24150.01 (16)C29—Fe1—C31—C2781.56 (15)
C31—Fe1—C23—C24174.5 (2)C25—Fe1—C31—C27175.25 (15)
C29—Fe1—C23—C2466.3 (2)C26—Fe1—C31—C27134.67 (14)
C25—Fe1—C23—C2437.08 (15)C22—Fe1—C31—C2790.55 (16)
C26—Fe1—C23—C2480.64 (16)C28—Fe1—C31—C3080.40 (16)
C22—Fe1—C23—C24119.0 (2)C23—Fe1—C31—C30171.7 (2)
C24—Fe1—C23—C22119.0 (2)C27—Fe1—C31—C30118.4 (2)
C28—Fe1—C23—C22134.79 (14)C29—Fe1—C31—C3036.80 (15)
C30—Fe1—C23—C22155.4 (6)C25—Fe1—C31—C3066.39 (18)
C27—Fe1—C23—C2290.96 (16)C26—Fe1—C31—C30106.97 (14)
C31—Fe1—C23—C2255.5 (3)C22—Fe1—C31—C30151.09 (13)
C29—Fe1—C23—C22174.69 (14)C21—C20—C32—O127.9 (3)
C25—Fe1—C23—C2281.95 (15)C19—C20—C32—O191.5 (2)
C26—Fe1—C23—C2238.39 (13)C21—C20—C32—C33153.27 (16)
C22—C23—C24—C250.1 (3)C19—C20—C32—C3387.4 (2)
Fe1—C23—C24—C2559.89 (17)O1—C32—C33—C38163.1 (2)
C22—C23—C24—Fe159.76 (14)C20—C32—C33—C3815.8 (3)
C28—Fe1—C24—C25149.24 (15)O1—C32—C33—C3415.9 (3)
C30—Fe1—C24—C2568.29 (18)C20—C32—C33—C34165.23 (18)
C23—Fe1—C24—C25120.0 (2)C38—C33—C34—C350.9 (3)
C27—Fe1—C24—C25176.53 (18)C32—C33—C34—C35180.0 (2)
C29—Fe1—C24—C25106.48 (15)C33—C34—C35—C360.7 (3)
C26—Fe1—C24—C2537.92 (13)C34—C35—C36—C370.2 (3)
C22—Fe1—C24—C2581.95 (14)C34—C35—C36—C39177.3 (2)
C28—Fe1—C24—C2390.77 (17)C35—C36—C37—C380.9 (4)
C30—Fe1—C24—C23171.71 (16)C39—C36—C37—C38176.7 (2)
C27—Fe1—C24—C2356.5 (2)C34—C33—C38—C370.3 (3)
C29—Fe1—C24—C23133.53 (15)C32—C33—C38—C37179.3 (2)
C25—Fe1—C24—C23120.0 (2)C36—C37—C38—C330.6 (4)
C26—Fe1—C24—C2382.07 (15)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of C33–C39 ring.
D—H···AD—HH···AD···AD—H···A
C27—H27···O10.982.573.332 (4)134
C28—H28···O1i0.982.553.474 (3)157
C25—H25···Cg1ii0.982.833.781 (3)163
Symmetry codes: (i) x, y, z1/2; (ii) x, y, z1.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of C33–C39 ring.
D—H···AD—HH···AD···AD—H···A
C27—H27···O10.982.573.332 (4)134
C28—H28···O1i0.982.553.474 (3)157
C25—H25···Cg1ii0.982.833.781 (3)163
Symmetry codes: (i) x, y, z1/2; (ii) x, y, z1.

Experimental details

Crystal data
Chemical formula[Fe(C5H5)(C34H28N3O)]
Mr615.53
Crystal system, space groupMonoclinic, Cc
Temperature (K)293
a, b, c (Å)12.0017 (4), 30.2487 (10), 9.3597 (3)
β (°) 116.179 (1)
V3)3049.35 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.53
Crystal size (mm)0.35 × 0.30 × 0.25
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.836, 0.879
No. of measured, independent and
observed [I > 2σ(I)] reflections
17682, 5362, 5128
Rint0.021
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.062, 1.03
No. of reflections5362
No. of parameters399
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.15
Absolute structureFlack (1983), 2669 Friedel pairs
Absolute structure parameter0.007 (9)

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and SCHAKAL99 (Keller, 1999), publCIF (Westrip, 2010).

 

Acknowledgements

The authors thank the single-crystal XRD facility, SAIF IIT Madras, Chennai, for the data collection.

References

First citationBiot, C., Dessolin, J., Richard, I. & Drive, D. (2004). J. Organomet. Chem. 689, 4678–4682.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2004). APEX, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChohan, Z. H. (2002). Appl. Organomet. Chem. 16, 17–20.  Web of Science CrossRef CAS Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFouda, M. F. R., Abd-Elzaher, M. M., Abdelsamaia, R. A. & Labib, A. A. (2007). Appl. Organomet. Chem. 21, 613–625.  Web of Science CrossRef CAS Google Scholar
First citationGasser, G., Ott, I. & Metzler-Nolte, N. (2011). J. Med. Chem. 54, 3–25.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKathiravan, S. & Raghunathan, R. (2009). Tetrahedron Lett. 50, 6116–6120.  Web of Science CrossRef CAS Google Scholar
First citationKeller, E. (1999). SCHAKAL99. University of Freiburg, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSilva, B. V., Ribeiro, N. M., Vargas, M. D., Lanznaster, M., Carneiro, J. W. M., Krogh, R., Andricopulo, A. D., Dias, L. C. & Pinto, A. C. (2010). Dalton Trans. 39, 7338–7344.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSuhitha, S., Gunasekaran, K., Sureshbabu, A. R., Raghunathan, R. & Velmurugan, D. (2013). Acta Cryst. E69, m512–m513.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSureshbabu, A. R., Gavaskar, D. & Raghunathan, R. (2012). Tetrahedron Lett. 53, 6676–6681.  Web of Science CrossRef CAS Google Scholar
First citationSureshbabu, A. R. & Raghunathan, R. (2008). Tetrahedron Lett. 49, 4487–4490.  CAS Google Scholar
First citationSureshbabu, A. R., Raghunathan, R. & Satiskumar, B. K. (2009). Tetrahedron Lett. 50, 2818–2821.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds