metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(μ-Ethane-1,2-di­amine-κ2N:N′)bis­­[dicarbon­yl(η5-cyclo­penta­dien­yl)iron(II)] bis­­(tetra­fluorido­borate)

aSchool of Chemistry, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa, bChemistry Department, Kenyatta University, PO Box 43844, Nairobi, Kenya, and cResearch Centre for Synthesis and Catalysis, Department of Chemistry, University of Johannesburg, PO Box 524 Auckland Park, Johannesburg 2006, South Africa
*Correspondence e-mail: boowaga@uj.ac.za

(Received 23 February 2011; accepted 17 March 2011; online 26 March 2011)

The asymmetric unit of the title compound, [Fe2(C5H5)2(C2H8N2)(CO)4](BF4)2, contains two half-cations, each located on a center of symmetry, and two tetra­fluorido­borate anions. The iron atoms adopt a three-legged piano-stool geometry. All amine H atoms are involved in N—H⋯F hydrogen bonds, which consolidate the crystal packing along with weak C—H⋯O and C—H⋯F inter­actions.

Related literature

For the synthesis of the title compound and our previous work in this area, see: M'thiruaine et al. (2011[M'thiruaine, C. M., Friedrich, H. B., Changamu, E. O. & Bala, M. D. (2011). Inorg. Chim. Acta, 366, 105-115.]). For related binuclear structures, see: Changamu & Friedrich (2008[Changamu, E. O. & Friedrich, H. B. (2008). J. Organomet. Chem. 693, 3351-3356.]); Friedrich et al. (2005[Friedrich, H. B., Onani, M. O. & Rademeyer, M. (2005). Acta Cryst. E61, m144-m146.]); Changamu, Friedrich, Howie & Rademeyer (2007[Changamu, E. O., Friedrich, H. B., Howie, R. A. & Rademeyer, M. (2007). J. Organomet. Chem. 692, 5091-5096.]); Changamu, Friedrich & Rademeyer (2007[Changamu, E. O., Friedrich, H. B. & Rademeyer, M. (2007). J. Organomet. Chem. 692, 2456-2472.]); Changamu et al. (2009[Changamu, E. O., Friedrich, H. B. & Fernandes, M. A. (2009). Inorg. Chim. Acta, 362, 2947-2950.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe2(C5H5)2(C2H8N2)(CO)4](BF4)2

  • Mr = 587.64

  • Monoclinic, P 21 /c

  • a = 11.5593 (7) Å

  • b = 15.5194 (9) Å

  • c = 12.4056 (8) Å

  • β = 95.774 (1)°

  • V = 2214.2 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.40 mm−1

  • T = 100 K

  • 0.22 × 0.10 × 0.03 mm

Data collection
  • Bruker X8 APEXII 4K Kappa CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT-Plus, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA]) Tmin = 0.748, Tmax = 0.959

  • 50791 measured reflections

  • 5520 independent reflections

  • 4548 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.084

  • S = 1.14

  • 5520 reflections

  • 307 parameters

  • 5 restraints

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯F8i 0.92 2.11 2.994 (2) 160
N1—H1B⋯F4ii 0.92 2.06 2.890 (2) 149
N2—H2B⋯F7iii 0.92 1.99 2.886 (2) 164
C3—H3⋯F1iv 1 2.36 3.326 (3) 163
C5—H5⋯F5v 1 2.39 3.216 (3) 139
C10—H10⋯O2vi 1 2.56 3.397 (3) 141
C10—H10⋯O3vi 1 2.57 3.326 (3) 132
C12—H12⋯F2ii 1 2.37 3.200 (3) 140
Symmetry codes: (i) x+1, y, z; (ii) x, y, z+1; (iii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iv) -x+2, -y, -z+1; (v) [x+1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (vi) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT-Plus, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA]); cell refinement: SAINT-Plus (Bruker, 2007[Bruker (2007). APEX2, SAINT-Plus, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA]); data reduction: SAINT-Plus and XPREP (Bruker, 2007[Bruker (2007). APEX2, SAINT-Plus, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The title compound is a water-soluble organometallic compound which was prepared as part of our ongoing study on functionalized alkyl transition metal complexes (M'thiruaine et al., 2011; Changamu & Friedrich 2008; Friedrich et al., 2005; Changamu, Friedrich, Howie, & Rademeyer, 2007; Changamu, Friedrich & Rademeyer, 2007; Changamu, Friedrich & Rademeyer, 2007; Changamu et al., 2009). The asymmetric unit (Fig. 1) has two half-cations, each located on a center of symmetry, and two tetrafluoroborate counteranions. The Fe metals are coordinated in three-legged piano-stool fashion with the cyclopentadienyl rings occupying the apical positions and two carbonyl ligands and one ethylenediamine nitrogen occupying the basal positions. The cyclopentadienyl ligands are trans to each other and the ethylenediamine ligands display a trans conformation. The Fe–Cg distances are 1.7123 (3) and 1.7103 (3) Å for atoms Fe1 and Fe2, respectively (Cg is the centroid of the cyclopentadienyl rings). In the crystal structure, the amine hydrogen atoms and the fluorine atoms of the tetrafluoroborate anions are engaged in three N—H···F intermolecular interactions (Table 1). Three H atoms of the cyclopentadienyl rings are also involved in C—H···F intermolecular interactions. Three C—H···O hydrogen bonds then complete the stabilization of the crystal lattice (Fig. 2).

Related literature top

For the synthesis of the title compound and our previous work in this area, see: M'thiruaine et al. (2011). For related binuclear structures, see: Changamu & Friedrich (2008); Friedrich et al. (2005); Changamu, Friedrich, Howie, & Rademeyer (2007); Changamu, Friedrich & Rademeyer (2007); Changamu, Friedrich & Rademeyer (2007); Changamu et al. (2009).

Experimental top

The compound was synthesized by reacting ethylenediamine with two equivalents of [CpFe(CO)2(Et2O)]BF4, according to the literature procedure (M'thiruaine et al., 2011). Yield: 0.339 g, 78%; m.p: dec >120°C. Spectroscopic analysis: 1H NMR (400 MHz, acetone-d6): δ 5.48 (s, 10H, Cp), 3.33 (s, 4H, NH2), 2.58 (s, 4H, CH2). 13C NMR (400 MHz, acetone-d6): δ 87.43 (Cp), 54.50 (CH2), 211.92 (CO). Ms: m/z 500.8 [[{CpFe(CO)2}2NH2CH2CH2NH2]BF4]+; 236.7 [CpFe(CO)2NH2CH2CH2NH2]+; 220.9 [CpFe(CO)2NH2CH2CH2]+; 206.6 [CpFe(CO)2NH2CH2]+; 194.6 [CpFe(CO)2NH2+2H]+; 176.6 [CpFe(CO)2]+. Elemental analysis: calculated for C16H18B2F8Fe2N2O4: C, 32.65; H, 3.06; N, 4.76. Found: C, 32.96; H, 3.28; N, 5.02%. IR (solid state): ν(CO) 2054, 2001 cm-1; ν(NH) 3315, 3276 cm-1.

Refinement top

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.99–1.00 Å, N—H = 0.92 Å, and with Uiso(H) = 1.2Ueq(C, N). In the final refinement cycles restraints were applied to the anisotropic displacement parameters of atoms Fe1 and C7 (SIMU and DELU instructions in SHELXL97, Sheldrick, 2008). Two reflections (-8 2 2, 5 2 6) were identified as outliers and removed from the refinement.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus and XPREP (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are omitted for clarity. Symmetry codes: (a) 2 - x, -y, 2 - z; (b) 1 - x, 1 - y, 1 - z
[Figure 2] Fig. 2. Partial crystal packing of the title compound showing, N–H···F, C–H···O and C–H···F intermolecular hydrogen interactions (dashed lines). Symmetry codes: (i) x + 1, y, z; (ii) x, y, z + 1; (iii) x, -y + 1/2, z - 1/2; (iv) -x + 2, -y, -z + 1; (v) x + 1, -y + 1/2, z - 1/2; (vi) -x + 1, y + 1/2, -z + 3/2.
(µ-Ethane-1,2-diamine-κ2N:N')bis[dicarbonyl(η5- cyclopentadienyl)iron(II)] bis(tetrafluoridoborate) top
Crystal data top
[Fe2(C5H5)2(C2H8N2)(CO)4](BF4)2F(000) = 1176
Mr = 587.64Dx = 1.763 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 51845 reflections
a = 11.5593 (7) Åθ = 1.8–28.3°
b = 15.5194 (9) ŵ = 1.40 mm1
c = 12.4056 (8) ÅT = 100 K
β = 95.774 (1)°Plate, yellow
V = 2214.2 (2) Å30.22 × 0.1 × 0.03 mm
Z = 4
Data collection top
Bruker X8 APEXII 4K Kappa CCD
diffractometer
4548 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
ϕ and ω scansθmax = 28.3°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1515
Tmin = 0.748, Tmax = 0.959k = 2020
50791 measured reflectionsl = 1616
5520 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0322P)2 + 1.9P]
where P = (Fo2 + 2Fc2)/3
5520 reflections(Δ/σ)max = 0.012
307 parametersΔρmax = 0.52 e Å3
5 restraintsΔρmin = 0.36 e Å3
Crystal data top
[Fe2(C5H5)2(C2H8N2)(CO)4](BF4)2V = 2214.2 (2) Å3
Mr = 587.64Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.5593 (7) ŵ = 1.40 mm1
b = 15.5194 (9) ÅT = 100 K
c = 12.4056 (8) Å0.22 × 0.1 × 0.03 mm
β = 95.774 (1)°
Data collection top
Bruker X8 APEXII 4K Kappa CCD
diffractometer
5520 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
4548 reflections with I > 2σ(I)
Tmin = 0.748, Tmax = 0.959Rint = 0.050
50791 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0335 restraints
wR(F2) = 0.084H-atom parameters constrained
S = 1.14Δρmax = 0.52 e Å3
5520 reflectionsΔρmin = 0.36 e Å3
307 parameters
Special details top

Experimental. The intensity data was collected on a Bruker X8 Apex 4 K CCD diffractometer using an exposure time of 20 sec/per frame. A total of 2220 frames were collected with a frame width of 0.5° covering upto θ = 28.31° with 99.9% completeness accomplished.

Two reflections omited. -8 2 2 and 5 2 6 Reason - affecting number of intensities with I.LT - 2*sig(I)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.9375 (2)0.08248 (16)0.57592 (18)0.0247 (5)
H10.86390.09360.52850.03*
C20.9648 (2)0.00609 (14)0.63716 (18)0.0219 (5)
H20.91350.04540.6410.026*
C31.07764 (19)0.01558 (14)0.68957 (18)0.0203 (4)
H31.11970.02790.73840.024*
C41.1215 (2)0.09711 (14)0.66286 (19)0.0219 (5)
H41.20010.12080.68780.026*
C51.0341 (2)0.13820 (15)0.59066 (19)0.0248 (5)
H51.04080.19590.55590.03*
C60.81634 (18)0.10642 (13)0.75085 (17)0.0162 (4)
C70.97598 (19)0.22773 (14)0.76730 (18)0.0194 (4)
C80.97213 (17)0.00688 (13)0.94213 (16)0.0144 (4)
H8A0.98560.04450.89780.017*
H8B0.88710.01440.94270.017*
N11.02188 (15)0.08372 (11)0.89374 (14)0.0156 (3)
H1A1.10130.07670.89920.019*
H1B1.00710.13040.9360.019*
O10.97866 (16)0.29991 (10)0.78238 (15)0.0309 (4)
O20.71853 (14)0.09930 (11)0.74774 (14)0.0250 (4)
Fe10.96912 (2)0.114343 (18)0.73886 (2)0.01336 (8)
C90.48038 (18)0.49238 (13)0.55612 (17)0.0166 (4)
H9A0.51250.53810.60620.02*
H9B0.39450.49540.5520.02*
C100.5143 (2)0.48047 (14)0.85356 (18)0.0223 (5)
H100.4690.53550.84780.027*
C110.4862 (2)0.40502 (15)0.91205 (18)0.0213 (4)
H110.41810.39820.95510.026*
C120.5737 (2)0.34334 (15)0.90177 (18)0.0226 (5)
H120.57780.28480.93550.027*
C130.6554 (2)0.37873 (16)0.83542 (19)0.0250 (5)
H130.72710.34970.81450.03*
C140.6186 (2)0.46380 (15)0.80752 (19)0.0238 (5)
H140.65930.50480.76190.029*
C150.33575 (18)0.38898 (13)0.72337 (17)0.0172 (4)
C160.4813 (2)0.26115 (14)0.71961 (19)0.0217 (4)
N20.52009 (16)0.40719 (11)0.59844 (14)0.0169 (4)
H2A0.59910.40410.59460.02*
H2B0.48620.3660.55220.02*
O30.47605 (17)0.18899 (11)0.70654 (16)0.0352 (4)
O40.23808 (14)0.40008 (11)0.71176 (15)0.0278 (4)
Fe20.48971 (2)0.374292 (18)0.74962 (2)0.01372 (8)
B10.7830 (2)0.17693 (15)0.0504 (2)0.0185 (5)
F10.78888 (12)0.09908 (9)0.10823 (12)0.0298 (3)
F20.70586 (14)0.16543 (10)0.04143 (12)0.0349 (4)
F30.74205 (13)0.24107 (9)0.11366 (13)0.0328 (3)
F40.89235 (13)0.19761 (10)0.02152 (14)0.0368 (4)
B20.2759 (2)0.19786 (17)0.9296 (2)0.0226 (5)
F50.18759 (16)0.21368 (12)0.99271 (18)0.0577 (6)
F60.25526 (17)0.23972 (12)0.83285 (16)0.0568 (6)
F70.38195 (13)0.22456 (10)0.98276 (14)0.0387 (4)
F80.27978 (13)0.10907 (10)0.90999 (15)0.0384 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0269 (12)0.0314 (13)0.0155 (10)0.0102 (10)0.0010 (9)0.0019 (9)
C20.0274 (11)0.0177 (10)0.0219 (11)0.0023 (9)0.0082 (9)0.0068 (8)
C30.0235 (11)0.0181 (10)0.0204 (10)0.0085 (9)0.0080 (9)0.0014 (8)
C40.0210 (11)0.0205 (11)0.0259 (11)0.0027 (9)0.0106 (9)0.0011 (9)
C50.0352 (13)0.0197 (11)0.0218 (11)0.0091 (9)0.0147 (10)0.0067 (8)
C60.0188 (8)0.0125 (9)0.0179 (10)0.0011 (8)0.0038 (8)0.0006 (7)
C70.0204 (10)0.0158 (8)0.0217 (10)0.0009 (8)0.0008 (9)0.0010 (8)
C80.0139 (9)0.0130 (9)0.0161 (10)0.0016 (7)0.0008 (8)0.0004 (7)
N10.0165 (8)0.0145 (8)0.0162 (8)0.0017 (7)0.0030 (7)0.0012 (7)
O10.0383 (10)0.0147 (8)0.0383 (10)0.0016 (7)0.0024 (8)0.0015 (7)
O20.0166 (8)0.0261 (9)0.0322 (9)0.0001 (6)0.0023 (7)0.0004 (7)
Fe10.01438 (14)0.01098 (13)0.01499 (14)0.00171 (11)0.00288 (11)0.00099 (11)
C90.0164 (9)0.0152 (10)0.0185 (10)0.0011 (8)0.0035 (8)0.0027 (8)
C100.0266 (11)0.0154 (10)0.0233 (11)0.0021 (9)0.0054 (9)0.0029 (8)
C110.0245 (11)0.0220 (11)0.0173 (10)0.0038 (9)0.0021 (9)0.0011 (8)
C120.0270 (12)0.0194 (11)0.0203 (11)0.0003 (9)0.0035 (9)0.0046 (8)
C130.0166 (10)0.0308 (12)0.0265 (12)0.0002 (9)0.0036 (9)0.0033 (10)
C140.0216 (11)0.0241 (11)0.0243 (11)0.0112 (8)0.0044 (9)0.0053 (9)
C150.0175 (7)0.0140 (9)0.0204 (10)0.0007 (8)0.0034 (8)0.0031 (8)
C160.0224 (11)0.0148 (8)0.0279 (12)0.0023 (8)0.0017 (9)0.0006 (8)
N20.0187 (9)0.0143 (8)0.0181 (8)0.0024 (7)0.0039 (7)0.0028 (7)
O30.0412 (11)0.0154 (8)0.0480 (12)0.0028 (8)0.0006 (9)0.0020 (8)
O40.0175 (8)0.0254 (9)0.0410 (10)0.0022 (7)0.0048 (7)0.0044 (7)
Fe20.01287 (14)0.01104 (14)0.01749 (15)0.00015 (11)0.00264 (11)0.00186 (11)
B10.0181 (11)0.0146 (11)0.0237 (12)0.0003 (9)0.0064 (9)0.0038 (9)
F10.0247 (7)0.0270 (7)0.0380 (8)0.0034 (6)0.0049 (6)0.0090 (6)
F20.0416 (9)0.0320 (8)0.0291 (8)0.0016 (7)0.0064 (7)0.0019 (6)
F30.0315 (8)0.0280 (8)0.0411 (9)0.0001 (6)0.0145 (7)0.0151 (6)
F40.0300 (8)0.0287 (8)0.0559 (10)0.0103 (6)0.0247 (7)0.0126 (7)
B20.0151 (11)0.0204 (12)0.0316 (14)0.0058 (9)0.0009 (10)0.0064 (10)
F50.0409 (10)0.0524 (12)0.0845 (15)0.0158 (9)0.0292 (10)0.0334 (10)
F60.0543 (11)0.0554 (12)0.0550 (12)0.0269 (9)0.0226 (9)0.0326 (9)
F70.0267 (8)0.0353 (9)0.0502 (10)0.0140 (7)0.0152 (7)0.0142 (7)
F80.0213 (7)0.0241 (8)0.0684 (12)0.0012 (6)0.0016 (7)0.0004 (7)
Geometric parameters (Å, º) top
C1—C51.409 (4)C10—C141.409 (3)
C1—C21.426 (3)C10—C111.432 (3)
C1—Fe12.077 (2)C10—Fe22.094 (2)
C1—H11C10—H101
C2—C31.405 (3)C11—C121.407 (3)
C2—Fe12.099 (2)C11—Fe22.075 (2)
C2—H21C11—H111
C3—C41.415 (3)C12—C131.424 (3)
C3—Fe12.110 (2)C12—Fe22.090 (2)
C3—H31C12—H121
C4—C51.431 (3)C13—C141.419 (3)
C4—Fe12.097 (2)C13—Fe22.097 (2)
C4—H41C13—H131
C5—Fe12.088 (2)C14—Fe22.109 (2)
C5—H51C14—H141
C6—O21.133 (3)C15—O41.137 (3)
C6—Fe11.791 (2)C15—Fe21.791 (2)
C7—O11.136 (3)C16—O31.132 (3)
C7—Fe11.795 (2)C16—Fe21.796 (2)
C8—N11.477 (2)N2—Fe22.0085 (18)
C8—C8i1.528 (4)N2—H2A0.92
C8—H8A0.99N2—H2B0.92
C8—H8B0.99B1—F31.381 (3)
N1—Fe12.0134 (17)B1—F41.385 (3)
N1—H1A0.92B1—F21.386 (3)
N1—H1B0.92B1—F11.404 (3)
C9—N21.478 (3)B2—F61.364 (3)
C9—C9ii1.526 (4)B2—F51.370 (3)
C9—H9A0.99B2—F71.395 (3)
C9—H9B0.99B2—F81.401 (3)
C5—C1—C2108.1 (2)C14—C10—C11107.6 (2)
C5—C1—Fe170.63 (13)C14—C10—Fe271.01 (13)
C2—C1—Fe170.84 (13)C11—C10—Fe269.21 (12)
C5—C1—H1125.9C14—C10—H10126.2
C2—C1—H1125.9C11—C10—H10126.2
Fe1—C1—H1125.9Fe2—C10—H10126.2
C3—C2—C1107.7 (2)C12—C11—C10108.0 (2)
C3—C2—Fe170.92 (12)C12—C11—Fe270.81 (13)
C1—C2—Fe169.23 (13)C10—C11—Fe270.62 (12)
C3—C2—H2126.1C12—C11—H11126
C1—C2—H2126.1C10—C11—H11126
Fe1—C2—H2126.1Fe2—C11—H11126
C2—C3—C4108.8 (2)C11—C12—C13108.3 (2)
C2—C3—Fe170.07 (12)C11—C12—Fe269.69 (13)
C4—C3—Fe169.85 (12)C13—C12—Fe270.38 (13)
C2—C3—H3125.6C11—C12—H12125.8
C4—C3—H3125.6C13—C12—H12125.8
Fe1—C3—H3125.6Fe2—C12—H12125.8
C3—C4—C5107.4 (2)C14—C13—C12107.4 (2)
C3—C4—Fe170.85 (12)C14—C13—Fe270.76 (13)
C5—C4—Fe169.68 (12)C12—C13—Fe269.84 (13)
C3—C4—H4126.3C14—C13—H13126.3
C5—C4—H4126.3C12—C13—H13126.3
Fe1—C4—H4126.3Fe2—C13—H13126.3
C1—C5—C4107.9 (2)C10—C14—C13108.6 (2)
C1—C5—Fe169.82 (13)C10—C14—Fe269.82 (13)
C4—C5—Fe170.33 (12)C13—C14—Fe269.80 (13)
C1—C5—H5126C10—C14—H14125.7
C4—C5—H5126C13—C14—H14125.7
Fe1—C5—H5126Fe2—C14—H14125.7
O2—C6—Fe1173.12 (19)O4—C15—Fe2176.5 (2)
O1—C7—Fe1178.0 (2)O3—C16—Fe2176.3 (2)
N1—C8—C8i110.5 (2)C9—N2—Fe2118.79 (13)
N1—C8—H8A109.6C9—N2—H2A107.6
C8i—C8—H8A109.6Fe2—N2—H2A107.6
N1—C8—H8B109.6C9—N2—H2B107.6
C8i—C8—H8B109.6Fe2—N2—H2B107.6
H8A—C8—H8B108.1H2A—N2—H2B107
C8—N1—Fe1119.03 (13)C15—Fe2—C1693.13 (10)
C8—N1—H1A107.6C15—Fe2—N293.54 (8)
Fe1—N1—H1A107.6C16—Fe2—N293.78 (9)
C8—N1—H1B107.6C15—Fe2—C1191.78 (9)
Fe1—N1—H1B107.6C16—Fe2—C11114.84 (10)
H1A—N1—H1B107N2—Fe2—C11150.54 (8)
C6—Fe1—C794.32 (10)C15—Fe2—C12123.78 (9)
C6—Fe1—N196.38 (8)C16—Fe2—C1288.46 (10)
C7—Fe1—N192.33 (9)N2—Fe2—C12142.46 (9)
C6—Fe1—C189.22 (9)C11—Fe2—C1239.50 (9)
C7—Fe1—C1115.13 (10)C15—Fe2—C1094.73 (9)
N1—Fe1—C1151.53 (9)C16—Fe2—C10153.95 (10)
C6—Fe1—C5122.03 (10)N2—Fe2—C10110.45 (8)
C7—Fe1—C589.23 (10)C11—Fe2—C1040.17 (9)
N1—Fe1—C5141.34 (9)C12—Fe2—C1066.59 (9)
C1—Fe1—C539.55 (10)C15—Fe2—C13158.17 (10)
C6—Fe1—C4155.27 (10)C16—Fe2—C1399.50 (10)
C7—Fe1—C4101.01 (9)N2—Fe2—C13103.24 (9)
N1—Fe1—C4102.21 (8)C11—Fe2—C1366.78 (9)
C1—Fe1—C466.76 (9)C12—Fe2—C1339.78 (9)
C5—Fe1—C439.98 (9)C10—Fe2—C1366.50 (10)
C6—Fe1—C291.78 (9)C15—Fe2—C14129.26 (10)
C7—Fe1—C2154.28 (10)C16—Fe2—C14137.42 (10)
N1—Fe1—C2111.80 (8)N2—Fe2—C1488.09 (8)
C1—Fe1—C239.93 (9)C11—Fe2—C1466.43 (9)
C5—Fe1—C266.51 (9)C12—Fe2—C1466.17 (9)
C4—Fe1—C266.28 (9)C10—Fe2—C1439.17 (9)
C6—Fe1—C3126.45 (9)C13—Fe2—C1439.44 (9)
C7—Fe1—C3138.89 (10)F3—B1—F4110.73 (19)
N1—Fe1—C388.46 (8)F3—B1—F2109.3 (2)
C1—Fe1—C366.20 (9)F4—B1—F2110.2 (2)
C5—Fe1—C366.20 (8)F3—B1—F1109.35 (19)
C4—Fe1—C339.30 (8)F4—B1—F1109.47 (19)
C2—Fe1—C339.01 (9)F2—B1—F1107.66 (18)
N2—C9—C9ii110.6 (2)F6—B2—F5110.0 (2)
N2—C9—H9A109.5F6—B2—F7110.02 (19)
C9ii—C9—H9A109.5F5—B2—F7110.3 (2)
N2—C9—H9B109.5F6—B2—F8108.8 (2)
C9ii—C9—H9B109.5F5—B2—F8108.30 (19)
H9A—C9—H9B108.1F7—B2—F8109.4 (2)
C5—C1—C2—C30.3 (2)C14—C10—C11—C120.3 (3)
Fe1—C1—C2—C360.77 (15)Fe2—C10—C11—C1261.28 (16)
C5—C1—C2—Fe161.11 (15)C14—C10—C11—Fe260.95 (16)
C1—C2—C3—C40.4 (2)C10—C11—C12—C131.2 (3)
Fe1—C2—C3—C459.27 (15)Fe2—C11—C12—C1360.01 (16)
C1—C2—C3—Fe159.70 (15)C10—C11—C12—Fe261.17 (15)
C2—C3—C4—C51.0 (2)C11—C12—C13—C141.5 (3)
Fe1—C3—C4—C560.42 (15)Fe2—C12—C13—C1461.11 (16)
C2—C3—C4—Fe159.41 (15)C11—C12—C13—Fe259.58 (16)
C2—C1—C5—C41.0 (2)C11—C10—C14—C130.6 (3)
Fe1—C1—C5—C460.28 (16)Fe2—C10—C14—C1359.18 (16)
C2—C1—C5—Fe161.24 (15)C11—C10—C14—Fe259.80 (15)
C3—C4—C5—C11.2 (2)C12—C13—C14—C101.3 (3)
Fe1—C4—C5—C159.95 (15)Fe2—C13—C14—C1059.20 (16)
C3—C4—C5—Fe161.17 (15)C12—C13—C14—Fe260.52 (16)
C8i—C8—N1—Fe1177.40 (16)C9ii—C9—N2—Fe2175.74 (18)
C8—N1—Fe1—C648.97 (16)C9—N2—Fe2—C1557.08 (16)
C8—N1—Fe1—C7143.59 (16)C9—N2—Fe2—C16150.45 (17)
C8—N1—Fe1—C151.2 (2)C9—N2—Fe2—C1142.9 (3)
C8—N1—Fe1—C5124.73 (16)C9—N2—Fe2—C12117.16 (17)
C8—N1—Fe1—C4114.62 (15)C9—N2—Fe2—C1039.31 (18)
C8—N1—Fe1—C245.53 (17)C9—N2—Fe2—C13108.86 (16)
C8—N1—Fe1—C377.54 (15)C9—N2—Fe2—C1472.14 (16)
C5—C1—Fe1—C6148.16 (14)C12—C11—Fe2—C15146.81 (14)
C2—C1—Fe1—C693.72 (14)C10—C11—Fe2—C1595.23 (14)
C5—C1—Fe1—C753.76 (16)C12—C11—Fe2—C1652.54 (16)
C2—C1—Fe1—C7171.87 (14)C10—C11—Fe2—C16170.50 (14)
C5—C1—Fe1—N1109.84 (19)C12—C11—Fe2—N2112.77 (19)
C2—C1—Fe1—N18.3 (3)C10—C11—Fe2—N25.2 (2)
C2—C1—Fe1—C5118.12 (19)C10—C11—Fe2—C12117.96 (19)
C5—C1—Fe1—C437.85 (13)C12—C11—Fe2—C10117.96 (19)
C2—C1—Fe1—C480.26 (14)C12—C11—Fe2—C1337.42 (14)
C5—C1—Fe1—C2118.12 (19)C10—C11—Fe2—C1380.53 (15)
C5—C1—Fe1—C380.88 (14)C12—C11—Fe2—C1480.56 (15)
C2—C1—Fe1—C337.23 (13)C10—C11—Fe2—C1437.39 (13)
C1—C5—Fe1—C638.47 (17)C11—C12—Fe2—C1541.17 (17)
C4—C5—Fe1—C6157.13 (14)C13—C12—Fe2—C15160.38 (14)
C1—C5—Fe1—C7133.09 (15)C11—C12—Fe2—C16133.90 (15)
C4—C5—Fe1—C7108.25 (15)C13—C12—Fe2—C16106.89 (15)
C1—C5—Fe1—N1134.14 (15)C11—C12—Fe2—N2131.91 (15)
C4—C5—Fe1—N115.5 (2)C13—C12—Fe2—N212.7 (2)
C4—C5—Fe1—C1118.66 (19)C13—C12—Fe2—C11119.2 (2)
C1—C5—Fe1—C4118.66 (19)C11—C12—Fe2—C1038.38 (13)
C1—C5—Fe1—C238.12 (13)C13—C12—Fe2—C1080.83 (15)
C4—C5—Fe1—C280.54 (15)C11—C12—Fe2—C13119.2 (2)
C1—C5—Fe1—C380.87 (14)C11—C12—Fe2—C1481.30 (15)
C4—C5—Fe1—C337.79 (13)C13—C12—Fe2—C1437.92 (14)
C3—C4—Fe1—C665.8 (3)C14—C10—Fe2—C15154.65 (14)
C5—C4—Fe1—C652.0 (3)C11—C10—Fe2—C1587.15 (14)
C3—C4—Fe1—C7166.93 (14)C14—C10—Fe2—C1698.3 (2)
C5—C4—Fe1—C775.33 (15)C11—C10—Fe2—C1619.9 (3)
C3—C4—Fe1—N172.08 (14)C14—C10—Fe2—N259.08 (15)
C5—C4—Fe1—N1170.18 (13)C11—C10—Fe2—N2177.28 (13)
C3—C4—Fe1—C180.29 (15)C14—C10—Fe2—C11118.21 (19)
C5—C4—Fe1—C137.45 (14)C14—C10—Fe2—C1280.45 (14)
C3—C4—Fe1—C5117.7 (2)C11—C10—Fe2—C1237.75 (14)
C3—C4—Fe1—C236.57 (14)C14—C10—Fe2—C1336.92 (13)
C5—C4—Fe1—C281.17 (15)C11—C10—Fe2—C1381.29 (15)
C5—C4—Fe1—C3117.7 (2)C11—C10—Fe2—C14118.21 (19)
C3—C2—Fe1—C6154.94 (14)C14—C13—Fe2—C1569.2 (3)
C1—C2—Fe1—C686.64 (14)C12—C13—Fe2—C1548.6 (3)
C3—C2—Fe1—C7101.3 (2)C14—C13—Fe2—C16166.33 (15)
C1—C2—Fe1—C717.2 (3)C12—C13—Fe2—C1675.89 (15)
C3—C2—Fe1—N157.35 (14)C14—C13—Fe2—N270.13 (15)
C1—C2—Fe1—N1175.76 (13)C12—C13—Fe2—N2172.10 (13)
C3—C2—Fe1—C1118.42 (19)C14—C13—Fe2—C1180.61 (15)
C3—C2—Fe1—C580.65 (14)C12—C13—Fe2—C1137.17 (14)
C1—C2—Fe1—C537.76 (14)C14—C13—Fe2—C12117.8 (2)
C3—C2—Fe1—C436.84 (13)C14—C13—Fe2—C1036.67 (14)
C1—C2—Fe1—C481.57 (15)C12—C13—Fe2—C1081.10 (15)
C1—C2—Fe1—C3118.42 (19)C12—C13—Fe2—C14117.8 (2)
C2—C3—Fe1—C631.76 (17)C10—C14—Fe2—C1533.45 (18)
C4—C3—Fe1—C6151.69 (14)C13—C14—Fe2—C15153.33 (15)
C2—C3—Fe1—C7139.66 (16)C10—C14—Fe2—C16140.03 (16)
C4—C3—Fe1—C719.7 (2)C13—C14—Fe2—C1620.1 (2)
C2—C3—Fe1—N1128.55 (13)C10—C14—Fe2—N2126.46 (14)
C4—C3—Fe1—N1111.52 (14)C13—C14—Fe2—N2113.66 (14)
C2—C3—Fe1—C138.10 (14)C10—C14—Fe2—C1138.33 (13)
C4—C3—Fe1—C181.83 (15)C13—C14—Fe2—C1181.55 (15)
C2—C3—Fe1—C581.50 (15)C10—C14—Fe2—C1281.64 (15)
C4—C3—Fe1—C538.43 (15)C13—C14—Fe2—C1238.24 (14)
C2—C3—Fe1—C4119.93 (19)C13—C14—Fe2—C10119.9 (2)
C4—C3—Fe1—C2119.93 (19)C10—C14—Fe2—C13119.9 (2)
Symmetry codes: (i) x+2, y, z+2; (ii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···F8iii0.922.112.994 (2)160
N1—H1B···F4iv0.922.062.890 (2)149
N2—H2B···F7v0.921.992.886 (2)164
C3—H3···F1vi12.363.326 (3)163
C5—H5···F5vii12.393.216 (3)139
C10—H10···O2viii12.563.397 (3)141
C10—H10···O3viii12.573.326 (3)132
C12—H12···F2iv12.373.200 (3)140
Symmetry codes: (iii) x+1, y, z; (iv) x, y, z+1; (v) x, y+1/2, z1/2; (vi) x+2, y, z+1; (vii) x+1, y+1/2, z1/2; (viii) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Fe2(C5H5)2(C2H8N2)(CO)4](BF4)2
Mr587.64
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)11.5593 (7), 15.5194 (9), 12.4056 (8)
β (°) 95.774 (1)
V3)2214.2 (2)
Z4
Radiation typeMo Kα
µ (mm1)1.40
Crystal size (mm)0.22 × 0.1 × 0.03
Data collection
DiffractometerBruker X8 APEXII 4K Kappa CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.748, 0.959
No. of measured, independent and
observed [I > 2σ(I)] reflections
50791, 5520, 4548
Rint0.050
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.084, 1.14
No. of reflections5520
No. of parameters307
No. of restraints5
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.52, 0.36

Computer programs: APEX2 (Bruker, 2007), SAINT-Plus (Bruker, 2007), SAINT-Plus and XPREP (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···F8i0.922.112.994 (2)160
N1—H1B···F4ii0.922.062.890 (2)149
N2—H2B···F7iii0.921.992.886 (2)164
C3—H3···F1iv12.363.326 (3)163
C5—H5···F5v12.393.216 (3)139
C10—H10···O2vi12.563.397 (3)141
C10—H10···O3vi12.573.326 (3)132
C12—H12···F2ii12.373.200 (3)140
Symmetry codes: (i) x+1, y, z; (ii) x, y, z+1; (iii) x, y+1/2, z1/2; (iv) x+2, y, z+1; (v) x+1, y+1/2, z1/2; (vi) x+1, y+1/2, z+3/2.
 

Acknowledgements

We thank the NRF, THRIP and the University of KwaZulu-Natal for financial support.

References

First citationBruker (2007). APEX2, SAINT-Plus, SADABS and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA  Google Scholar
First citationChangamu, E. O. & Friedrich, H. B. (2008). J. Organomet. Chem. 693, 3351–3356.  CrossRef CAS Google Scholar
First citationChangamu, E. O., Friedrich, H. B. & Fernandes, M. A. (2009). Inorg. Chim. Acta, 362, 2947–2950.  CrossRef CAS Google Scholar
First citationChangamu, E. O., Friedrich, H. B., Howie, R. A. & Rademeyer, M. (2007). J. Organomet. Chem. 692, 5091–5096.  CrossRef CAS Google Scholar
First citationChangamu, E. O., Friedrich, H. B. & Rademeyer, M. (2007). J. Organomet. Chem. 692, 2456–2472.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFriedrich, H. B., Onani, M. O. & Rademeyer, M. (2005). Acta Cryst. E61, m144–m146.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationM'thiruaine, C. M., Friedrich, H. B., Changamu, E. O. & Bala, M. D. (2011). Inorg. Chim. Acta, 366, 105–115.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds