metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­kis(di-4-pyridylsulfane)dinitratocopper(II)

aWeihai Department of Biological and Chemical Engineering, Weihai Vocational College, Weihai 264210, People's Republic of China
*Correspondence e-mail: wjoxxj@gmail.com

(Received 13 March 2010; accepted 25 March 2010; online 2 April 2010)

In the title complex, [Cu(NO3)2(C10H8N2S)4], the CuII atom (site symmetry [\overline{1}]) is coordinated by two monodentate nitrate ions and two monodentate di-4-pyridylsulfane ligands, resulting in a slightly distorted trans-arranged CuO2N4 octa­hedral geometry. Intra­molecular C—H⋯O hydrogen bonds are present. In the crystal, adjacent mol­ecules are linked via C—H⋯N hydrogen bonds into chains parallel to the a axis. Inter­molecular C—H⋯O inter­actions also occur.

Related literature

For transition-metal complexes of di-4-pyridylsulfane, see: Wen et al. (2004[Wen, Y.-H., Cheng, J.-K., Zhang, J., Li, Z.-J. & Yao, Y.-G. (2004). Acta Cryst. C60, m618-m619.]); Muthu et al. (2005[Muthu, S., Ni, Z. & Vittal, J. J. (2005). Inorg. Chim. Acta, 358, 595-605]); Xu et al. (2007[Xu, Q.-F., Zhou, Q.-X., Lu, J.-M., Xia, X.-W., Wang, L.-H. & Zhang, Y. (2007). Polyhedron, 26, 4849-4859]); Zhang et al. (2008[Zhang, J., Cheng, J.-K., Qin, Y.-Y., Li, Z.-J. & Yao, Y.-G. (2008). Inorg. Chem. Commun. 11, 164-166]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(NO3)2(C10H8N2S)4]

  • Mr = 940.59

  • Triclinic, [P \overline 1]

  • a = 9.299 (4) Å

  • b = 10.765 (5) Å

  • c = 10.978 (5) Å

  • α = 84.408 (6)°

  • β = 73.759 (6)°

  • γ = 79.180 (6)°

  • V = 1035.1 (8) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.79 mm−1

  • T = 296 K

  • 0.21 × 0.19 × 0.17 mm

Data collection
  • Bruker SMART APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.847, Tmax = 0.874

  • 7479 measured reflections

  • 3728 independent reflections

  • 2392 reflections with I > 2σ(I)

  • Rint = 0.061

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.100

  • S = 0.90

  • 3679 reflections

  • 277 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯O1i 0.93 2.52 3.063 (4) 118
C5—H5⋯O2i 0.93 2.49 3.419 (4) 174
C5—H5⋯O1i 0.93 2.51 3.193 (4) 130
C14—H14⋯N4ii 0.93 2.47 3.279 (5) 146
C1—H1⋯O1 0.93 2.27 3.008 (4) 135
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) x+1, y, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Flexible ligands are interesting due to their smaller steric effects, which contribute to the construction of novel complexes. Compared to the widely investigated 4,4'-bipy, the dps (di-4-pyridylsulfane) ligand is more flexible and the two pyridine rings can rotate freely. There are only few complexes of metal-organic compounds with dps (Xu et al., 2007; Wen et al., 2004; Muthu et al., 2005; Zhang et al., 2008). Herein, we report the synthesis and structure of the title compound, dinitratotetrakis(di-4-pyridylsulfane)copper(II).

The title compound (Fig. 1) crystallizes in the monoclinic space group P1. The copper(II) ion lies on a crystallography inversion centre and adopts a slightly distorted octahedral provided by four N atoms from two dps ligands in the equatorial plane and two O atoms from two nitrate ions in the axial position. In the equatorial plane, the Cu1—N1 and Cu1—N3 bond lengths are 2.047 (3) and 2.023 (3) Å respectively, while the Cu1—O1 axial bond length is 2.558 (3) Å. The conformation of the complex molecule is stabilized by intramolecular C—H···O hydrogen bonds (Table 1). In the crystal structure (Fig. 2), intermolecular C—H···N hydrogen interactions link molecules into chains parallel to the a axis.

Related literature top

For transition-metal complexes of di-4-pyridylsulfane, see: Wen et al. (2004); Muthu et al. (2005); Xu et al. (2007); Zhang et al. (2008).

Experimental top

The title compound was prepared by adding a solution of copper(II) nitrate hexahydrate (0.1 mmol) in water (6 ml) to a solution of di-4-pyridylsulfane (0.2 mmol) in CH3OH (5 ml) with gentle stirring. After several days, block-shaped blue crystals suitable for X-ray analysis were obtained on slow evaporation of the solvent (Yield 30 mg; 31.9%, based on Cu). Anal. calcd for C40H32CuN10O6S4 (940.59): C 51.08, H 3.43, N 14.89%; found: C 51.23, H 3.45, N 14.93%.

Refinement top

All H atoms were positioned geometrically and refined as riding, with C—H = 0.93 Å, and with Uiso (H) = 1.2Ueq(C). The anisotropic displacement parameters of atoms O1 and N5 were restrained to be similar (i.e. the SIMU restraint was applied).

Structure description top

Flexible ligands are interesting due to their smaller steric effects, which contribute to the construction of novel complexes. Compared to the widely investigated 4,4'-bipy, the dps (di-4-pyridylsulfane) ligand is more flexible and the two pyridine rings can rotate freely. There are only few complexes of metal-organic compounds with dps (Xu et al., 2007; Wen et al., 2004; Muthu et al., 2005; Zhang et al., 2008). Herein, we report the synthesis and structure of the title compound, dinitratotetrakis(di-4-pyridylsulfane)copper(II).

The title compound (Fig. 1) crystallizes in the monoclinic space group P1. The copper(II) ion lies on a crystallography inversion centre and adopts a slightly distorted octahedral provided by four N atoms from two dps ligands in the equatorial plane and two O atoms from two nitrate ions in the axial position. In the equatorial plane, the Cu1—N1 and Cu1—N3 bond lengths are 2.047 (3) and 2.023 (3) Å respectively, while the Cu1—O1 axial bond length is 2.558 (3) Å. The conformation of the complex molecule is stabilized by intramolecular C—H···O hydrogen bonds (Table 1). In the crystal structure (Fig. 2), intermolecular C—H···N hydrogen interactions link molecules into chains parallel to the a axis.

For transition-metal complexes of di-4-pyridylsulfane, see: Wen et al. (2004); Muthu et al. (2005); Xu et al. (2007); Zhang et al. (2008).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atomic labeling scheme and displacement ellipsoids drawn at the 50% probability level [symmetry code: (A) -x+1,-y+2,-z+1].
[Figure 2] Fig. 2. Crystal packing of the title compound viewed along the c axis. Hydrogen bonds are drawn as dashed lines.
Tetrakis(di-4-pyridylsulfane)dinitratocopper(II) top
Crystal data top
[Cu(NO3)2(C10H8N2S)4]Z = 1
Mr = 940.59F(000) = 483
Triclinic, P1Dx = 1.509 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.299 (4) ÅCell parameters from 4796 reflections
b = 10.765 (5) Åθ = 2.3–28.2°
c = 10.978 (5) ŵ = 0.79 mm1
α = 84.408 (6)°T = 296 K
β = 73.759 (6)°Block, blue
γ = 79.180 (6)°0.21 × 0.19 × 0.17 mm
V = 1035.1 (8) Å3
Data collection top
Bruker SMART APEXII
diffractometer
3728 independent reflections
Radiation source: fine-focus sealed tube2392 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
ω scansθmax = 25.2°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1111
Tmin = 0.847, Tmax = 0.874k = 1212
7479 measured reflectionsl = 1312
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 0.90 w = 1/[σ2(Fo2) + (0.0391P)2]
where P = (Fo2 + 2Fc2)/3
3679 reflections(Δ/σ)max < 0.001
277 parametersΔρmax = 0.43 e Å3
6 restraintsΔρmin = 0.33 e Å3
Crystal data top
[Cu(NO3)2(C10H8N2S)4]γ = 79.180 (6)°
Mr = 940.59V = 1035.1 (8) Å3
Triclinic, P1Z = 1
a = 9.299 (4) ÅMo Kα radiation
b = 10.765 (5) ŵ = 0.79 mm1
c = 10.978 (5) ÅT = 296 K
α = 84.408 (6)°0.21 × 0.19 × 0.17 mm
β = 73.759 (6)°
Data collection top
Bruker SMART APEXII
diffractometer
3728 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2392 reflections with I > 2σ(I)
Tmin = 0.847, Tmax = 0.874Rint = 0.061
7479 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0446 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 0.90Δρmax = 0.43 e Å3
3679 reflectionsΔρmin = 0.33 e Å3
277 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.50001.00000.50000.03494 (19)
S10.46635 (10)0.45645 (8)0.29541 (10)0.0526 (3)
S20.38860 (11)1.20522 (11)0.05513 (9)0.0609 (3)
O10.7889 (3)0.9473 (2)0.4138 (2)0.0586 (7)
O20.9388 (3)1.0613 (3)0.2949 (3)0.0869 (10)
O31.0298 (3)0.8845 (3)0.3704 (3)0.1064 (12)
N10.4896 (3)0.8203 (2)0.4611 (2)0.0337 (6)
N20.0360 (3)0.4563 (3)0.3369 (3)0.0556 (9)
N30.4666 (3)1.0575 (2)0.3276 (2)0.0327 (6)
N40.1253 (4)1.2525 (3)0.0096 (3)0.0642 (9)
N50.9202 (4)0.9628 (3)0.3612 (3)0.0538 (7)
C10.6125 (4)0.7481 (3)0.3889 (3)0.0381 (8)
H10.70610.77480.37110.046*
C20.6058 (4)0.6377 (3)0.3409 (3)0.0381 (8)
H20.69370.59080.29170.046*
C30.4684 (4)0.5955 (3)0.3654 (3)0.0359 (8)
C40.3437 (4)0.6656 (3)0.4452 (3)0.0433 (9)
H40.25000.63850.46820.052*
C50.3596 (4)0.7753 (3)0.4899 (3)0.0413 (9)
H50.27460.82100.54360.050*
C60.2705 (3)0.4599 (3)0.3124 (3)0.0385 (8)
C70.1802 (4)0.5620 (3)0.2676 (4)0.0510 (10)
H70.22050.63260.22700.061*
C80.0298 (4)0.5550 (4)0.2851 (4)0.0560 (10)
H80.03090.62530.25860.067*
C90.0547 (4)0.3585 (3)0.3756 (4)0.0556 (10)
H90.01330.28660.41050.067*
C100.2053 (4)0.3570 (3)0.3674 (3)0.0453 (9)
H100.26210.28710.39870.054*
C110.3401 (4)1.0425 (3)0.2976 (3)0.0365 (8)
H110.27051.00050.35690.044*
C120.3082 (4)1.0855 (3)0.1852 (3)0.0386 (8)
H120.21911.07260.16930.046*
C130.4103 (4)1.1485 (3)0.0953 (3)0.0389 (8)
C140.5424 (4)1.1637 (3)0.1250 (3)0.0404 (9)
H140.61401.20510.06710.049*
C150.5658 (4)1.1175 (3)0.2396 (3)0.0369 (8)
H150.65471.12810.25750.044*
C160.1889 (4)1.2224 (3)0.0291 (3)0.0415 (9)
C170.1259 (4)1.1460 (3)0.0847 (3)0.0504 (10)
H170.18731.08240.13640.061*
C180.0290 (5)1.1645 (4)0.0632 (4)0.0592 (11)
H180.06941.11180.10220.071*
C190.0927 (4)1.3150 (4)0.0459 (4)0.0603 (11)
H190.13071.37010.08430.072*
C200.0611 (5)1.3244 (4)0.0630 (4)0.0725 (13)
H200.12501.38590.11610.087*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0427 (4)0.0243 (3)0.0432 (4)0.0055 (2)0.0207 (3)0.0000 (3)
S10.0416 (6)0.0364 (5)0.0856 (8)0.0001 (4)0.0239 (5)0.0226 (5)
S20.0406 (6)0.0945 (8)0.0442 (6)0.0093 (5)0.0137 (5)0.0163 (6)
O10.0421 (14)0.0601 (14)0.0723 (17)0.0193 (12)0.0018 (13)0.0171 (13)
O20.073 (2)0.064 (2)0.107 (3)0.0221 (16)0.0062 (18)0.0106 (18)
O30.069 (2)0.089 (2)0.148 (3)0.0266 (18)0.036 (2)0.000 (2)
N10.0358 (16)0.0265 (14)0.0415 (17)0.0050 (12)0.0151 (14)0.0005 (12)
N20.0396 (18)0.052 (2)0.076 (2)0.0107 (16)0.0115 (17)0.0103 (18)
N30.0353 (16)0.0287 (14)0.0370 (17)0.0077 (12)0.0128 (14)0.0015 (12)
N40.045 (2)0.073 (2)0.072 (3)0.0104 (19)0.0154 (19)0.006 (2)
N50.0412 (16)0.0535 (16)0.0649 (18)0.0102 (15)0.0065 (15)0.0127 (14)
C10.0317 (19)0.0398 (19)0.046 (2)0.0101 (16)0.0133 (17)0.0003 (17)
C20.035 (2)0.0339 (19)0.047 (2)0.0037 (15)0.0122 (17)0.0078 (16)
C30.040 (2)0.0269 (17)0.044 (2)0.0049 (15)0.0170 (17)0.0005 (15)
C40.0293 (19)0.0364 (19)0.065 (3)0.0094 (15)0.0092 (18)0.0096 (18)
C50.037 (2)0.0347 (19)0.051 (2)0.0030 (16)0.0087 (18)0.0083 (17)
C60.038 (2)0.0345 (18)0.048 (2)0.0056 (15)0.0179 (17)0.0093 (16)
C70.049 (2)0.040 (2)0.069 (3)0.0125 (17)0.023 (2)0.0068 (19)
C80.050 (2)0.046 (2)0.077 (3)0.0013 (19)0.030 (2)0.001 (2)
C90.054 (3)0.044 (2)0.065 (3)0.0131 (19)0.006 (2)0.004 (2)
C100.047 (2)0.0341 (19)0.054 (2)0.0027 (17)0.0130 (19)0.0068 (17)
C110.0350 (19)0.0340 (18)0.042 (2)0.0104 (15)0.0114 (17)0.0008 (16)
C120.0321 (19)0.0406 (19)0.045 (2)0.0078 (15)0.0133 (17)0.0028 (17)
C130.0323 (19)0.044 (2)0.037 (2)0.0021 (16)0.0084 (17)0.0008 (16)
C140.034 (2)0.043 (2)0.042 (2)0.0099 (16)0.0081 (17)0.0042 (17)
C150.0321 (19)0.0322 (18)0.049 (2)0.0054 (15)0.0136 (18)0.0035 (17)
C160.037 (2)0.050 (2)0.036 (2)0.0015 (17)0.0137 (17)0.0079 (17)
C170.053 (2)0.045 (2)0.051 (3)0.0016 (18)0.015 (2)0.0030 (19)
C180.062 (3)0.061 (3)0.068 (3)0.024 (2)0.032 (2)0.006 (2)
C190.053 (3)0.068 (3)0.065 (3)0.006 (2)0.021 (2)0.018 (2)
C200.053 (3)0.079 (3)0.080 (3)0.008 (2)0.015 (3)0.024 (3)
Geometric parameters (Å, º) top
Cu1—N3i2.023 (3)C4—H40.9300
Cu1—N32.023 (3)C5—H50.9300
Cu1—N1i2.047 (3)C6—C101.370 (4)
Cu1—N12.047 (3)C6—C71.390 (4)
Cu1—O12.558 (3)C7—C81.373 (5)
Cu1—O1i2.558 (3)C7—H70.9300
S1—C31.754 (3)C8—H80.9300
S1—C61.772 (3)C9—C101.375 (5)
S2—C131.757 (3)C9—H90.9300
S2—C161.775 (3)C10—H100.9300
O1—N51.231 (3)C11—C121.366 (4)
O2—N51.238 (4)C11—H110.9300
O3—N51.216 (4)C12—C131.387 (4)
N1—C51.331 (4)C12—H120.9300
N1—C11.348 (4)C13—C141.397 (4)
N2—C81.326 (4)C14—C151.367 (4)
N2—C91.334 (4)C14—H140.9300
N3—C151.344 (4)C15—H150.9300
N3—C111.347 (4)C16—C171.367 (4)
N4—C201.326 (5)C16—C191.374 (5)
N4—C181.329 (5)C17—C181.372 (5)
C1—C21.365 (4)C17—H170.9300
C1—H10.9300C18—H180.9300
C2—C31.383 (4)C19—C201.375 (5)
C2—H20.9300C19—H190.9300
C3—C41.383 (4)C20—H200.9300
C4—C51.370 (4)
N3i—Cu1—N3180.000 (1)C10—C6—S1119.4 (3)
N3i—Cu1—N1i87.75 (10)C7—C6—S1122.4 (3)
N3—Cu1—N1i92.25 (10)C8—C7—C6117.8 (3)
N3i—Cu1—N192.25 (10)C8—C7—H7121.1
N3—Cu1—N187.75 (10)C6—C7—H7121.1
N1i—Cu1—N1180.00 (14)N2—C8—C7125.3 (3)
N3i—Cu1—O186.21 (9)N2—C8—H8117.3
N3—Cu1—O193.79 (9)C7—C8—H8117.3
N1i—Cu1—O191.99 (9)N2—C9—C10124.3 (3)
N1—Cu1—O188.01 (9)N2—C9—H9117.9
N3i—Cu1—O1i93.79 (9)C10—C9—H9117.9
N3—Cu1—O1i86.21 (9)C6—C10—C9119.0 (3)
N1i—Cu1—O1i88.01 (9)C6—C10—H10120.5
N1—Cu1—O1i91.99 (9)C9—C10—H10120.5
O1—Cu1—O1i180.000 (1)N3—C11—C12123.8 (3)
C3—S1—C6103.18 (15)N3—C11—H11118.1
C13—S2—C16101.57 (15)C12—C11—H11118.1
N5—O1—Cu1159.3 (2)C11—C12—C13119.2 (3)
C5—N1—C1116.5 (3)C11—C12—H12120.4
C5—N1—Cu1122.5 (2)C13—C12—H12120.4
C1—N1—Cu1120.4 (2)C12—C13—C14117.5 (3)
C8—N2—C9115.3 (3)C12—C13—S2124.7 (3)
C15—N3—C11116.8 (3)C14—C13—S2117.8 (3)
C15—N3—Cu1121.7 (2)C15—C14—C13119.6 (3)
C11—N3—Cu1121.4 (2)C15—C14—H14120.2
C20—N4—C18115.0 (3)C13—C14—H14120.2
O3—N5—O1122.4 (4)N3—C15—C14123.1 (3)
O3—N5—O2119.9 (4)N3—C15—H15118.4
O1—N5—O2117.7 (3)C14—C15—H15118.4
N1—C1—C2122.9 (3)C17—C16—C19117.9 (3)
N1—C1—H1118.5C17—C16—S2121.4 (3)
C2—C1—H1118.5C19—C16—S2120.7 (3)
C1—C2—C3120.0 (3)C16—C17—C18119.1 (4)
C1—C2—H2120.0C16—C17—H17120.4
C3—C2—H2120.0C18—C17—H17120.4
C4—C3—C2117.2 (3)N4—C18—C17124.5 (4)
C4—C3—S1125.1 (3)N4—C18—H18117.7
C2—C3—S1117.7 (2)C17—C18—H18117.7
C5—C4—C3119.3 (3)C16—C19—C20118.4 (4)
C5—C4—H4120.4C16—C19—H19120.8
C3—C4—H4120.4C20—C19—H19120.8
N1—C5—C4123.9 (3)N4—C20—C19125.0 (4)
N1—C5—H5118.1N4—C20—H20117.5
C4—C5—H5118.1C19—C20—H20117.5
C10—C6—C7118.1 (3)
N3i—Cu1—O1—N5120.2 (7)C3—S1—C6—C10127.2 (3)
N3—Cu1—O1—N559.8 (7)C3—S1—C6—C755.2 (3)
N1i—Cu1—O1—N532.6 (7)C10—C6—C7—C82.2 (5)
N1—Cu1—O1—N5147.4 (7)S1—C6—C7—C8179.8 (3)
N3—Cu1—N1—C589.3 (3)C9—N2—C8—C71.1 (6)
O1—Cu1—N1—C5176.8 (3)C6—C7—C8—N23.0 (6)
O1i—Cu1—N1—C53.2 (3)C8—N2—C9—C101.6 (6)
N3i—Cu1—N1—C198.5 (2)C7—C6—C10—C90.2 (5)
N3—Cu1—N1—C181.5 (2)S1—C6—C10—C9177.4 (3)
O1—Cu1—N1—C112.3 (2)N2—C9—C10—C62.3 (6)
O1i—Cu1—N1—C1167.7 (2)C15—N3—C11—C120.6 (4)
N1i—Cu1—N3—C1557.4 (2)Cu1—N3—C11—C12176.5 (2)
N1—Cu1—N3—C15122.6 (2)N3—C11—C12—C130.0 (5)
O1—Cu1—N3—C1534.7 (2)C11—C12—C13—C140.5 (5)
O1i—Cu1—N3—C15145.3 (2)C11—C12—C13—S2178.0 (2)
N1i—Cu1—N3—C11119.5 (2)C16—S2—C13—C1223.8 (3)
N1—Cu1—N3—C1160.5 (2)C16—S2—C13—C14158.6 (3)
O1—Cu1—N3—C11148.3 (2)C12—C13—C14—C150.3 (5)
O1i—Cu1—N3—C1131.7 (2)S2—C13—C14—C15178.0 (2)
Cu1—O1—N5—O3166.9 (5)C11—N3—C15—C140.8 (4)
Cu1—O1—N5—O214.5 (9)Cu1—N3—C15—C14176.3 (2)
C5—N1—C1—C23.5 (5)C13—C14—C15—N30.4 (5)
Cu1—N1—C1—C2167.9 (2)C13—S2—C16—C17111.6 (3)
N1—C1—C2—C30.1 (5)C13—S2—C16—C1969.8 (3)
C1—C2—C3—C43.6 (5)C19—C16—C17—C180.2 (5)
C1—C2—C3—S1177.4 (2)S2—C16—C17—C18179.0 (3)
C6—S1—C3—C416.6 (3)C20—N4—C18—C170.3 (6)
C6—S1—C3—C2164.5 (3)C16—C17—C18—N40.3 (6)
C2—C3—C4—C53.5 (5)C17—C16—C19—C201.2 (5)
S1—C3—C4—C5177.6 (3)S2—C16—C19—C20179.9 (3)
C1—N1—C5—C43.6 (5)C18—N4—C20—C191.4 (6)
Cu1—N1—C5—C4167.5 (2)C16—C19—C20—N41.9 (7)
C3—C4—C5—N10.2 (5)
Symmetry code: (i) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···O1i0.932.523.063 (4)118
C5—H5···O2i0.932.493.419 (4)174
C5—H5···O1i0.932.513.193 (4)130
C14—H14···N4ii0.932.473.279 (5)146
C1—H1···O10.932.273.008 (4)135
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Cu(NO3)2(C10H8N2S)4]
Mr940.59
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)9.299 (4), 10.765 (5), 10.978 (5)
α, β, γ (°)84.408 (6), 73.759 (6), 79.180 (6)
V3)1035.1 (8)
Z1
Radiation typeMo Kα
µ (mm1)0.79
Crystal size (mm)0.21 × 0.19 × 0.17
Data collection
DiffractometerBruker SMART APEXII
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.847, 0.874
No. of measured, independent and
observed [I > 2σ(I)] reflections
7479, 3728, 2392
Rint0.061
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.100, 0.90
No. of reflections3679
No. of parameters277
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.33

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···O1i0.932.523.063 (4)117.7
C5—H5···O2i0.932.493.419 (4)174.0
C5—H5···O1i0.932.513.193 (4)130.3
C14—H14···N4ii0.932.473.279 (5)146.0
C1—H1···O10.932.273.008 (4)135.4
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y, z.
 

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2000). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationMuthu, S., Ni, Z. & Vittal, J. J. (2005). Inorg. Chim. Acta, 358, 595–605  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWen, Y.-H., Cheng, J.-K., Zhang, J., Li, Z.-J. & Yao, Y.-G. (2004). Acta Cryst. C60, m618–m619.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationXu, Q.-F., Zhou, Q.-X., Lu, J.-M., Xia, X.-W., Wang, L.-H. & Zhang, Y. (2007). Polyhedron, 26, 4849–4859  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, J., Cheng, J.-K., Qin, Y.-Y., Li, Z.-J. & Yao, Y.-G. (2008). Inorg. Chem. Commun. 11, 164–166  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds