metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(μ-5-nitro-2-oxidobenzoato)bis­­[tri­aqua­zinc(II)]

aKey Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao, Hebei Province 066004, People's Republic of China
*Correspondence e-mail: qsli@ysu.edu.cn

(Received 14 October 2009; accepted 30 October 2009; online 4 November 2009)

The title complex mol­ecule, [Zn2(C7H3NO5)2(H2O)6], is a centrosymmetric dimer containing two zinc(II) cations with distorted octa­hedral geometries provided by the O atoms of three water mol­ecules and the two bridging bidentate 5-nitro­salicylate ligands. The separation between the metal centres in the dimer is 3.1790 (11) Å. The crystal structure is stabilized by O—H⋯O hydrogen bonds, one of which intra­dimeric, linking the dimers into a three-dimensional network.

Related literature

For examples of bonding modes exhibited by salicylate anions, see: Klug et al. (1958[Klug, H. P., Alexander, L. E. & Sumner, G. G. (1958). Acta Cryst. 11, 41-46.]); Risannen et al. (1987[Risannen, K., Valkonen, J., Kokkonen, P. & Leskela, M. (1987). Acta Chem. Scand. Ser. A, 41, 299-309.]); Charles et al. (1983[Charles, N. G., Griffith, E. A. H., Rodesiler, P. F. & Amma, E. L. (1983). Inorg. Chem. 22 2717-2723.]); Jagner et al. (1976[Jagner, S., Hazell, R. G. & Larsen, K. P. (1976). Acta Cryst. B32, 548-554.]); Fu et al. (2005[Fu, Y.-L., Xu, Z.-W., Ren, J.-L. & Ng, S. W. (2005). Acta Cryst. E61, m1730-m1732.]). For the crystal structures of 5-nitro­salicylate zinc(II) complexes, see: Tahir et al. (1997[Tahir, M. N., Ülkü, D., Movsumov, E. M. & Hökelek, T. (1997). Acta Cryst. C53, 176-179.]); Morgant et al. (2006[Morgant, G., Bouhmaida, N., Balde, L., Ghermani, N. E. & D'Angelo, J. (2006). Polyhedron, 25, 2229-2235.]); Erxleben (2001[Erxleben, A. (2001). Inorg. Chem. 40 208-213.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn2(C7H3NO5)2(H2O)6]

  • Mr = 601.04

  • Monoclinic, P 21 /c

  • a = 10.858 (3) Å

  • b = 13.645 (3) Å

  • c = 6.6367 (17) Å

  • β = 91.887 (4)°

  • V = 982.7 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.53 mm−1

  • T = 294 K

  • 0.26 × 0.10 × 0.08 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000[Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.]) Tmin = 0.752, Tmax = 0.821

  • 5435 measured reflections

  • 2009 independent reflections

  • 1418 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.088

  • S = 1.03

  • 2009 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.55 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O8—H8B⋯O3i 0.84 1.81 2.651 (3) 173
O8—H8A⋯O5ii 0.85 2.26 3.038 (4) 153
O7—H7A⋯O8iii 0.85 2.58 3.023 (4) 114
O7—H7B⋯O1iv 0.85 1.77 2.596 (4) 163
O6—H6B⋯O4v 0.85 1.87 2.696 (4) 164
O6—H6A⋯O8vi 0.85 2.30 3.135 (5) 168
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) -x+2, -y+1, -z+1; (iii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iv) -x+1, -y+1, -z+1; (v) x-1, y, z; (vi) x, y, z-1.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

From a coordination standpoint, salicylate is a versatile ligand displaying a variety of bonding modes. For example, mono-deprotonation of salicylic acid normally leads to complexes containing the coordinated 2-HOC6H4CO2 (salH) anion. This anion is known to bond to metals as a unidentate carboxylate e.g. in [Zn(salH)2(H2O)2] (Klug et al. 1958; Risannen et al., 1987), as a bidentate chelating carboxylate e.g. in [Cd2(salH)4(H2O)4] (Charles et al. 1983), as a bidentate chelating ligand using one carboxylate oxygen and the hydroxyl oxygen e.g. in [Cu(salH)2].2H2O (Jagner et al., 1976). On the other hand, deprotonation of both the hydroxyl and carboxyl protons from the parent acid generates the [OC6H4CO2]2- (sal2-) anion, which can be found chelating through the phenolate oxygen and one of the carboxyl O atoms as in [Ti(sal)3]2- (Fu, et al., 2005).

Although many complexes which use salicylate as ligand have been synthesized, two structures coming out from the reaction of the 5-nitrosalicylic acid with zinc salt are known to us: a tetrahydrate (Tahir et al., 1997), in an approximately octahedral geometry around the metal surrounding O atoms from four water ligands and two unidentate monoanionic 5-nitrosalicylate ligands using one carboxylate oxygen and a pentahydrate (Morgant, et al., 2006), penta-aqua-(5-nitrosalicylato-O)-zinc(ii) 5-nitrosalicylate monohydrate, in which the metal is coordinated by five water ligands and one carboxylato O-atom from the 5-nitrosalicylato ligand. Interestingly, the title binuclear complex presents a third, different structure, being an hexahydrate dimer with its two zinc(II) atoms bridged by two carboxylate O atoms.

The structure of the title compounds is shown in Fig. 1. The distorted octahedral environment of each zinc(II) cation is defined by three O atoms from three water molecules, another two (the phenolate and a carboxylate one) from a chelating 5-nitrosalicylate and the centrosymmetric image of the latter. These two carboxylate O atoms bridge neighbouring zinc cations into a planar, four-membered matallacycle resulting in a Zn1···Zn1i (see Fig 1 for symmetry codes) separation of 3.1790 (11) Å. It is the shortest of separation of Zn···Zn as reported previously in binuclear and tetranuclear zinc complex with salicylate ligands (Erxleben, 2001) It is worth mentioning that the use of a carboxylate oxygen as a bridging atom in salicylate metal complexes is rare; the title binuclear complex appears to be the first example of this behaviour in zinc complexes.

The carboxy group C1/O1/O2 as well as the nitro group N1/O4/O5 are effectively coplanar to the aromatic ring in the ligand as well as to the central Zn1/O2/C1/C2/C7/O3 six-membered ring generated upon coordination. The centrosymmetric character of the binuclear unit results in a large planar group composed of the two almost planar chelating ligands, the two zinc atoms and two O atoms from two aqua; the O atoms atoms from the remaining four aqua present Zn—O bonds almost orthogonal to this plane.

There are a number O—H···O hydrogen bonds stabilizing the structure (Table 1). The interaction involving O7—H7B and O1i is intradimeric and coplanar to the dimer mean plane. The remainig ones define a three-dimensional framework.

Related literature top

For examples of bonding modes exhibited by salicylate anions, see: Klug et al. (1958); Risannen et al. (1987); Charles et al. (1983); Jagner et al. (1976); Fu, et al. (2005). For the crystal structures of 5-nitrosalicylate zinc(II) complexes, see: Tahir et al. (1997); Morgant et al. (2006); Erxleben (2001).

Experimental top

The title complex was prepared by digesting a mixture of 5-nitrosalicylic acid (5 mmol) and fresh zinc hydroxide (10 mmol) in distilled water (30 ml) at 80 °C under stirring for 10 min. After filtration yellow-green crystals grew out of the solution by slow evaporation over a period of three days at room temperature. The starting zinc hydroxide was prepared from 50 ml aqueous solutions of 0.9 g of zinc chloride and 0.5 g of sodium hydroxide.

Refinement top

The H atoms of the water molecule were found in a difference Fourier map. However, during refinement, they were restrained to O–H = 0.85 (1) Å and their Uiso values were set at 1.2 Ueq(O). Other H atoms were treated as riding, with C–H = 0.93 Å, and with Uiso (H) = 1.2 Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, with the atom-numbering scheme, and 30% probability displacement ellipsoids. H atoms are shown as small spheres of arbitrary radii and hydrogen bonds are indicated by dashed lines. [Symmetry code: (i) -x + 1, -y + 1, -z + 1.]
Bis(µ-5-nitro-2-oxidobenzoato)bis[triaquazinc(II)] top
Crystal data top
[Zn2(C7H3NO5)2(H2O)6]F(000) = 608
Mr = 601.04Dx = 2.031 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1942 reflections
a = 10.858 (3) Åθ = 2.4–25.8°
b = 13.645 (3) ŵ = 2.53 mm1
c = 6.6367 (17) ÅT = 294 K
β = 91.887 (4)°Block, yellow-green
V = 982.7 (4) Å30.26 × 0.10 × 0.08 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
2009 independent reflections
Radiation source: fine-focus sealed tube1418 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ϕ and ω scansθmax = 26.4°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
h = 1313
Tmin = 0.752, Tmax = 0.821k = 1712
5435 measured reflectionsl = 88
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0314P)2 + 1.0942P]
where P = (Fo2 + 2Fc2)/3
2009 reflections(Δ/σ)max = 0.001
154 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.55 e Å3
Crystal data top
[Zn2(C7H3NO5)2(H2O)6]V = 982.7 (4) Å3
Mr = 601.04Z = 2
Monoclinic, P21/cMo Kα radiation
a = 10.858 (3) ŵ = 2.53 mm1
b = 13.645 (3) ÅT = 294 K
c = 6.6367 (17) Å0.26 × 0.10 × 0.08 mm
β = 91.887 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2009 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
1418 reflections with I > 2σ(I)
Tmin = 0.752, Tmax = 0.821Rint = 0.041
5435 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.088H-atom parameters constrained
S = 1.03Δρmax = 0.45 e Å3
2009 reflectionsΔρmin = 0.55 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.52129 (4)0.61159 (3)0.44189 (8)0.03665 (16)
O10.7644 (3)0.37686 (19)0.3938 (5)0.0555 (9)
O20.6145 (2)0.48166 (16)0.4439 (4)0.0310 (6)
O30.6603 (2)0.67583 (17)0.3118 (4)0.0364 (6)
O41.2058 (2)0.6122 (2)0.1104 (5)0.0506 (8)
O51.1653 (2)0.4656 (2)0.2105 (4)0.0393 (7)
O60.4498 (3)0.5753 (2)0.1270 (5)0.0564 (8)
H6A0.49330.58480.02490.068*
H6B0.37210.57660.10970.068*
O70.4029 (3)0.72837 (19)0.4384 (5)0.0507 (8)
H7B0.34000.70420.49310.061*
H7A0.39070.77240.35040.061*
O80.5896 (3)0.64083 (19)0.7437 (4)0.0493 (8)
H8A0.64120.59610.77160.059*
H8B0.61310.69970.75460.059*
N11.1340 (3)0.5505 (2)0.1763 (5)0.0333 (7)
C10.7233 (3)0.4611 (2)0.3858 (5)0.0271 (8)
C20.8053 (3)0.5409 (2)0.3128 (5)0.0242 (7)
C30.9258 (3)0.5143 (3)0.2764 (5)0.0273 (8)
H30.95030.44960.29690.033*
C41.0097 (3)0.5813 (3)0.2108 (5)0.0281 (8)
C50.9774 (3)0.6787 (3)0.1786 (6)0.0333 (9)
H5A1.03500.72360.13460.040*
C60.8604 (3)0.7068 (3)0.2126 (6)0.0336 (9)
H60.83870.77190.19050.040*
C70.7692 (3)0.6412 (2)0.2803 (5)0.0268 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0288 (2)0.0205 (2)0.0615 (3)0.00197 (18)0.01434 (19)0.0010 (2)
O10.0525 (18)0.0247 (16)0.092 (2)0.0100 (12)0.0359 (17)0.0158 (15)
O20.0268 (13)0.0184 (12)0.0483 (17)0.0017 (10)0.0091 (11)0.0007 (11)
O30.0268 (14)0.0236 (13)0.0593 (19)0.0032 (10)0.0096 (12)0.0079 (12)
O40.0274 (14)0.0560 (19)0.069 (2)0.0043 (14)0.0138 (13)0.0088 (16)
O50.0314 (14)0.0428 (17)0.0436 (17)0.0106 (12)0.0012 (12)0.0017 (13)
O60.0329 (16)0.076 (2)0.060 (2)0.0017 (15)0.0045 (14)0.0002 (17)
O70.0429 (17)0.0279 (16)0.082 (2)0.0012 (12)0.0102 (16)0.0103 (14)
O80.064 (2)0.0238 (14)0.061 (2)0.0075 (13)0.0134 (15)0.0095 (13)
N10.0264 (16)0.044 (2)0.0293 (18)0.0002 (14)0.0000 (13)0.0024 (14)
C10.0311 (19)0.0213 (18)0.029 (2)0.0013 (14)0.0042 (15)0.0004 (14)
C20.0243 (17)0.0244 (18)0.0240 (19)0.0004 (13)0.0021 (14)0.0008 (14)
C30.032 (2)0.0263 (19)0.023 (2)0.0022 (14)0.0015 (15)0.0017 (15)
C40.0221 (17)0.039 (2)0.023 (2)0.0008 (14)0.0012 (14)0.0003 (15)
C50.0287 (19)0.034 (2)0.037 (2)0.0037 (15)0.0050 (16)0.0027 (17)
C60.035 (2)0.0226 (19)0.044 (2)0.0003 (15)0.0051 (17)0.0069 (16)
C70.0271 (18)0.0243 (18)0.029 (2)0.0021 (14)0.0036 (14)0.0015 (14)
Geometric parameters (Å, º) top
Zn1—O31.969 (2)O7—H7A0.8457
Zn1—O22.041 (2)O8—H8A0.8452
Zn1—O72.047 (3)O8—H8B0.8448
Zn1—O2i2.107 (2)N1—C41.440 (4)
Zn1—O82.150 (3)C1—C21.497 (5)
Zn1—O62.260 (3)C2—C31.386 (5)
O1—C11.234 (4)C2—C71.439 (5)
O2—C11.285 (4)C3—C41.372 (5)
O3—C71.297 (4)C3—H30.9300
O4—N11.237 (4)C4—C51.389 (5)
O5—N11.226 (4)C5—C61.353 (5)
O6—H6A0.8486C5—H5A0.9300
O6—H6B0.8486C6—C71.418 (5)
O7—H7B0.8511C6—H60.9300
O3—Zn1—O290.14 (10)Zn1—O8—H8B110.5
O3—Zn1—O797.96 (11)H8A—O8—H8B118.1
O2—Zn1—O7170.84 (10)O5—N1—O4122.3 (3)
O3—Zn1—O2i169.08 (10)O5—N1—C4120.1 (3)
O2—Zn1—O2i79.97 (10)O4—N1—C4117.5 (3)
O7—Zn1—O2i91.59 (11)O1—C1—O2121.7 (3)
O3—Zn1—O894.59 (11)O1—C1—C2118.2 (3)
O2—Zn1—O889.95 (11)O2—C1—C2120.1 (3)
O7—Zn1—O893.63 (12)C3—C2—C7118.5 (3)
O2i—Zn1—O890.07 (10)C3—C2—C1116.2 (3)
O3—Zn1—O686.38 (11)C7—C2—C1125.4 (3)
O2—Zn1—O688.33 (11)C4—C3—C2121.4 (3)
O7—Zn1—O687.93 (12)C4—C3—H3119.3
O2i—Zn1—O688.69 (11)C2—C3—H3119.3
O8—Zn1—O6178.03 (11)C3—C4—C5121.3 (3)
C1—O2—Zn1130.4 (2)C3—C4—N1119.4 (3)
C1—O2—Zn1i129.6 (2)C5—C4—N1119.2 (3)
Zn1—O2—Zn1i100.03 (10)C6—C5—C4118.6 (3)
C7—O3—Zn1128.7 (2)C6—C5—H5A120.7
Zn1—O6—H6A121.5C4—C5—H5A120.7
Zn1—O6—H6B115.5C5—C6—C7122.9 (3)
H6A—O6—H6B117.7C5—C6—H6118.5
Zn1—O7—H7B101.9C7—C6—H6118.5
Zn1—O7—H7A130.2O3—C7—C6118.1 (3)
H7B—O7—H7A117.4O3—C7—C2124.6 (3)
Zn1—O8—H8A106.0C6—C7—C2117.3 (3)
O3—Zn1—O2—C12.4 (3)O2—C1—C2—C76.9 (5)
O2i—Zn1—O2—C1177.8 (4)C7—C2—C3—C40.0 (5)
O8—Zn1—O2—C192.1 (3)C1—C2—C3—C4179.4 (3)
O6—Zn1—O2—C188.8 (3)C2—C3—C4—C50.1 (6)
O3—Zn1—O2—Zn1i175.34 (12)C2—C3—C4—N1179.6 (3)
O2i—Zn1—O2—Zn1i0.0O5—N1—C4—C32.0 (5)
O8—Zn1—O2—Zn1i90.08 (11)O4—N1—C4—C3177.5 (3)
O6—Zn1—O2—Zn1i88.96 (12)O5—N1—C4—C5177.5 (3)
O2—Zn1—O3—C78.9 (3)O4—N1—C4—C53.0 (5)
O7—Zn1—O3—C7175.4 (3)C3—C4—C5—C60.2 (6)
O2i—Zn1—O3—C733.9 (7)N1—C4—C5—C6179.7 (3)
O8—Zn1—O3—C781.0 (3)C4—C5—C6—C70.2 (6)
O6—Zn1—O3—C797.2 (3)Zn1—O3—C7—C6170.1 (3)
Zn1—O2—C1—O1178.2 (3)Zn1—O3—C7—C28.7 (5)
Zn1i—O2—C1—O11.1 (5)C5—C6—C7—O3178.8 (4)
Zn1—O2—C1—C23.9 (5)C5—C6—C7—C20.1 (6)
Zn1i—O2—C1—C2178.9 (2)C3—C2—C7—O3178.8 (3)
O1—C1—C2—C35.5 (5)C1—C2—C7—O30.5 (6)
O2—C1—C2—C3172.4 (3)C3—C2—C7—C60.0 (5)
O1—C1—C2—C7175.2 (4)C1—C2—C7—C6179.3 (3)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8B···O3ii0.841.812.651 (3)173
O8—H8A···O5iii0.852.263.038 (4)153
O7—H7A···O8iv0.852.583.023 (4)114
O7—H7B···O1i0.851.772.596 (4)163
O6—H6B···O4v0.851.872.696 (4)164
O6—H6A···O8vi0.852.303.135 (5)168
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+3/2, z+1/2; (iii) x+2, y+1, z+1; (iv) x, y+3/2, z1/2; (v) x1, y, z; (vi) x, y, z1.

Experimental details

Crystal data
Chemical formula[Zn2(C7H3NO5)2(H2O)6]
Mr601.04
Crystal system, space groupMonoclinic, P21/c
Temperature (K)294
a, b, c (Å)10.858 (3), 13.645 (3), 6.6367 (17)
β (°) 91.887 (4)
V3)982.7 (4)
Z2
Radiation typeMo Kα
µ (mm1)2.53
Crystal size (mm)0.26 × 0.10 × 0.08
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2000)
Tmin, Tmax0.752, 0.821
No. of measured, independent and
observed [I > 2σ(I)] reflections
5435, 2009, 1418
Rint0.041
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.088, 1.03
No. of reflections2009
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.55

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8B···O3i0.841.812.651 (3)172.8
O8—H8A···O5ii0.852.263.038 (4)152.6
O7—H7A···O8iii0.852.583.023 (4)113.7
O7—H7B···O1iv0.851.772.596 (4)163.4
O6—H6B···O4v0.851.872.696 (4)164.1
O6—H6A···O8vi0.852.303.135 (5)168.1
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+2, y+1, z+1; (iii) x, y+3/2, z1/2; (iv) x+1, y+1, z+1; (v) x1, y, z; (vi) x, y, z1.
 

Acknowledgements

The authors thank Yanshan University for financial support.

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCharles, N. G., Griffith, E. A. H., Rodesiler, P. F. & Amma, E. L. (1983). Inorg. Chem. 22 2717–2723.  CSD CrossRef CAS Web of Science Google Scholar
First citationErxleben, A. (2001). Inorg. Chem. 40 208–213.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFu, Y.-L., Xu, Z.-W., Ren, J.-L. & Ng, S. W. (2005). Acta Cryst. E61, m1730–m1732.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJagner, S., Hazell, R. G. & Larsen, K. P. (1976). Acta Cryst. B32, 548–554.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationKlug, H. P., Alexander, L. E. & Sumner, G. G. (1958). Acta Cryst. 11, 41–46.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationMorgant, G., Bouhmaida, N., Balde, L., Ghermani, N. E. & D'Angelo, J. (2006). Polyhedron, 25, 2229–2235.  Web of Science CSD CrossRef CAS Google Scholar
First citationRisannen, K., Valkonen, J., Kokkonen, P. & Leskela, M. (1987). Acta Chem. Scand. Ser. A, 41, 299–309.  Google Scholar
First citationSheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTahir, M. N., Ülkü, D., Movsumov, E. M. & Hökelek, T. (1997). Acta Cryst. C53, 176–179.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds