metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 12| December 2008| Pages m1536-m1537

Bis(2,2′-bi­pyridine-κ2N,N′)(maleato-κ2O1,O1′)nickel(II) 7.34-hydrate

aDepartment of Inorganic Chemistry, Institute of Chemistry, P. J. Šafárik University, Moyzesova 11, 041 54 Košice, Slovakia, and bFachbereich Chemie der Philipps-Universität Marberg, Hans-Meerwein Strasse, D-35032 Marburg, Germany
*Correspondence e-mail: juraj.cernak@upjs.sk

(Received 22 October 2008; accepted 7 November 2008; online 13 November 2008)

The title compound, [Ni(C4H2O4)(C10H8N2)2]·7.34H2O, was obtained by crystallization from an aqueous ethano­lic reaction mixture containing nickel(II) acetate, maleic acid, bipyridine, sodium hydroxide and ammonia. The asymmetric unit contains one independent complex mol­ecule and 7.34 water mol­ecules occupying eight crystallographically independent positions. Two of these water molecules are disordered. The nickel(II) atom is coordinated in a distorted octa­hedral geometry by two O atoms from one carboxyl­ate group of the maleato ligand and by four N atoms from two 2,2′-bipyridine (bipy) ligands. The water mol­ecules, along with the O atoms of the uncoordinated carboxyl­ate group, form an extended hydro­philic three-dimensional hydrogen-bonded system with large cavities in which the hydro­phobic bipy ligands are located. One H atom of the maleate ligand is involved in a weak hydrogen bond of the C—H⋯O type. Stacking inter­actions between the pyridyl rings of the bipy ligands [centroid–centroid distance = 3.549 (15) Å] lead to the formation of pairs of complex mol­ecules.

Related literature

For magnetic studies of nickel(II) complexes, see: Boča (2004[Boča, R. (2004). Coord. Chem. Rev., 248, 757-815.]); Kamieniarz et al. (2007[Kamieniarz, G., Haglauer, M., Musial, G., Caramico D'Auria, A., Esposito, F. & Gatteschi, D. (2007). Inorg. Chim. Acta, 360, 3941-3944.]); Paharová et al. (2003[Paharová, J., Černák, J., Boča, R. & Žák, Z. (2003). Inorg. Chim. Acta, 346, 25-31.]); Černák et al. (2003[Černák, J., Lipkowski, J., Čizmár, E., Orendáčová, A., Orendáč, M., Feher, A. & Meisel, M. W. (2003). Solid State Sci. 5, 579-585.]). Several complexes containing the [Ni(bipy)2]2+ structural motif completed with various anionic ligands including acetato (Holz et al., 1996[Holz, R. C., Evdokimov, E. A. & Gobena, F. T. (1996). Inorg. Chem., 35, 3808-3814.]), oxalato (Roman et al., 1995[Roman, P., Luque, A., Guzman-Miralles, C. & Beitia, J. I. (1995). Polyhedron, 14, 2863-2869.]) and terephtalato (Deng et al., 1992[Deng, Z. L., Shi, J., Jiang, Z. H., Liao, D. Z., Yan, S. P., Wang, G. L., Wang, H. G. & Wang, R. J. (1992). Polyhedron, 11, 885-887.]) have been structurally characterized. The maleato ligand can act as a monodentate (Sequeira et al., 1992[Sequeira, A., Rajagopal, H., Gupta, M. P., Vanhouteghem, F., Lenstra, A. T. H. & Geise, H. J. (1992). Acta Cryst. C48, 1192-1197.]), bidentate (Zheng & Kong, 2003[Zheng, Y. Q. & Kong, Z. P. (2003). J. Coord. Chem. 56, 967-973.]), tridentate (Xue et al., 2005[Xue, Y. H., Liu, J. G. & Xu, D. J. (2005). J. Coord. Chem. 58, 1071-1076.]) or tetra­dentate (Chen et al., 2003[Chen, Y., Liu, P., Wang, J. & Cheng, W.-D. (2003). Acta Cryst. E59, m393-m395.]) ligand. For the crystal structure of the similar [Ni(bipy)(mal)(H2O)3]·H2O complex, see: Li et al. (2006[Li, M., Fu, X. & Wang, C. (2006). Acta Cryst. E62, m865-m866.]). For [Ni(dpa)2(suc)0.5]Cl (dpa = 4,4′-dipyridylamine, suc = succinato dianion), which has similar geometric parameters and a similar type of coordination to the title compound, see: Montney et al. (2007[Montney, M. R., Krishnan, S. M., Patel, N. M., Supkowski, R. M. & LaDuca, R. L. (2007). Cryst. Growth Des. 7, 1145-1153.]). The maleato ligand in {[Zn(H2O)4(L1)Zn(mal)2]·H2O}n, [L1 = N-(3-pyrid­yl)-isonicotinamide] has a similar coordination, see: Kumar et al. (2006[Kumar, D. K., Das, A. & Dastidar, P. (2006). Cryst. Growth Des. 6, 1903-1909.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C4H2O4)(C10H8N2)2]·7.34H2O

  • Mr = 617.35

  • Monoclinic, I 2/a

  • a = 20.7108 (6) Å

  • b = 17.4754 (5) Å

  • c = 15.6460 (6) Å

  • β = 97.767 (3)°

  • V = 5610.8 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.76 mm−1

  • T = 100 (2) K

  • 0.36 × 0.18 × 0.16 mm

Data collection
  • Stoe IPDS diffractometer

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.772, Tmax = 0.888

  • 14173 measured reflections

  • 4944 independent reflections

  • 4176 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.058

  • S = 0.96

  • 4944 reflections

  • 422 parameters

  • 8 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H51⋯O6 0.79 (2) 1.99 (3) 2.7864 (16) 178 (3)
O5—H52⋯O3i 0.86 (3) 1.88 (3) 2.7466 (17) 177 (2)
O6—H61⋯O12ii 0.84 (2) 1.90 (2) 2.7384 (16) 174 (3)
O7—H71⋯O8iii 0.8500 (11) 1.997 (3) 2.844 (2) 174 (2)
O7—H72⋯O9iv 0.8500 (10) 1.996 (4) 2.8388 (19) 171 (2)
O8—H81A⋯O1 0.8500 (10) 2.539 (14) 3.3576 (18) 162 (4)
O8—H82⋯O5v 0.850 (9) 1.991 (9) 2.8406 (17) 178 (2)
O8—H81B⋯O8vi 0.8500 (11) 2.084 (11) 2.918 (3) 167 (4)
O9—H91⋯O4 0.89 (2) 1.87 (3) 2.7516 (16) 173 (2)
O9—H92⋯O1vii 0.82 (2) 1.96 (3) 2.7701 (16) 173 (2)
O10—H101⋯O3 0.82 (3) 1.88 (3) 2.6905 (17) 168 (3)
O10—H102⋯O11viii 0.86 (3) 1.89 (3) 2.7409 (19) 177 (3)
O11—H111⋯O5ix 0.83 (3) 2.03 (3) 2.8333 (19) 161 (2)
O11—H112⋯O9viii 0.85 (3) 1.95 (3) 2.7752 (18) 162 (2)
O12—H121⋯O10viii 0.79 (3) 2.00 (3) 2.7844 (18) 172 (2)
O12—H122⋯O10 0.82 (3) 1.97 (3) 2.7839 (18) 170 (2)
C23—H18⋯O7vii 0.95 2.38 3.288 (2) 159
Symmetry codes: (i) x, y-1, z; (ii) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iv) -x+1, -y+2, -z; (v) x, y+1, z; (vi) [-x+{\script{3\over 2}}, y, -z+1]; (vii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (viii) [-x+{\script{3\over 2}}, -y+{\script{5\over 2}}, -z+{\script{1\over 2}}]; (ix) [-x+{\script{3\over 2}}, y+1, -z+1].

Data collection: X-AREA (Stoe & Cie, 2007[Stoe & Cie (2007). X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Previously we have studied the crystal structures and the structure-magnetic properties correlations of several low-dimensional cyanocomplexes in which the paramagnetic nickel(II) central atoms were bridged by suitable cyanocomplex anions (Černák et al., 2003; Paharová et al., 2003). As a continuation of our studies we started to investigate low-dimensional systems of nickel(II) with the same type of N-donor blocking ligands, but using dicarboxylate anions as bridging species in place of cyanocomplex anions. As a result of our synthetic effort, we have isolated the title compound, [Ni(bipy)2(mal)].7,34H2O, and here we report its crystal structure. The crystal structure of the similar [Ni(bipy)(mal)(H2O)3].H2O complex was recently reported (Li et al., 2006).

The crystal structure of the title compound is molecular (Fig. 1). The complex molecule is formed by an octahedrally-distorted coordinated nickel(II) atom to which two chelate bonded bipy ligands and one chelate bonded maleato ligand are coordinated, thus the chromophore is of the cis-NiN4O2 type. As can be seen from the values of the bond angles, the octahedron around the nickel atom is rather deformed; the O1-Ni-O2 angle within the four-membered chelate ring formed by the carboxylate group of the maleato ligand is rather acute (61.86 (4)°) while the widest angle is O2-Ni-N4 (164.87 (5)°). The Ni-N bond lengths vary between 2.0461 (13) and 2.0608 (13) Å, and the Ni-O bond lengths exhibit values of 2.0935 (10) and 2.1678 (11) Å. Such type of coordination was already observed in [Ni(dpa)2(suc)0.5]Cl (dpa = 4,4'-dipyridylamine, suc = succinato dianion) with similar geometric parameters (Montney et al., 2007). Both bipy ligands are planar. The maleato ligand acts as a bidentate chelate bonded ligand with an uncoordinated carboxylate group. To our knowledge, such coordination of the maleato ligand was previously observed only in {[Zn(H2O)4(L1)Zn(mal)2].H2O}n, (L1 = N-(3-pyridyl)-isonicotinamide; Kumar et al., 2006). The observed geometric parameters associated with the ligands in the title compound do not show unusual features.

In the unit cell there are eight crystallographically independent positions occupied by the oxygen atoms of the crystal water molecules. The O6 oxygen atom lies on a twofold rotation axis and the O7 oxygen atom exhibits a partial occupancy of 0.84, thus there are 7.34 water molecules per formula unit. These water molecules along with the oxygen atoms of the uncoordinated carboxylate group form an extended hydrophilic three-dimensional hydrogen bonded systems with O···O distances ranging from 2.6905 (17) to 3.3576 (18) Å (Table 1), leading to the formation of large cavities (Fig. 2) in which the bipy ligands are situated. To the hydrogen bonding network contributes also the weak C—H···O hydrogen bond (Table 1). Between pairs of bipy ligands π-π stacking interactions operate (Fig. 3). The centroid···centroid distance between the aromatic rings (3.549 (15) Å) is similar to that found in [Ni(bipy)2(ox)].4H2O (ox = oxalato dianion). These interactions lead to formation of pairs of complex molecules (Fig. 3).

Related literature top

For magnetic studies of nickel(II) complexes, see: Boča (2004); Kamieniarz et al. (2007); Paharová et al. (2003); Černák et al. (2003). Several complexes containing the [Ni(bipy)2]2+ structural motif completed with various anionic ligands including acetato (Holz et al., 1996), oxalato (Roman et al., 1995) and terephtalato (Deng et al., 1992) have been structurally characterized. The maleato ligand can act as a monodentate (Sequeira et al., 1992);), bidentate (Zheng & Kong, 2003), tridentate (Xue et al., 2005) or tetradentate (Chen et al., 2003) ligand. For the crystal structure of the similar [Ni(bipy)(mal)(H2O)3].H2O complex, see: Li et al. (2006). For [Ni(dpa)2(suc)0.5]Cl (dpa = 4,4'-dipyridylamine, suc = succinato dianion), which has similar geometric parameters and a similar type of coordination to the title compound, see: Montney et al. (2007). The maleato ligand in {[Zn(H2O)4(L1)Zn(mal)2].H2O}n, [L1 = N-(3-pyridyl)-isonicotinamide] has a similar coordination, see: Kumar et al. (2006).

Experimental top

Chemicals were of reagent grade quality obtained from commercial sources and were used as received without further purification. All solutions were prepared by using deionized water and ethanol (96 % v.v.). To 5 cm3 of an aqueous solution of Ni(CH3COO)2.4H2O (0.4974 g, 2 mmol) was added under stirring at room temperature a previously prepared solution containing 2,2'-bipyridine (0.624 g, 4 mmol) and maleic acid (0.232 g, 2 mmol) in ethanol. To the formed clear violet solution were further added NaOH (0.160 g, 4 mmol) dissolved in water (4 cm3) and a concentrated (25 % v.v.) aqueous solution of ammonia (5 cm3). The formed red-violet solution was stirred for 3 minutes at 90 °C and was left to evaporate slowly at room temperature. After one week, few violet plates of the title compound appeared; one of them was picked off for X-ray structure analysis. After disturbing the mother liquor, immediate jellification started.

Refinement top

The O7 atom exhibited larger thermal ellipsoid at full occupancy than the other water oxygen atoms, so its occupancy was refined to a value of 0.841 (5); in the final cycles of refinement this value was fixed at 0.84. The hydrogen atoms of the water molecules were located in difference map. Their positions were refined with common isotropic thermal parameter for the pair of hydrogen atoms of the same molecule. This was not the case for the hydrogen atoms bound to the O7 oxygen atom with partial site occupancy as well as for the hydrogen atoms bound to O8 atom as two disordered positions with occupancy 0.5 were found; the disorder is the consequence of close position of the O8 atom and its symmetry equivalent at 1.5-x, y, 1-z. The positions of the hydrogen atoms bound to O7 and O8 atoms were constrained by geometric parameters, with values of 0.850 (1) and 1.344 (1) Å for the O—H and H···H distances, respectively. All other hydrogen atoms were positioned geometrically and constrained to ride on their parent atoms, with C—H = 0.95 Å and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2007); cell refinement: X-AREA (Stoe & Cie, 2007); data reduction: X-AREA (Stoe & Cie, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50 % probability level. Water molecules are omitted for clarity.
[Figure 2] Fig. 2. View of the hydrogen bonding system (dashed lines) showing formation of large cavities which accommodate the hydrophobic parts of the complex molecules. Only one disordered position for the hydrogen atoms bound to O8 atom is shown. For the sake of clarity, only the N donor atoms of the bipy ligands are shown.
[Figure 3] Fig. 3. View of the π-π interactions (dashed lines) occurring between the aromatic rings of adjacent bipy ligands. Only the oxygen atoms of the maleato ligands are shown. Hydrogen atoms are omitted for clarity. Symmetry code: (a) 1.5-x, y, -z.
Bis(2,2'-bipyridine-κ2N,N')(maleato- κ2O1,O1')nickel(II) 7.34-hydrate top
Crystal data top
[Ni(C4H2O4)(C10H8N2)2]·7.34H2OF(000) = 2587.2
Mr = 617.35Dx = 1.462 Mg m3
Monoclinic, I2/aMo Kα radiation, λ = 0.71073 Å
Hall symbol: -I 2yaCell parameters from 16806 reflections
a = 20.7108 (6) Åθ = 3.1–54.4°
b = 17.4754 (5) ŵ = 0.76 mm1
c = 15.6460 (6) ÅT = 100 K
β = 97.767 (3)°Plate, violet
V = 5610.8 (3) Å30.36 × 0.18 × 0.16 mm
Z = 8
Data collection top
Stoe IPDS
diffractometer
4944 independent reflections
Radiation source: fine-focus sealed tube4176 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ϕ scansθmax = 25.0°, θmin = 1.5°
Absorption correction: multi-scan
(Blessing, 1995)
h = 2424
Tmin = 0.772, Tmax = 0.888k = 2020
14173 measured reflectionsl = 1813
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.058H atoms treated by a mixture of independent and constrained refinement
S = 0.96 w = 1/[σ2(Fo2) + (0.0405P)2]
where P = (Fo2 + 2Fc2)/3
4944 reflections(Δ/σ)max = 0.002
422 parametersΔρmax = 0.26 e Å3
8 restraintsΔρmin = 0.24 e Å3
Crystal data top
[Ni(C4H2O4)(C10H8N2)2]·7.34H2OV = 5610.8 (3) Å3
Mr = 617.35Z = 8
Monoclinic, I2/aMo Kα radiation
a = 20.7108 (6) ŵ = 0.76 mm1
b = 17.4754 (5) ÅT = 100 K
c = 15.6460 (6) Å0.36 × 0.18 × 0.16 mm
β = 97.767 (3)°
Data collection top
Stoe IPDS
diffractometer
4944 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
4176 reflections with I > 2σ(I)
Tmin = 0.772, Tmax = 0.888Rint = 0.024
14173 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0238 restraints
wR(F2) = 0.058H atoms treated by a mixture of independent and constrained refinement
S = 0.96Δρmax = 0.26 e Å3
4944 reflectionsΔρmin = 0.24 e Å3
422 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.628359 (9)0.922783 (10)0.160727 (12)0.01907 (7)
O10.59027 (5)0.89847 (6)0.28026 (7)0.0250 (2)
O20.56835 (5)1.00471 (6)0.20774 (7)0.0205 (2)
O30.57620 (5)1.15539 (6)0.30887 (7)0.0256 (2)
O40.47393 (5)1.15505 (6)0.24026 (7)0.0267 (2)
O50.64334 (6)0.11065 (7)0.46429 (8)0.0281 (3)
O60.75000.20819 (10)0.50000.0282 (4)
O70.58575 (7)0.64296 (8)0.02027 (9)0.0328 (3)0.84
O80.68135 (7)0.95450 (7)0.46349 (9)0.0402 (3)
O90.46557 (6)1.28175 (7)0.13492 (8)0.0297 (3)
O100.64991 (6)1.25560 (8)0.23434 (9)0.0325 (3)
O110.91635 (6)1.15274 (7)0.39001 (9)0.0315 (3)
O120.74662 (7)1.20158 (7)0.14242 (8)0.0303 (3)
N10.55048 (6)0.87119 (7)0.08692 (8)0.0207 (3)
N20.63078 (6)0.97732 (7)0.04548 (8)0.0207 (3)
N30.71184 (6)0.96927 (7)0.22727 (8)0.0226 (3)
N40.69405 (6)0.83646 (7)0.14858 (8)0.0223 (3)
C10.51077 (7)0.81814 (8)0.11347 (11)0.0235 (3)
H10.52060.79820.17020.028*
C20.45629 (8)0.79144 (8)0.06154 (11)0.0255 (3)
H20.42920.75350.08180.031*
C30.44195 (7)0.82124 (8)0.02078 (11)0.0247 (3)
H30.40420.80460.05740.030*
C40.48269 (7)0.87524 (8)0.04946 (10)0.0226 (3)
H40.47360.89600.10590.027*
C50.53721 (7)0.89850 (8)0.00602 (10)0.0200 (3)
C60.58367 (7)0.95639 (8)0.01853 (10)0.0202 (3)
C70.57885 (7)0.98896 (9)0.10007 (10)0.0236 (3)
H50.54660.97200.14500.028*
C80.62181 (8)1.04655 (9)0.11477 (10)0.0253 (3)
H60.61931.06980.17000.030*
C90.66841 (7)1.06993 (9)0.04812 (11)0.0252 (3)
H70.69761.11030.05630.030*
C100.67158 (7)1.03343 (9)0.03036 (11)0.0244 (3)
H80.70421.04880.07570.029*
C110.71595 (8)1.03584 (9)0.27018 (11)0.0265 (3)
H90.67851.06770.26650.032*
C120.77287 (8)1.05973 (9)0.31965 (11)0.0304 (4)
H100.77461.10750.34890.036*
C130.82697 (8)1.01303 (10)0.32572 (12)0.0322 (4)
H110.86631.02780.36020.039*
C140.82343 (8)0.94467 (10)0.28125 (11)0.0303 (4)
H120.86040.91200.28430.036*
C150.76521 (7)0.92429 (9)0.23206 (10)0.0234 (3)
C160.75608 (7)0.85144 (9)0.18396 (10)0.0245 (3)
C170.80642 (8)0.80069 (10)0.17641 (11)0.0313 (4)
H130.84990.81290.20000.038*
C180.79249 (8)0.73202 (11)0.13413 (11)0.0352 (4)
H140.82630.69630.12870.042*
C190.72896 (8)0.71589 (10)0.09983 (11)0.0306 (4)
H150.71820.66860.07140.037*
C200.68131 (8)0.76983 (9)0.10772 (10)0.0246 (3)
H160.63780.75910.08310.030*
C210.56180 (7)0.96360 (8)0.27220 (10)0.0204 (3)
C220.52201 (7)0.98935 (9)0.33836 (10)0.0226 (3)
H170.50890.95240.37710.027*
C230.50346 (7)1.06176 (9)0.34656 (10)0.0230 (3)
H180.47761.07200.39090.028*
C240.51928 (7)1.12879 (8)0.29294 (10)0.0218 (3)
H520.6229 (12)0.1235 (13)0.4146 (18)0.055 (5)*
H510.6734 (12)0.1389 (14)0.4736 (16)0.055 (5)*
H610.7462 (12)0.2357 (14)0.5434 (16)0.062 (7)*
H710.6121 (9)0.6122 (11)0.0009 (13)0.054 (6)*0.84
H720.5709 (11)0.6701 (12)0.0230 (9)0.054 (6)*0.84
H81A0.667 (2)0.9385 (12)0.4132 (10)0.055 (5)*0.50
H820.6690 (9)1.0009 (4)0.4637 (13)0.055 (5)*
H81B0.7190 (10)0.9546 (11)0.493 (3)0.055 (5)*0.50
H910.4719 (11)1.2409 (14)0.1687 (15)0.050 (4)*
H920.4483 (11)1.3135 (14)0.1627 (15)0.050 (4)*
H1010.6230 (13)1.2265 (15)0.2512 (17)0.064 (5)*
H1020.6288 (12)1.2854 (15)0.1970 (18)0.064 (5)*
H1110.9073 (12)1.1424 (14)0.4391 (18)0.062 (5)*
H1120.9532 (13)1.1749 (14)0.3941 (17)0.062 (5)*
H1210.7777 (12)1.2100 (14)0.1758 (17)0.055 (5)*
H1220.7154 (12)1.2128 (14)0.1675 (16)0.055 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.01605 (10)0.01944 (10)0.02130 (11)0.00027 (7)0.00098 (7)0.00162 (8)
O10.0240 (6)0.0223 (5)0.0295 (6)0.0044 (4)0.0059 (5)0.0055 (4)
O20.0196 (5)0.0193 (5)0.0223 (6)0.0006 (4)0.0012 (4)0.0024 (4)
O30.0251 (6)0.0219 (5)0.0287 (6)0.0042 (4)0.0004 (5)0.0007 (4)
O40.0260 (6)0.0246 (5)0.0281 (6)0.0030 (5)0.0016 (5)0.0013 (5)
O50.0238 (6)0.0274 (6)0.0314 (7)0.0012 (5)0.0026 (5)0.0015 (5)
O60.0287 (9)0.0286 (9)0.0267 (9)0.0000.0019 (7)0.000
O70.0377 (8)0.0322 (8)0.0288 (8)0.0041 (6)0.0058 (6)0.0013 (6)
O80.0458 (8)0.0254 (6)0.0512 (9)0.0005 (6)0.0130 (7)0.0007 (6)
O90.0303 (6)0.0230 (6)0.0376 (7)0.0048 (5)0.0117 (5)0.0022 (5)
O100.0241 (6)0.0392 (7)0.0344 (7)0.0042 (5)0.0042 (5)0.0063 (6)
O110.0284 (6)0.0277 (6)0.0388 (7)0.0033 (5)0.0059 (5)0.0022 (5)
O120.0302 (7)0.0339 (6)0.0270 (6)0.0017 (5)0.0037 (5)0.0025 (5)
N10.0191 (6)0.0175 (6)0.0257 (7)0.0019 (5)0.0040 (5)0.0004 (5)
N20.0163 (6)0.0220 (6)0.0241 (7)0.0014 (5)0.0031 (5)0.0006 (5)
N30.0197 (6)0.0257 (7)0.0224 (7)0.0014 (5)0.0021 (5)0.0037 (5)
N40.0202 (6)0.0247 (6)0.0219 (7)0.0013 (5)0.0025 (5)0.0032 (5)
C10.0248 (8)0.0182 (7)0.0275 (8)0.0003 (6)0.0030 (6)0.0014 (6)
C20.0248 (8)0.0175 (7)0.0344 (9)0.0024 (6)0.0045 (7)0.0011 (6)
C30.0220 (8)0.0206 (7)0.0302 (9)0.0010 (6)0.0010 (6)0.0064 (6)
C40.0243 (8)0.0203 (7)0.0227 (8)0.0023 (6)0.0017 (6)0.0032 (6)
C50.0198 (7)0.0167 (7)0.0237 (8)0.0034 (6)0.0041 (6)0.0011 (6)
C60.0172 (7)0.0208 (7)0.0229 (8)0.0039 (6)0.0034 (6)0.0019 (6)
C70.0220 (8)0.0255 (8)0.0234 (8)0.0020 (6)0.0028 (6)0.0010 (6)
C80.0258 (8)0.0267 (8)0.0247 (8)0.0051 (6)0.0077 (6)0.0045 (6)
C90.0188 (7)0.0253 (8)0.0326 (9)0.0010 (6)0.0070 (6)0.0038 (7)
C100.0163 (7)0.0271 (8)0.0299 (9)0.0010 (6)0.0035 (6)0.0020 (6)
C110.0246 (8)0.0270 (8)0.0275 (9)0.0036 (6)0.0023 (6)0.0011 (7)
C120.0295 (9)0.0302 (9)0.0307 (9)0.0090 (7)0.0018 (7)0.0006 (7)
C130.0233 (8)0.0372 (9)0.0344 (10)0.0100 (7)0.0024 (7)0.0036 (8)
C140.0200 (8)0.0358 (9)0.0343 (9)0.0029 (7)0.0010 (7)0.0078 (7)
C150.0184 (7)0.0288 (8)0.0229 (8)0.0003 (6)0.0028 (6)0.0068 (6)
C160.0207 (8)0.0317 (8)0.0211 (8)0.0029 (6)0.0031 (6)0.0056 (6)
C170.0211 (8)0.0453 (10)0.0271 (9)0.0077 (7)0.0017 (7)0.0005 (7)
C180.0285 (9)0.0462 (10)0.0311 (10)0.0163 (8)0.0042 (7)0.0017 (8)
C190.0353 (9)0.0323 (9)0.0241 (9)0.0088 (7)0.0040 (7)0.0016 (7)
C200.0230 (8)0.0269 (8)0.0236 (8)0.0029 (6)0.0022 (6)0.0016 (6)
C210.0156 (7)0.0194 (7)0.0250 (8)0.0029 (6)0.0013 (6)0.0008 (6)
C220.0199 (7)0.0231 (7)0.0248 (8)0.0021 (6)0.0031 (6)0.0032 (6)
C230.0178 (7)0.0279 (8)0.0231 (8)0.0007 (6)0.0019 (6)0.0015 (6)
C240.0238 (8)0.0183 (7)0.0235 (8)0.0011 (6)0.0039 (6)0.0040 (6)
Geometric parameters (Å, º) top
Ni1—N22.0461 (13)C2—C31.384 (2)
Ni1—N42.0573 (13)C2—H20.9500
Ni1—N12.0603 (12)C3—C41.381 (2)
Ni1—N32.0608 (13)C3—H30.9500
Ni1—O22.0935 (10)C4—C51.389 (2)
Ni1—O12.1678 (11)C4—H40.9500
Ni1—C212.4700 (16)C5—C61.482 (2)
O1—C211.2803 (18)C6—C71.388 (2)
O2—C211.2604 (19)C7—C81.383 (2)
O3—C241.2604 (18)C7—H50.9500
O4—C241.2500 (19)C8—C91.383 (2)
O5—H520.86 (3)C8—H60.9500
O5—H510.79 (2)C9—C101.377 (2)
O6—H610.84 (2)C9—H70.9500
O7—H710.8500 (11)C10—H80.9500
O7—H720.8500 (10)C11—C121.384 (2)
O8—H81A0.8500 (10)C11—H90.9500
O8—H820.850 (9)C12—C131.379 (2)
O8—H81B0.8500 (11)C12—H100.9500
O9—H910.89 (2)C13—C141.379 (2)
O9—H920.82 (2)C13—H110.9500
O10—H1010.82 (3)C14—C151.387 (2)
O10—H1020.86 (3)C14—H120.9500
O11—H1110.83 (3)C15—C161.478 (2)
O11—H1120.85 (3)C16—C171.386 (2)
O12—H1210.79 (3)C17—C181.382 (3)
O12—H1220.82 (3)C17—H130.9500
N1—C11.342 (2)C18—C191.381 (2)
N1—C51.346 (2)C18—H140.9500
N2—C101.336 (2)C19—C201.382 (2)
N2—C61.3509 (19)C19—H150.9500
N3—C111.340 (2)C20—H160.9500
N3—C151.350 (2)C21—C221.478 (2)
N4—C201.337 (2)C22—C231.334 (2)
N4—C161.354 (2)C22—H170.9500
C1—C21.380 (2)C23—C241.503 (2)
C1—H10.9500C23—H180.9500
N2—Ni1—N499.49 (5)N2—C6—C5114.95 (13)
N2—Ni1—N179.66 (5)C7—C6—C5123.34 (13)
N4—Ni1—N196.01 (5)C8—C7—C6118.90 (14)
N2—Ni1—N398.21 (5)C8—C7—H5120.5
N4—Ni1—N379.37 (5)C6—C7—H5120.5
N1—Ni1—N3174.58 (5)C7—C8—C9119.24 (15)
N2—Ni1—O294.45 (4)C7—C8—H6120.4
N4—Ni1—O2164.87 (5)C9—C8—H6120.4
N1—Ni1—O292.25 (4)C10—C9—C8118.66 (15)
N3—Ni1—O292.88 (5)C10—C9—H7120.7
N2—Ni1—O1155.05 (4)C8—C9—H7120.7
N4—Ni1—O1104.97 (4)N2—C10—C9122.86 (15)
N1—Ni1—O192.82 (5)N2—C10—H8118.6
N3—Ni1—O191.13 (5)C9—C10—H8118.6
O2—Ni1—O161.86 (4)N3—C11—C12122.25 (15)
N2—Ni1—C21124.77 (5)N3—C11—H9118.9
N4—Ni1—C21135.74 (5)C12—C11—H9118.9
N1—Ni1—C2193.03 (5)C13—C12—C11118.86 (16)
N3—Ni1—C2192.27 (5)C13—C12—H10120.6
O2—Ni1—C2130.67 (4)C11—C12—H10120.6
O1—Ni1—C2131.19 (4)C12—C13—C14119.37 (15)
C21—O1—Ni187.54 (9)C12—C13—H11120.3
C21—O2—Ni191.41 (9)C14—C13—H11120.3
H52—O5—H51106 (2)C13—C14—C15119.04 (15)
H71—O7—H72104.48 (17)C13—C14—H12120.5
H81A—O8—H82104.49 (17)C15—C14—H12120.5
H81A—O8—H81B133 (4)N3—C15—C14121.68 (15)
H82—O8—H81B104.49 (17)N3—C15—C16115.21 (13)
H91—O9—H92106 (2)C14—C15—C16123.08 (14)
H101—O10—H102107 (2)N4—C16—C17121.64 (15)
H111—O11—H112110 (2)N4—C16—C15115.06 (13)
H121—O12—H122105 (2)C17—C16—C15123.28 (14)
C1—N1—C5118.71 (13)C18—C17—C16119.06 (15)
C1—N1—Ni1126.51 (11)C18—C17—H13120.5
C5—N1—Ni1114.63 (10)C16—C17—H13120.5
C10—N2—C6118.56 (13)C19—C18—C17119.32 (15)
C10—N2—Ni1126.10 (10)C19—C18—H14120.3
C6—N2—Ni1115.21 (10)C17—C18—H14120.3
C11—N3—C15118.78 (13)C18—C19—C20118.70 (16)
C11—N3—Ni1125.98 (10)C18—C19—H15120.7
C15—N3—Ni1115.03 (10)C20—C19—H15120.7
C20—N4—C16118.60 (13)N4—C20—C19122.64 (15)
C20—N4—Ni1126.33 (10)N4—C20—H16118.7
C16—N4—Ni1115.04 (10)C19—C20—H16118.7
N1—C1—C2122.55 (15)O2—C21—O1119.19 (14)
N1—C1—H1118.7O2—C21—C22121.17 (13)
C2—C1—H1118.7O1—C21—C22119.65 (13)
C1—C2—C3118.46 (15)O2—C21—Ni157.92 (8)
C1—C2—H2120.8O1—C21—Ni161.27 (8)
C3—C2—H2120.8C22—C21—Ni1179.05 (11)
C4—C3—C2119.73 (14)C23—C22—C21123.46 (14)
C4—C3—H3120.1C23—C22—H17118.3
C2—C3—H3120.1C21—C22—H17118.3
C3—C4—C5118.55 (15)C22—C23—C24126.77 (14)
C3—C4—H4120.7C22—C23—H18116.6
C5—C4—H4120.7C24—C23—H18116.6
N1—C5—C4121.97 (14)O4—C24—O3126.46 (14)
N1—C5—C6115.38 (13)O4—C24—C23116.96 (13)
C4—C5—C6122.63 (14)O3—C24—C23116.47 (13)
N2—C6—C7121.69 (14)
N2—Ni1—O1—C2119.88 (15)C3—C4—C5—N11.4 (2)
N4—Ni1—O1—C21171.82 (8)C3—C4—C5—C6179.67 (13)
N1—Ni1—O1—C2191.19 (8)C10—N2—C6—C73.2 (2)
N3—Ni1—O1—C2192.52 (8)Ni1—N2—C6—C7179.46 (11)
O2—Ni1—O1—C210.15 (8)C10—N2—C6—C5175.00 (13)
N2—Ni1—O2—C21171.94 (8)Ni1—N2—C6—C51.23 (16)
N4—Ni1—O2—C2131.0 (2)N1—C5—C6—N23.91 (18)
N1—Ni1—O2—C2192.14 (9)C4—C5—C6—N2174.45 (13)
N3—Ni1—O2—C2189.59 (9)N1—C5—C6—C7177.89 (14)
O1—Ni1—O2—C210.15 (8)C4—C5—C6—C73.7 (2)
N2—Ni1—N1—C1178.58 (13)N2—C6—C7—C82.8 (2)
N4—Ni1—N1—C182.84 (12)C5—C6—C7—C8175.33 (13)
O2—Ni1—N1—C184.47 (12)C6—C7—C8—C90.2 (2)
O1—Ni1—N1—C122.54 (12)C7—C8—C9—C101.8 (2)
C21—Ni1—N1—C153.77 (12)C6—N2—C10—C91.2 (2)
N2—Ni1—N1—C53.10 (10)Ni1—N2—C10—C9176.95 (11)
N4—Ni1—N1—C5101.68 (10)C8—C9—C10—N21.3 (2)
O2—Ni1—N1—C591.02 (10)C15—N3—C11—C120.5 (2)
O1—Ni1—N1—C5152.94 (10)Ni1—N3—C11—C12174.11 (12)
C21—Ni1—N1—C5121.71 (10)N3—C11—C12—C130.7 (3)
N4—Ni1—N2—C1088.75 (12)C11—C12—C13—C141.2 (3)
N1—Ni1—N2—C10176.81 (13)C12—C13—C14—C150.6 (3)
N3—Ni1—N2—C108.24 (13)C11—N3—C15—C141.1 (2)
O2—Ni1—N2—C1085.32 (12)Ni1—N3—C15—C14174.01 (12)
O1—Ni1—N2—C10102.70 (15)C11—N3—C15—C16179.07 (14)
C21—Ni1—N2—C1090.32 (12)Ni1—N3—C15—C163.92 (17)
N4—Ni1—N2—C695.35 (10)C13—C14—C15—N30.6 (2)
N1—Ni1—N2—C60.91 (10)C13—C14—C15—C16178.39 (15)
N3—Ni1—N2—C6175.86 (10)C20—N4—C16—C172.0 (2)
O2—Ni1—N2—C690.58 (10)Ni1—N4—C16—C17176.08 (12)
O1—Ni1—N2—C673.20 (15)C20—N4—C16—C15176.69 (14)
C21—Ni1—N2—C685.58 (11)Ni1—N4—C16—C155.19 (17)
N2—Ni1—N3—C1186.12 (13)N3—C15—C16—N46.0 (2)
N4—Ni1—N3—C11175.69 (14)C14—C15—C16—N4171.85 (15)
O2—Ni1—N3—C118.79 (13)N3—C15—C16—C17175.24 (15)
O1—Ni1—N3—C1170.67 (13)C14—C15—C16—C176.9 (2)
C21—Ni1—N3—C1139.49 (13)N4—C16—C17—C182.2 (3)
N2—Ni1—N3—C1599.13 (11)C15—C16—C17—C18176.46 (16)
N4—Ni1—N3—C150.95 (11)C16—C17—C18—C190.6 (3)
O2—Ni1—N3—C15165.95 (11)C17—C18—C19—C201.1 (3)
O1—Ni1—N3—C15104.07 (11)C16—N4—C20—C190.3 (2)
C21—Ni1—N3—C15135.25 (11)Ni1—N4—C20—C19177.56 (12)
N2—Ni1—N4—C2083.75 (13)C18—C19—C20—N41.2 (2)
N1—Ni1—N4—C203.27 (13)Ni1—O2—C21—O10.25 (13)
N3—Ni1—N4—C20179.59 (14)Ni1—O2—C21—C22179.69 (12)
O2—Ni1—N4—C20119.46 (18)Ni1—O1—C21—O20.25 (13)
O1—Ni1—N4—C2091.28 (13)Ni1—O1—C21—C22179.70 (12)
C21—Ni1—N4—C2097.34 (14)N2—Ni1—C21—O29.80 (10)
N2—Ni1—N4—C1694.21 (11)N4—Ni1—C21—O2168.89 (8)
N1—Ni1—N4—C16174.69 (11)N1—Ni1—C21—O289.31 (8)
N3—Ni1—N4—C162.45 (11)N3—Ni1—C21—O291.82 (8)
O2—Ni1—N4—C1662.6 (2)O1—Ni1—C21—O2179.75 (13)
O1—Ni1—N4—C1690.76 (11)N2—Ni1—C21—O1169.95 (8)
C21—Ni1—N4—C1684.70 (12)N4—Ni1—C21—O111.36 (11)
C5—N1—C1—C21.1 (2)N1—Ni1—C21—O190.44 (8)
Ni1—N1—C1—C2174.22 (11)N3—Ni1—C21—O188.43 (8)
N1—C1—C2—C30.6 (2)O2—Ni1—C21—O1179.75 (13)
C1—C2—C3—C41.3 (2)O2—C21—C22—C2316.2 (2)
C2—C3—C4—C50.3 (2)O1—C21—C22—C23163.78 (14)
C1—N1—C5—C42.1 (2)C21—C22—C23—C240.6 (2)
Ni1—N1—C5—C4173.74 (11)C22—C23—C24—O4107.45 (18)
C1—N1—C5—C6179.51 (12)C22—C23—C24—O376.2 (2)
Ni1—N1—C5—C64.63 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H51···O60.79 (2)1.99 (3)2.7864 (16)178 (3)
O5—H52···O3i0.86 (3)1.88 (3)2.7466 (17)177 (2)
O6—H61···O12ii0.84 (2)1.90 (2)2.7384 (16)174 (3)
O7—H71···O8iii0.85 (1)2.00 (1)2.844 (2)174 (2)
O7—H72···O9iv0.85 (1)2.00 (1)2.8388 (19)171 (2)
O8—H81A···O10.85 (1)2.54 (1)3.3576 (18)162 (4)
O8—H82···O5v0.85 (1)1.99 (1)2.8406 (17)178 (2)
O8—H81B···O8vi0.85 (1)2.08 (1)2.918 (3)167 (4)
O9—H91···O40.89 (2)1.87 (3)2.7516 (16)173 (2)
O9—H92···O1vii0.82 (2)1.96 (3)2.7701 (16)173 (2)
O10—H101···O30.82 (3)1.88 (3)2.6905 (17)168 (3)
O10—H102···O11viii0.86 (3)1.89 (3)2.7409 (19)177 (3)
O11—H111···O5ix0.83 (3)2.03 (3)2.8333 (19)161 (2)
O11—H112···O9viii0.85 (3)1.95 (3)2.7752 (18)162 (2)
O12—H121···O10viii0.79 (3)2.00 (3)2.7844 (18)172 (2)
O12—H122···O100.82 (3)1.97 (3)2.7839 (18)170 (2)
C23—H18···O7vii0.952.383.288 (2)159
Symmetry codes: (i) x, y1, z; (ii) x, y+3/2, z+1/2; (iii) x, y+3/2, z1/2; (iv) x+1, y+2, z; (v) x, y+1, z; (vi) x+3/2, y, z+1; (vii) x+1, y+1/2, z+1/2; (viii) x+3/2, y+5/2, z+1/2; (ix) x+3/2, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Ni(C4H2O4)(C10H8N2)2]·7.34H2O
Mr617.35
Crystal system, space groupMonoclinic, I2/a
Temperature (K)100
a, b, c (Å)20.7108 (6), 17.4754 (5), 15.6460 (6)
β (°) 97.767 (3)
V3)5610.8 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.76
Crystal size (mm)0.36 × 0.18 × 0.16
Data collection
DiffractometerStoe IPDS
diffractometer
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.772, 0.888
No. of measured, independent and
observed [I > 2σ(I)] reflections
14173, 4944, 4176
Rint0.024
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.058, 0.96
No. of reflections4944
No. of parameters422
No. of restraints8
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.24

Computer programs: X-AREA (Stoe & Cie, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H51···O60.79 (2)1.99 (3)2.7864 (16)178 (3)
O5—H52···O3i0.86 (3)1.88 (3)2.7466 (17)177 (2)
O6—H61···O12ii0.84 (2)1.90 (2)2.7384 (16)174 (3)
O7—H71···O8iii0.8500 (11)1.997 (3)2.844 (2)174 (2)
O7—H72···O9iv0.8500 (10)1.996 (4)2.8388 (19)171 (2)
O8—H81A···O10.8500 (10)2.539 (14)3.3576 (18)162 (4)
O8—H82···O5v0.850 (9)1.991 (9)2.8406 (17)178 (2)
O8—H81B···O8vi0.8500 (11)2.084 (11)2.918 (3)167 (4)
O9—H91···O40.89 (2)1.87 (3)2.7516 (16)173 (2)
O9—H92···O1vii0.82 (2)1.96 (3)2.7701 (16)173 (2)
O10—H101···O30.82 (3)1.88 (3)2.6905 (17)168 (3)
O10—H102···O11viii0.86 (3)1.89 (3)2.7409 (19)177 (3)
O11—H111···O5ix0.83 (3)2.03 (3)2.8333 (19)161 (2)
O11—H112···O9viii0.85 (3)1.95 (3)2.7752 (18)162 (2)
O12—H121···O10viii0.79 (3)2.00 (3)2.7844 (18)172 (2)
O12—H122···O100.82 (3)1.97 (3)2.7839 (18)170 (2)
C23—H18···O7vii0.952.383.288 (2)159
Symmetry codes: (i) x, y1, z; (ii) x, y+3/2, z+1/2; (iii) x, y+3/2, z1/2; (iv) x+1, y+2, z; (v) x, y+1, z; (vi) x+3/2, y, z+1; (vii) x+1, y+1/2, z+1/2; (viii) x+3/2, y+5/2, z+1/2; (ix) x+3/2, y+1, z+1.
 

Acknowledgements

This work was supported by the Slovak grant agency APVV under contract Nos. APVV-VVCE-0058-07 and APVV-0006-07, and by grant agency VEGA (1/3550/06). The support from P. J. Šafárik University (VVGS PF - 18/2008/CH and VVGS 45/07-08) is acknowledged. AP thanks DAAD for the financial support during her stay at Philipps-Universität, Marburg. The authors thank Professor Werner Massa (Philipps Universität, Marburg) for his kind permission to use the diffractometer.

References

First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBoča, R. (2004). Coord. Chem. Rev., 248, 757–815.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationČernák, J., Lipkowski, J., Čizmár, E., Orendáčová, A., Orendáč, M., Feher, A. & Meisel, M. W. (2003). Solid State Sci. 5, 579–585.  Google Scholar
First citationChen, Y., Liu, P., Wang, J. & Cheng, W.-D. (2003). Acta Cryst. E59, m393–m395.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDeng, Z. L., Shi, J., Jiang, Z. H., Liao, D. Z., Yan, S. P., Wang, G. L., Wang, H. G. & Wang, R. J. (1992). Polyhedron, 11, 885–887.  CAS Google Scholar
First citationHolz, R. C., Evdokimov, E. A. & Gobena, F. T. (1996). Inorg. Chem., 35, 3808–3814.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationKamieniarz, G., Haglauer, M., Musial, G., Caramico D'Auria, A., Esposito, F. & Gatteschi, D. (2007). Inorg. Chim. Acta, 360, 3941–3944.  Web of Science CrossRef CAS Google Scholar
First citationKumar, D. K., Das, A. & Dastidar, P. (2006). Cryst. Growth Des. 6, 1903–1909.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, M., Fu, X. & Wang, C. (2006). Acta Cryst. E62, m865–m866.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMontney, M. R., Krishnan, S. M., Patel, N. M., Supkowski, R. M. & LaDuca, R. L. (2007). Cryst. Growth Des. 7, 1145–1153.  Web of Science CSD CrossRef CAS Google Scholar
First citationPaharová, J., Černák, J., Boča, R. & Žák, Z. (2003). Inorg. Chim. Acta, 346, 25–31.  Google Scholar
First citationRoman, P., Luque, A., Guzman-Miralles, C. & Beitia, J. I. (1995). Polyhedron, 14, 2863–2869.  CSD CrossRef CAS Web of Science Google Scholar
First citationSequeira, A., Rajagopal, H., Gupta, M. P., Vanhouteghem, F., Lenstra, A. T. H. & Geise, H. J. (1992). Acta Cryst. C48, 1192–1197.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2007). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationXue, Y. H., Liu, J. G. & Xu, D. J. (2005). J. Coord. Chem. 58, 1071–1076.  Web of Science CSD CrossRef CAS Google Scholar
First citationZheng, Y. Q. & Kong, Z. P. (2003). J. Coord. Chem. 56, 967–973.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 12| December 2008| Pages m1536-m1537
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds