Download citation
Download citation
link to html
In the title compound, [PtCl2(C10H15P)2], the Pt atom adopts a slightly distorted square-planar geometry. The phenyl rings form dihedral angles of 82.21 (11) and 79.98 (11)° with the PtCl2P2 mean plane. The crystal structure is stabilized by weak intra- and inter­molecular C—H...Cl hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807045540/rz2163sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807045540/rz2163Isup2.hkl
Contains datablock I

CCDC reference: 663634

Key indicators

  • Single-crystal X-ray study
  • T = 120 K
  • Mean [sigma](C-C) = 0.007 Å
  • R factor = 0.025
  • wR factor = 0.089
  • Data-to-parameter ratio = 18.7

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT153_ALERT_1_C The su's on the Cell Axes are Equal (x 100000) 50 Ang.
Alert level G ABSTM02_ALERT_3_G The ratio of expected to reported Tmax/Tmin(RR) is > 1.10 Tmin and Tmax reported: 0.278 0.398 Tmin and Tmax expected: 0.414 0.667 RR = 1.126 Please check that your absorption correction is appropriate.
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 1 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

We have a standing interest in the reactivity of [(R3P)2PtCl2] compounds towards diphosphanes (Domanska-Babul, Chojnacki, Matern & Pikies, 2007). The title compound, [(Et2PhP)2PtCl2], was obtained according to the published procedure (Matern et al., 2000) and recovered from the reaction mixture during the studies.

An ORTEP plot of the title compound is shown in Fig. 1. The geometry of the Pt atom is slightly distorted square planar with the metal displaced by only 0.0007 (2) Å from the PtCl2P2 mean plane. The Cl and P atoms display a substantial tetrahedral distortion, being displaced by 0.1647 (13), -0.1394 (13), -0.1349 (13) and 0.1267 (12) Å for Cl1, Cl2, P1 and P2 respectively. For comparison, the displacements found for the same atoms in the related complex [(EtPh2P)2PtCl2] (Domanska-Babul, Chojnacki & Pikies 2007) are -0.0238 (5), -0.0008 (5), -0.0251 (5) and -0.0060 (5) Å respectively. Even more significant departures from planarity are observed in the case of sterically demanding phosphanes ligands, viz. in [cis-(tBu2PhP)2PtCl2] (Porzio et al., 1980). The bond angle P1–Pt–P2 of 94.43 (4)° indicates steric repulsion of the PhEt2P groups smaller than those observed for the EtPh2P groups in [(EtPh2P)2PtCl2] (100.23 °) and for the MePh2P groups in [(MePh2P)2PtCl2] (98.11 °; Ho et al., 1982). The average Pt–P and Pt–Cl distances of 2.253 (13) Å and 2.356 (12) Å respectively are typical for [cis-(R3P)2PtCl2] complexes. The dihedral angles formed by the C1—C6 and C11—C16 phenyl rings with the PtCl2P2 mean plane are 82.21 (11) and 79.98 (11) ° respectively. The crystal structure is reinforced by weak intra- and intermolecular C—H···Cl hydrogen interactions (Table 1).

Related literature top

For the structure of the related cis-dichloridobis(ethyldiphenylphosphine-κP)platinum(II) compound, see: Domanska-Babul, Chojnacki & Pikies (2007). For related literature, see: Chojnacki et al. (2007); Domanska-Babul, Chojnacki, Matern & Pikies (2007); Ho et al. (1982); Matern et al. (2000); Porzio et al. (1980).

Experimental top

The title compound compound [cis-{C6H5(C2H5)2P}2PtCl2] has been obtained as yellow powder in the reaction of a solution of phenyl(diethyl)phosphane in ethanol with a solution of potassium tetrachloroplatinate(II) in water (Matern et al., 2000). Slow crystallization from THF at ambient temperature yielded crystals suitable for X-ray analysis.

Refinement top

All C–H hydrogen atoms were refined as riding on carbon atoms with methyl C–H = 0.98 Å, methylen C–H = 0.99 Å, aromatic C–H = 0.95 Å and Uiso(H) = 1.2 Ueq(C) for aromatic CH, 1.3 for CH2 groups and 1.5 for methyl groups.

Structure description top

We have a standing interest in the reactivity of [(R3P)2PtCl2] compounds towards diphosphanes (Domanska-Babul, Chojnacki, Matern & Pikies, 2007). The title compound, [(Et2PhP)2PtCl2], was obtained according to the published procedure (Matern et al., 2000) and recovered from the reaction mixture during the studies.

An ORTEP plot of the title compound is shown in Fig. 1. The geometry of the Pt atom is slightly distorted square planar with the metal displaced by only 0.0007 (2) Å from the PtCl2P2 mean plane. The Cl and P atoms display a substantial tetrahedral distortion, being displaced by 0.1647 (13), -0.1394 (13), -0.1349 (13) and 0.1267 (12) Å for Cl1, Cl2, P1 and P2 respectively. For comparison, the displacements found for the same atoms in the related complex [(EtPh2P)2PtCl2] (Domanska-Babul, Chojnacki & Pikies 2007) are -0.0238 (5), -0.0008 (5), -0.0251 (5) and -0.0060 (5) Å respectively. Even more significant departures from planarity are observed in the case of sterically demanding phosphanes ligands, viz. in [cis-(tBu2PhP)2PtCl2] (Porzio et al., 1980). The bond angle P1–Pt–P2 of 94.43 (4)° indicates steric repulsion of the PhEt2P groups smaller than those observed for the EtPh2P groups in [(EtPh2P)2PtCl2] (100.23 °) and for the MePh2P groups in [(MePh2P)2PtCl2] (98.11 °; Ho et al., 1982). The average Pt–P and Pt–Cl distances of 2.253 (13) Å and 2.356 (12) Å respectively are typical for [cis-(R3P)2PtCl2] complexes. The dihedral angles formed by the C1—C6 and C11—C16 phenyl rings with the PtCl2P2 mean plane are 82.21 (11) and 79.98 (11) ° respectively. The crystal structure is reinforced by weak intra- and intermolecular C—H···Cl hydrogen interactions (Table 1).

For the structure of the related cis-dichloridobis(ethyldiphenylphosphine-κP)platinum(II) compound, see: Domanska-Babul, Chojnacki & Pikies (2007). For related literature, see: Chojnacki et al. (2007); Domanska-Babul, Chojnacki, Matern & Pikies (2007); Ho et al. (1982); Matern et al. (2000); Porzio et al. (1980).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. View of the title compound (50% probability displacement ellipsoids). H atoms are omitted for clarity.
cis-Dichloridobis(diethylphenylphosphine-κP)platinum(II) top
Crystal data top
[PtCl2(C10H15P)2]F(000) = 1168
Mr = 598.37Dx = 1.811 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 12825 reflections
a = 14.8957 (5) Åθ = 2.3–32.4°
b = 9.0402 (5) ŵ = 6.79 mm1
c = 16.3565 (5) ÅT = 120 K
β = 94.865 (3)°Prism, colourless
V = 2194.63 (16) Å30.16 × 0.11 × 0.06 mm
Z = 4
Data collection top
Oxford Diffraction KM-4 CCD
diffractometer
4145 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.013
0.75° ω scansθmax = 26°, θmin = 2.5°
Absorption correction: analytical
[CrysAlis RED; Oxford Diffraction (2006), Clark & Reid (1995)]
h = 1718
Tmin = 0.278, Tmax = 0.398k = 118
9492 measured reflectionsl = 2019
4301 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.025 w = 1/[σ2(Fo2) + (0.0454P)2 + 6.1376P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.089(Δ/σ)max = 0.003
S = 1.36Δρmax = 1.33 e Å3
4301 reflectionsΔρmin = 1.25 e Å3
230 parameters
Crystal data top
[PtCl2(C10H15P)2]V = 2194.63 (16) Å3
Mr = 598.37Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.8957 (5) ŵ = 6.79 mm1
b = 9.0402 (5) ÅT = 120 K
c = 16.3565 (5) Å0.16 × 0.11 × 0.06 mm
β = 94.865 (3)°
Data collection top
Oxford Diffraction KM-4 CCD
diffractometer
4301 independent reflections
Absorption correction: analytical
[CrysAlis RED; Oxford Diffraction (2006), Clark & Reid (1995)]
4145 reflections with I > 2σ(I)
Tmin = 0.278, Tmax = 0.398Rint = 0.013
9492 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.089H-atom parameters constrained
S = 1.36Δρmax = 1.33 e Å3
4301 reflectionsΔρmin = 1.25 e Å3
230 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.251723 (11)0.969895 (18)0.300696 (10)0.01372 (9)
Cl10.23065 (9)0.71248 (14)0.29244 (8)0.0258 (3)
Cl20.27795 (9)0.93276 (16)0.44366 (7)0.0252 (3)
P10.20696 (9)0.99057 (15)0.16603 (8)0.0161 (2)
P20.29263 (8)1.20887 (13)0.31503 (7)0.0142 (2)
C10.1381 (3)1.1543 (6)0.1407 (3)0.0172 (9)
C20.1664 (3)1.2704 (6)0.0932 (3)0.0211 (10)
H20.22291.2640.07060.025*
C30.1137 (4)1.3946 (6)0.0786 (3)0.0255 (11)
H30.13441.47340.04670.031*
C40.0304 (4)1.4047 (7)0.1106 (3)0.0283 (12)
H40.00581.49030.10070.034*
C50.0006 (3)1.2896 (7)0.1570 (3)0.0277 (12)
H50.05681.29550.17810.033*
C60.0542 (3)1.1656 (6)0.1728 (3)0.0216 (10)
H60.03381.08780.20560.026*
C70.1319 (3)0.8410 (6)0.1277 (3)0.0246 (11)
H7A0.16360.74550.13710.032*
H7B0.07840.83990.15970.032*
C80.1001 (4)0.8539 (7)0.0362 (3)0.0300 (12)
H8A0.07850.95470.02430.045*
H8B0.05110.78350.02270.045*
H8C0.15050.83180.00330.045*
C90.2961 (4)0.9903 (6)0.0959 (3)0.0201 (10)
H9A0.2690.99860.03870.026*
H9B0.33571.07710.10740.026*
C100.3520 (4)0.8496 (7)0.1050 (4)0.0295 (12)
H10A0.38080.84320.1610.044*
H10B0.39840.85140.06590.044*
H10C0.31280.76360.09380.044*
C110.3676 (3)1.2696 (5)0.2393 (3)0.0152 (9)
C120.3512 (3)1.3932 (6)0.1890 (3)0.0187 (9)
H120.29881.45150.19380.022*
C130.4116 (4)1.4313 (6)0.1317 (3)0.0235 (10)
H130.39871.51260.09590.028*
C140.4902 (3)1.3512 (6)0.1268 (3)0.0250 (11)
H140.53111.37760.08780.03*
C150.5094 (3)1.2316 (6)0.1794 (3)0.0233 (10)
H150.56461.17950.17790.028*
C160.4478 (3)1.1887 (6)0.2339 (3)0.0205 (10)
H160.45971.10440.26770.025*
C170.2020 (3)1.3438 (5)0.3135 (3)0.0175 (9)
H17A0.22771.44220.32820.023*
H17B0.17211.35030.25720.023*
C180.1314 (4)1.3038 (7)0.3732 (3)0.0274 (12)
H18A0.10151.21110.35570.041*
H18B0.08661.38310.37340.041*
H18C0.16121.29170.42860.041*
C190.3615 (3)1.2459 (6)0.4116 (3)0.0194 (10)
H19A0.3241.22950.45790.025*
H19B0.41171.17390.41710.025*
C200.4005 (4)1.4016 (6)0.4183 (3)0.0251 (11)
H20A0.44171.41650.37530.038*
H20B0.43351.41440.47230.038*
H20C0.35151.47410.41160.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.01339 (12)0.01029 (13)0.01751 (13)0.00008 (6)0.00151 (8)0.00160 (6)
Cl10.0306 (6)0.0100 (5)0.0368 (7)0.0006 (5)0.0024 (5)0.0022 (5)
Cl20.0323 (6)0.0244 (6)0.0186 (6)0.0026 (5)0.0003 (5)0.0078 (5)
P10.0162 (6)0.0141 (5)0.0176 (6)0.0015 (5)0.0002 (5)0.0014 (5)
P20.0155 (5)0.0109 (5)0.0162 (5)0.0012 (4)0.0015 (4)0.0004 (4)
C10.014 (2)0.020 (3)0.017 (2)0.0010 (18)0.0018 (17)0.0036 (19)
C20.023 (2)0.024 (3)0.016 (2)0.001 (2)0.0022 (18)0.001 (2)
C30.033 (3)0.023 (3)0.020 (2)0.004 (2)0.002 (2)0.001 (2)
C40.030 (3)0.029 (3)0.025 (3)0.014 (2)0.006 (2)0.004 (2)
C50.018 (2)0.038 (3)0.026 (3)0.008 (2)0.002 (2)0.007 (2)
C60.017 (2)0.027 (3)0.021 (2)0.002 (2)0.0008 (18)0.004 (2)
C70.019 (2)0.021 (3)0.032 (3)0.004 (2)0.001 (2)0.005 (2)
C80.027 (3)0.031 (3)0.031 (3)0.005 (2)0.004 (2)0.010 (2)
C90.019 (2)0.022 (2)0.019 (2)0.001 (2)0.0013 (19)0.005 (2)
C100.027 (3)0.029 (3)0.033 (3)0.009 (2)0.007 (2)0.006 (2)
C110.012 (2)0.016 (2)0.018 (2)0.0026 (17)0.0007 (16)0.0025 (18)
C120.017 (2)0.019 (2)0.020 (2)0.0029 (18)0.0009 (18)0.0012 (19)
C130.025 (3)0.022 (2)0.023 (2)0.007 (2)0.002 (2)0.004 (2)
C140.023 (2)0.029 (3)0.025 (2)0.008 (2)0.008 (2)0.005 (2)
C150.015 (2)0.024 (3)0.031 (3)0.001 (2)0.0034 (19)0.006 (2)
C160.020 (2)0.017 (2)0.024 (2)0.0005 (19)0.0007 (19)0.001 (2)
C170.019 (2)0.012 (2)0.021 (2)0.0048 (18)0.0011 (18)0.0007 (18)
C180.024 (3)0.034 (3)0.026 (3)0.006 (2)0.011 (2)0.003 (2)
C190.017 (2)0.022 (3)0.018 (2)0.0030 (19)0.0016 (17)0.0003 (19)
C200.025 (3)0.027 (3)0.023 (2)0.005 (2)0.000 (2)0.005 (2)
Geometric parameters (Å, º) top
Pt1—P22.2515 (12)C9—H9A0.99
Pt1—P12.2544 (13)C9—H9B0.99
Pt1—Cl12.3505 (12)C10—H10A0.98
Pt1—Cl22.3619 (12)C10—H10B0.98
P1—C91.828 (5)C10—H10C0.98
P1—C11.828 (5)C11—C121.397 (7)
P1—C71.831 (5)C11—C161.409 (7)
P2—C171.818 (5)C12—C131.396 (7)
P2—C111.822 (5)C12—H120.95
P2—C191.840 (5)C13—C141.385 (8)
C1—C21.392 (7)C13—H130.95
C1—C61.400 (7)C14—C151.395 (8)
C2—C31.379 (8)C14—H140.95
C2—H20.95C15—C161.387 (7)
C3—C41.390 (8)C15—H150.95
C3—H30.95C16—H160.95
C4—C51.383 (9)C17—C181.537 (7)
C4—H40.95C17—H17A0.99
C5—C61.388 (8)C17—H17B0.99
C5—H50.95C18—H18A0.98
C6—H60.95C18—H18B0.98
C7—C81.535 (8)C18—H18C0.98
C7—H7A0.99C19—C201.523 (7)
C7—H7B0.99C19—H19A0.99
C8—H8A0.98C19—H19B0.99
C8—H8B0.98C20—H20A0.98
C8—H8C0.98C20—H20B0.98
C9—C101.520 (7)C20—H20C0.98
P2—Pt1—P194.43 (4)C10—C9—H9B109.4
P2—Pt1—Cl1171.72 (4)P1—C9—H9B109.4
P1—Pt1—Cl189.94 (5)H9A—C9—H9B108
P2—Pt1—Cl290.73 (5)C9—C10—H10A109.5
P1—Pt1—Cl2171.70 (5)C9—C10—H10B109.5
Cl1—Pt1—Cl285.77 (5)H10A—C10—H10B109.5
C9—P1—C1106.4 (2)C9—C10—H10C109.5
C9—P1—C7103.8 (2)H10A—C10—H10C109.5
C1—P1—C7101.9 (2)H10B—C10—H10C109.5
C9—P1—Pt1116.29 (18)C12—C11—C16119.0 (4)
C1—P1—Pt1113.72 (16)C12—C11—P2123.7 (4)
C7—P1—Pt1113.26 (19)C16—C11—P2117.3 (4)
C17—P2—C11106.6 (2)C13—C12—C11120.1 (5)
C17—P2—C19104.4 (2)C13—C12—H12120
C11—P2—C19101.5 (2)C11—C12—H12120
C17—P2—Pt1116.61 (16)C14—C13—C12120.4 (5)
C11—P2—Pt1113.22 (16)C14—C13—H13119.8
C19—P2—Pt1112.99 (17)C12—C13—H13119.8
C2—C1—C6118.4 (5)C13—C14—C15120.0 (5)
C2—C1—P1123.1 (4)C13—C14—H14120
C6—C1—P1118.4 (4)C15—C14—H14120
C3—C2—C1121.1 (5)C16—C15—C14120.0 (5)
C3—C2—H2119.5C16—C15—H15120
C1—C2—H2119.5C14—C15—H15120
C2—C3—C4120.1 (5)C15—C16—C11120.4 (5)
C2—C3—H3120C15—C16—H16119.8
C4—C3—H3120C11—C16—H16119.8
C5—C4—C3119.7 (5)C18—C17—P2112.3 (3)
C5—C4—H4120.1C18—C17—H17A109.1
C3—C4—H4120.1P2—C17—H17A109.1
C4—C5—C6120.2 (5)C18—C17—H17B109.1
C4—C5—H5119.9P2—C17—H17B109.1
C6—C5—H5119.9H17A—C17—H17B107.9
C5—C6—C1120.5 (5)C17—C18—H18A109.5
C5—C6—H6119.8C17—C18—H18B109.5
C1—C6—H6119.8H18A—C18—H18B109.5
C8—C7—P1114.0 (4)C17—C18—H18C109.5
C8—C7—H7A108.8H18A—C18—H18C109.5
P1—C7—H7A108.8H18B—C18—H18C109.5
C8—C7—H7B108.8C20—C19—P2114.3 (4)
P1—C7—H7B108.8C20—C19—H19A108.7
H7A—C7—H7B107.6P2—C19—H19A108.7
C7—C8—H8A109.5C20—C19—H19B108.7
C7—C8—H8B109.5P2—C19—H19B108.7
H8A—C8—H8B109.5H19A—C19—H19B107.6
C7—C8—H8C109.5C19—C20—H20A109.5
H8A—C8—H8C109.5C19—C20—H20B109.5
H8B—C8—H8C109.5H20A—C20—H20B109.5
C10—C9—P1111.1 (4)C19—C20—H20C109.5
C10—C9—H9A109.4H20A—C20—H20C109.5
P1—C9—H9A109.4H20B—C20—H20C109.5
Cl1—Pt1—P1—C1141.79 (18)C17—P2—C11—C123.0 (5)
Cl1—Pt1—P1—C726.11 (18)C17—P2—C11—C16174.8 (4)
Cl1—Pt1—P1—C994.1 (2)C19—P2—C11—C12112.1 (4)
P2—Pt1—P1—C145.25 (18)C19—P2—C11—C1665.8 (4)
P2—Pt1—P1—C7160.93 (18)Pt1—P2—C17—C1850.7 (4)
P2—Pt1—P1—C978.9 (2)C11—P2—C17—C18178.3 (3)
Cl2—Pt1—P2—C11135.17 (17)C19—P2—C17—C1874.8 (4)
Cl2—Pt1—P2—C17100.55 (18)Pt1—P2—C19—C20172.4 (3)
Cl2—Pt1—P2—C1920.46 (17)C11—P2—C19—C2050.8 (4)
P1—Pt1—P2—C1151.34 (17)C17—P2—C19—C2059.9 (4)
P1—Pt1—P2—C1772.95 (18)P1—C1—C2—C3177.3 (4)
P1—Pt1—P2—C19166.05 (17)C6—C1—C2—C30.5 (7)
Pt1—P1—C1—C2113.7 (4)P1—C1—C6—C5178.3 (4)
Pt1—P1—C1—C664.1 (4)C2—C1—C6—C50.4 (7)
C7—P1—C1—C2124.1 (4)C1—C2—C3—C40.7 (8)
C7—P1—C1—C658.2 (4)C2—C3—C4—C50.1 (8)
C9—P1—C1—C215.6 (5)C3—C4—C5—C61.1 (8)
C9—P1—C1—C6166.6 (4)C4—C5—C6—C11.2 (8)
Pt1—P1—C7—C8179.5 (3)P2—C11—C12—C13179.2 (4)
C1—P1—C7—C857.0 (4)C16—C11—C12—C133.0 (7)
C9—P1—C7—C853.4 (4)P2—C11—C16—C15178.0 (4)
Pt1—P1—C9—C1058.3 (4)C12—C11—C16—C150.0 (7)
C1—P1—C9—C10173.8 (4)C11—C12—C13—C143.1 (8)
C7—P1—C9—C1066.8 (4)C12—C13—C14—C150.1 (8)
Pt1—P2—C11—C12126.5 (4)C13—C14—C15—C162.9 (8)
Pt1—P2—C11—C1655.6 (4)C14—C15—C16—C112.9 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···Cl10.992.673.178 (5)112
C19—H19A···Cl20.992.773.155 (5)103
C5—H5···Cl1i0.952.783.677 (5)158
C17—H17A···Cl1ii0.992.513.382 (5)146
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[PtCl2(C10H15P)2]
Mr598.37
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)14.8957 (5), 9.0402 (5), 16.3565 (5)
β (°) 94.865 (3)
V3)2194.63 (16)
Z4
Radiation typeMo Kα
µ (mm1)6.79
Crystal size (mm)0.16 × 0.11 × 0.06
Data collection
DiffractometerOxford Diffraction KM-4 CCD
Absorption correctionAnalytical
[CrysAlis RED; Oxford Diffraction (2006), Clark & Reid (1995)]
Tmin, Tmax0.278, 0.398
No. of measured, independent and
observed [I > 2σ(I)] reflections
9492, 4301, 4145
Rint0.013
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.089, 1.36
No. of reflections4301
No. of parameters230
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.33, 1.25

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···Cl10.992.673.178 (5)112
C19—H19A···Cl20.992.773.155 (5)103
C5—H5···Cl1i0.952.783.677 (5)158
C17—H17A···Cl1ii0.992.513.382 (5)146
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds