inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Barium manganese(II) selenostannate(IV), BaMnSnSe4

aDepartment of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
*Correspondence e-mail: kleinke@uwaterloo.ca

(Received 17 October 2011; accepted 8 November 2011; online 16 November 2011)

The title compound, BaMnSnSe4, was obtained by reaction of the elements at 1123 K in an evacuated silica tube. It adopts the BaCdSnS4 structure type, which is a variant of the SrIn2Se4 structure type. Its structure consists of distorted edge-sharing tetra­hedra, alternating with Mn and Sn atoms as central atom. These [MnSnSe6] units display corner sharing, forming stacked infinite layers in the ac plane. The three different Ba2+ atoms are located between the [MnSnSe6] layers, two on twofold rotation axes, and exhibit distorted square-antiprismatic coordinations.

Related literature

For the synthesis and structures of quaternary sulfides AIIMIIBIVS4 (AII = Ba, MII = Zn, Cd, Hg, Mn, BIV = Ge, Sn), see: Teske (1980a[Teske, C. L. (1980a). Z. Anorg. Allg. Chem. 460, 163-168.],b[Teske, C. L. (1980b). Z. Anorg. Allg. Chem. 468, 27-34.],c[Teske, C. L. (1980c). Z. Naturforsch. Teil B, 35, 7-11.],d[Teske, C. L. (1980d). Z. Naturforsch. Teil B, 35, 509-510.]). For the SrIn2Se4 structure type, see: Eisenmann & Hofmann (1991[Eisenmann, B. & Hofmann, A. (1991). Z. Kristallogr. 197, 167-168.]) and for the BaCdSnS4 structure type, see: Assoud et al. (2004[Assoud, A., Soheilnia, N. & Kleinke, H. (2004). Chem. Mater. 16, 2215-2221.]).

Experimental

Crystal data
  • BaMnSnSe4

  • Mr = 626.81

  • Orthorhombic, F d d 2

  • a = 22.3143 (10) Å

  • b = 22.7057 (11) Å

  • c = 13.4523 (6) Å

  • V = 6815.8 (5) Å3

  • Z = 32

  • Mo Kα radiation

  • μ = 25.93 mm−1

  • T = 298 K

  • 0.17 × 0.13 × 0.07 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.67, Tmax = 0.97

  • 18387 measured reflections

  • 6703 independent reflections

  • 4800 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.072

  • S = 1.13

  • 6703 reflections

  • 129 parameters

  • 1 restraint

  • Δρmax = 1.95 e Å−3

  • Δρmin = −1.64 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2823 Friedel pairs

  • Flack parameter: 0.044 (12)

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

A number of quaternary sulfides AIIMIIBIVS4 (AII = Ba, MII = Zn, Cd, Hg, Mn, BIV = Ge, Sn) were synthesized and reported in 1980 (Teske, 1980a,b,c,d). They adopt the BaCdSnS4 structure type and crystallize in the space group Fdd2, with the exception of BaHgSnS4, which adopts the Pnn2 group with the same structural motifs. These structures are variants of the SrIn2Se4 type (Fddd) (Eisenmann et al., 1991) through the loss of the inversion centre due to the presence of two different MII and BIV centering cations. Here we report the synthesis and the crystal structure of the first selenide-based compound of this family, denoted BaMnSnSe4.

One dark red block-like single-crystal of BaMnSnSe4 was chosen under an optical microscope for study via single-crystal X-ray diffraction. The diffraction data were measured with the use of graphite-monochromated Mo—Kα radiation on a BRUKER Smart APEX CCD diffractometer. Data were collected by scans of 0.3° in two groups of 606 frames at φ = 0° and 90°. The exposure times per frame were 40 s. The data were corrected for Lorentz and polarization effects. Absorption corrections were based on fitting a function to the empirical transmission surface as sampled by multiple equivalent measurements using SADABS.

The unit cell refinement gave an orthorhombic F-centered cell with a = 22.3143 (10) Å, b = 22.7057 (11) Å, c = 13.4523 (6) Å, V = 6815.8 (5) Å3. The structure refinement was performed using the SrSn2Se4 model, producing satisfying residual factors. The Ba atoms replaced Sr atoms, the tetravalent Sn3 and Sn4 atoms remained in the same Wyckoff positions and the divalent Sn1 and Sn2 of SrSn2Se4 were reassigned as Mn1 and Mn2, while the Se positions were retained.

The new selenide, BaMnSnSe4 crystallizes in the BaCdSnS4 structure type, which - as previously mentioned - is a variant of the SrIn2Se4 structure type (Eisenmann et al., 1991). We present just a short summary of the principal features of the structure since it has since been described elsewhere (Assoud et al., 2004; Eisenmann et al., 1991; Teske, 1980a,b,c,d). Fig. 1 shows a unit cell projection along the c-axis.

In this structure, there are four crystallographically independent metal atom sites, namely Mn1, Mn2, Sn3 and Sn4, which are each tetrahedrally coordinated by Se atoms. The tetrahedra are severely distorted, with Se—Mn—Se and Se—Sn—Se angles between 96° and 126°. The Mn—Se and Sn—Se bonds vary from 2.50 Å to 2.61 Å and 2.49 Å to 2.54 Å, respectively. Similar distortions were observed in the case of the mixed valent selenostannate SrSn2Se4, in SrMgSnSe4, (Assoud et al., 2004) and in BaMSnS4 (M = Mn, Zn, Cd, Hg) (Teske, 1980a,b,c,d), with Se—Sn—Se bond angles ranging from 94° to 129°. The tetrahedra in BaMnSnSe4 are interconnected by sharing edges between the MnSe4 and SnSe4 units. These [MnSnSe6] units then share corners with four identical units (two per tetrahedron) forming an infinite two-dimensional layer in the ac plane. The Ba atoms are in a square antiprismatic coordination, with Ba—Se bonds between 3.33 Å and 3.39 Å, occupying the space between the [MnSnSe6] layers. A single MnSnSe42- layer is displayed in Fig. 2.

Related literature top

For the synthesis and structures of quaternary sulfides AIIMIIBIVS4 (AII = Ba, MII = Zn, Cd, Hg, Mn, BIV = Ge, Sn), see: Teske (1980a,b,c,d). For the the SrIn2Se4 structure type, see: Eisenmann et al. (1991) and for the BaCdSnS4 structure type, see: Assoud et al. (2004).

Experimental top

The elements were acquired either in large blocks (Ba, 99.95% nominal purity, ALFA AESAR) or in powder form (Sn, 99.8%, -325 mesh, ALFA AESAR; Se, 99.5%, -100 mesh, Aldrich; Mn, 99.9%, -100 mesh, Aldrich). Because of the air sensitive nature of barium, all elements were handled in an argon-filled glove box. The elements were loaded in a silica tube (in 1:1:1:4 ratio), which was evacuated and sealed under dynamic vacuum, then placed into a temperature controlled resistance furnace. The silica tube was heated to 850°C within 24 h, kept at 850°C for a period of 4 days, and then cooled to 200°C within 8 days. Thereafter, the furnace was turned off. The samples looked homogeneous, comprising mostly microcrystalline red powder.

Refinement top

(type here to add refinement details)

Structure description top

A number of quaternary sulfides AIIMIIBIVS4 (AII = Ba, MII = Zn, Cd, Hg, Mn, BIV = Ge, Sn) were synthesized and reported in 1980 (Teske, 1980a,b,c,d). They adopt the BaCdSnS4 structure type and crystallize in the space group Fdd2, with the exception of BaHgSnS4, which adopts the Pnn2 group with the same structural motifs. These structures are variants of the SrIn2Se4 type (Fddd) (Eisenmann et al., 1991) through the loss of the inversion centre due to the presence of two different MII and BIV centering cations. Here we report the synthesis and the crystal structure of the first selenide-based compound of this family, denoted BaMnSnSe4.

One dark red block-like single-crystal of BaMnSnSe4 was chosen under an optical microscope for study via single-crystal X-ray diffraction. The diffraction data were measured with the use of graphite-monochromated Mo—Kα radiation on a BRUKER Smart APEX CCD diffractometer. Data were collected by scans of 0.3° in two groups of 606 frames at φ = 0° and 90°. The exposure times per frame were 40 s. The data were corrected for Lorentz and polarization effects. Absorption corrections were based on fitting a function to the empirical transmission surface as sampled by multiple equivalent measurements using SADABS.

The unit cell refinement gave an orthorhombic F-centered cell with a = 22.3143 (10) Å, b = 22.7057 (11) Å, c = 13.4523 (6) Å, V = 6815.8 (5) Å3. The structure refinement was performed using the SrSn2Se4 model, producing satisfying residual factors. The Ba atoms replaced Sr atoms, the tetravalent Sn3 and Sn4 atoms remained in the same Wyckoff positions and the divalent Sn1 and Sn2 of SrSn2Se4 were reassigned as Mn1 and Mn2, while the Se positions were retained.

The new selenide, BaMnSnSe4 crystallizes in the BaCdSnS4 structure type, which - as previously mentioned - is a variant of the SrIn2Se4 structure type (Eisenmann et al., 1991). We present just a short summary of the principal features of the structure since it has since been described elsewhere (Assoud et al., 2004; Eisenmann et al., 1991; Teske, 1980a,b,c,d). Fig. 1 shows a unit cell projection along the c-axis.

In this structure, there are four crystallographically independent metal atom sites, namely Mn1, Mn2, Sn3 and Sn4, which are each tetrahedrally coordinated by Se atoms. The tetrahedra are severely distorted, with Se—Mn—Se and Se—Sn—Se angles between 96° and 126°. The Mn—Se and Sn—Se bonds vary from 2.50 Å to 2.61 Å and 2.49 Å to 2.54 Å, respectively. Similar distortions were observed in the case of the mixed valent selenostannate SrSn2Se4, in SrMgSnSe4, (Assoud et al., 2004) and in BaMSnS4 (M = Mn, Zn, Cd, Hg) (Teske, 1980a,b,c,d), with Se—Sn—Se bond angles ranging from 94° to 129°. The tetrahedra in BaMnSnSe4 are interconnected by sharing edges between the MnSe4 and SnSe4 units. These [MnSnSe6] units then share corners with four identical units (two per tetrahedron) forming an infinite two-dimensional layer in the ac plane. The Ba atoms are in a square antiprismatic coordination, with Ba—Se bonds between 3.33 Å and 3.39 Å, occupying the space between the [MnSnSe6] layers. A single MnSnSe42- layer is displayed in Fig. 2.

For the synthesis and structures of quaternary sulfides AIIMIIBIVS4 (AII = Ba, MII = Zn, Cd, Hg, Mn, BIV = Ge, Sn), see: Teske (1980a,b,c,d). For the the SrIn2Se4 structure type, see: Eisenmann et al. (1991) and for the BaCdSnS4 structure type, see: Assoud et al. (2004).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Crystal structure of BaMnSnSe4 in a projection along the c axis. Black: Ba; green: Mn; blue: Sn; red: Se.
[Figure 2] Fig. 2. A single MnSnSe42- layer of the structure of BaMnSnSe4. Green: Mn; blue: Sn; red: Se.
Barium manganese(II) selenostannate(IV) top
Crystal data top
BaMnSnSe4Dx = 4.887 Mg m3
Mr = 626.81Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Fdd2Cell parameters from 1000 reflections
a = 22.3143 (10) Åθ = 2.0–35°
b = 22.7057 (11) ŵ = 25.93 mm1
c = 13.4523 (6) ÅT = 298 K
V = 6815.8 (5) Å3Block, red
Z = 320.17 × 0.13 × 0.07 mm
F(000) = 8544
Data collection top
Bruker SMART APEX CCD
diffractometer
6703 independent reflections
Radiation source: fine-focus sealed tube4800 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω scansθmax = 35.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 3535
Tmin = 0.67, Tmax = 0.97k = 3236
18387 measured reflectionsl = 2116
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0177P)2 + 37.4914P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.028(Δ/σ)max = 0.001
wR(F2) = 0.072Δρmax = 1.95 e Å3
S = 1.13Δρmin = 1.64 e Å3
6703 reflectionsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
129 parametersExtinction coefficient: 0.0000363 (16)
1 restraintAbsolute structure: Flack (1983), 2823 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.044 (12)
Crystal data top
BaMnSnSe4V = 6815.8 (5) Å3
Mr = 626.81Z = 32
Orthorhombic, Fdd2Mo Kα radiation
a = 22.3143 (10) ŵ = 25.93 mm1
b = 22.7057 (11) ÅT = 298 K
c = 13.4523 (6) Å0.17 × 0.13 × 0.07 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
6703 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4800 reflections with I > 2σ(I)
Tmin = 0.67, Tmax = 0.97Rint = 0.031
18387 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.028 w = 1/[σ2(Fo2) + (0.0177P)2 + 37.4914P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.072Δρmax = 1.95 e Å3
S = 1.13Δρmin = 1.64 e Å3
6703 reflectionsAbsolute structure: Flack (1983), 2823 Friedel pairs
129 parametersAbsolute structure parameter: 0.044 (12)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ba10.50000.00000.51434 (7)0.01461 (15)
Ba20.25000.25000.76741 (7)0.01464 (14)
Ba30.498642 (19)0.252102 (14)0.51495 (6)0.01478 (13)
Mn10.42578 (5)0.12560 (6)0.80278 (9)0.0199 (2)
Mn20.38807 (5)0.12366 (6)0.26964 (9)0.0198 (2)
Sn30.36418 (2)0.12530 (3)0.51561 (4)0.01241 (9)
Sn40.56889 (2)0.12516 (3)0.22465 (4)0.01295 (9)
Se10.45804 (3)0.12557 (5)0.62286 (5)0.01312 (14)
Se20.37358 (3)0.03939 (4)0.89544 (8)0.01486 (19)
Se30.37316 (3)0.21127 (4)0.89774 (8)0.0156 (2)
Se40.28052 (3)0.12657 (5)0.63900 (6)0.01672 (14)
Se50.46781 (3)0.12444 (5)0.13819 (6)0.01467 (15)
Se60.37314 (4)0.20988 (4)0.39409 (7)0.0160 (2)
Se70.37225 (4)0.03902 (4)0.39730 (7)0.01519 (19)
Se80.54326 (3)0.12649 (5)0.40527 (6)0.01468 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ba10.0128 (3)0.0114 (3)0.0196 (4)0.0003 (3)0.0000.000
Ba20.0142 (3)0.0128 (3)0.0169 (4)0.0001 (3)0.0000.000
Ba30.0134 (2)0.0122 (2)0.0188 (4)0.0004 (2)0.00082 (10)0.00034 (18)
Mn10.0209 (5)0.0239 (6)0.0148 (6)0.0002 (5)0.0049 (4)0.0000 (5)
Mn20.0183 (4)0.0271 (6)0.0141 (6)0.0004 (5)0.0029 (4)0.0001 (6)
Sn30.01249 (14)0.0135 (2)0.0113 (2)0.00023 (18)0.00052 (16)0.0000 (2)
Sn40.01337 (17)0.0137 (2)0.0118 (2)0.00020 (16)0.00104 (15)0.00006 (19)
Se10.0133 (2)0.0150 (4)0.0111 (4)0.0002 (3)0.0004 (2)0.0001 (4)
Se20.0131 (4)0.0128 (5)0.0187 (5)0.0012 (2)0.0017 (4)0.0018 (3)
Se30.0142 (4)0.0134 (5)0.0192 (5)0.0018 (2)0.0021 (4)0.0019 (3)
Se40.0161 (3)0.0176 (3)0.0164 (4)0.0001 (3)0.0056 (3)0.0003 (4)
Se50.0129 (3)0.0175 (4)0.0136 (4)0.0002 (3)0.0017 (2)0.0000 (4)
Se60.0183 (5)0.0133 (5)0.0165 (5)0.0007 (3)0.0050 (4)0.0024 (3)
Se70.0166 (4)0.0129 (5)0.0160 (5)0.0007 (3)0.0039 (4)0.0021 (3)
Se80.0172 (2)0.0150 (3)0.0119 (3)0.0007 (3)0.0025 (2)0.0003 (4)
Geometric parameters (Å, º) top
Ba1—Se1i3.3373 (11)Mn1—Se32.6067 (17)
Ba1—Se13.3373 (11)Mn1—Se4ii2.6097 (13)
Ba1—Se8i3.3664 (11)Mn2—Se52.5086 (14)
Ba1—Se83.3664 (11)Mn2—Se62.5974 (18)
Ba1—Se73.3748 (9)Mn2—Se72.6014 (17)
Ba1—Se7i3.3748 (9)Mn2—Se8vii2.6160 (14)
Ba1—Se6ii3.3804 (10)Sn3—Se42.4982 (8)
Ba1—Se6iii3.3804 (10)Sn3—Se62.5299 (12)
Ba2—Se5iv3.3375 (12)Sn3—Se72.5304 (11)
Ba2—Se5v3.3375 (12)Sn3—Se12.5431 (8)
Ba2—Se43.3619 (12)Sn4—Se82.4963 (10)
Ba2—Se4vi3.3620 (12)Sn4—Se3xi2.5276 (11)
Ba2—Se3vi3.3764 (10)Sn4—Se2xi2.5277 (11)
Ba2—Se33.3765 (10)Sn4—Se52.5377 (7)
Ba2—Se2vii3.3838 (9)Se2—Sn4v2.5276 (11)
Ba2—Se2viii3.3838 (9)Se2—Ba3iii3.3520 (10)
Ba3—Se5ix3.3417 (12)Se2—Ba2ii3.3838 (9)
Ba3—Se13.3440 (11)Se3—Sn4v2.5275 (11)
Ba3—Se2viii3.3521 (10)Se3—Ba3ix3.3705 (10)
Ba3—Se4viii3.3587 (12)Se4—Mn1vii2.6097 (13)
Ba3—Se83.3619 (11)Se4—Ba3iii3.3586 (12)
Ba3—Se3x3.3706 (10)Se5—Ba2xi3.3375 (12)
Ba3—Se63.3772 (10)Se5—Ba3x3.3416 (12)
Ba3—Se7ii3.4132 (10)Se6—Ba1vii3.3804 (10)
Mn1—Se12.5251 (15)Se7—Ba3vii3.4133 (10)
Mn1—Se22.5965 (17)Se8—Mn2ii2.6160 (14)
Se1i—Ba1—Se1128.12 (4)Se1—Ba3—Se7ii75.97 (2)
Se1i—Ba1—Se8i62.758 (16)Se2viii—Ba3—Se7ii116.97 (3)
Se1—Ba1—Se8i147.042 (13)Se4viii—Ba3—Se7ii130.54 (2)
Se1i—Ba1—Se8147.044 (13)Se8—Ba3—Se7ii75.97 (2)
Se1—Ba1—Se862.757 (16)Se3x—Ba3—Se7ii68.02 (3)
Se8i—Ba1—Se8128.32 (4)Se6—Ba3—Se7ii147.523 (18)
Se1i—Ba1—Se7131.71 (2)Se1—Mn1—Se2126.01 (6)
Se1—Ba1—Se775.09 (2)Se1—Mn1—Se3126.75 (7)
Se8i—Ba1—Se777.20 (2)Se2—Mn1—Se397.19 (5)
Se8—Ba1—Se779.33 (2)Se1—Mn1—Se4ii99.83 (4)
Se1i—Ba1—Se7i75.10 (2)Se2—Mn1—Se4ii100.04 (5)
Se1—Ba1—Se7i131.71 (2)Se3—Mn1—Se4ii101.51 (5)
Se8i—Ba1—Se7i79.33 (2)Se5—Mn2—Se6122.69 (6)
Se8—Ba1—Se7i77.20 (2)Se5—Mn2—Se7124.52 (6)
Se7—Ba1—Se7i124.38 (4)Se6—Mn2—Se796.54 (5)
Se1i—Ba1—Se6ii77.07 (2)Se5—Mn2—Se8vii99.15 (5)
Se1—Ba1—Se6ii76.82 (2)Se6—Mn2—Se8vii106.04 (5)
Se8i—Ba1—Se6ii133.47 (2)Se7—Mn2—Se8vii106.12 (5)
Se8—Ba1—Se6ii76.24 (2)Se4—Sn3—Se6118.66 (4)
Se7—Ba1—Se6ii148.952 (15)Se4—Sn3—Se7118.69 (4)
Se7i—Ba1—Se6ii67.98 (2)Se6—Sn3—Se7100.12 (4)
Se1i—Ba1—Se6iii76.82 (2)Se4—Sn3—Se1103.79 (3)
Se1—Ba1—Se6iii77.07 (2)Se6—Sn3—Se1107.44 (4)
Se8i—Ba1—Se6iii76.24 (2)Se7—Sn3—Se1107.46 (3)
Se8—Ba1—Se6iii133.47 (2)Se8—Sn4—Se3xi121.17 (4)
Se7—Ba1—Se6iii67.98 (2)Se8—Sn4—Se2xi120.77 (4)
Se7i—Ba1—Se6iii148.952 (15)Se3xi—Sn4—Se2xi101.07 (3)
Se6ii—Ba1—Se6iii117.82 (4)Se8—Sn4—Se5104.04 (3)
Se5iv—Ba2—Se5v121.73 (4)Se3xi—Sn4—Se5103.49 (4)
Se5iv—Ba2—Se4155.821 (13)Se2xi—Sn4—Se5103.94 (4)
Se5v—Ba2—Se465.669 (17)Mn1—Se1—Sn3108.00 (4)
Se5iv—Ba2—Se4vi65.669 (17)Mn1—Se1—Ba1119.97 (5)
Se5v—Ba2—Se4vi155.821 (13)Sn3—Se1—Ba188.90 (3)
Se4—Ba2—Se4vi118.17 (4)Mn1—Se1—Ba3119.55 (5)
Se5iv—Ba2—Se3vi72.66 (2)Sn3—Se1—Ba388.79 (3)
Se5v—Ba2—Se3vi78.02 (3)Ba1—Se1—Ba3117.91 (3)
Se4—Ba2—Se3vi130.45 (2)Sn4v—Se2—Mn180.81 (4)
Se4vi—Ba2—Se3vi83.38 (2)Sn4v—Se2—Ba3iii91.25 (3)
Se5iv—Ba2—Se378.03 (3)Mn1—Se2—Ba3iii107.70 (4)
Se5v—Ba2—Se372.66 (2)Sn4v—Se2—Ba2ii113.64 (4)
Se4—Ba2—Se383.38 (2)Mn1—Se2—Ba2ii93.33 (3)
Se4vi—Ba2—Se3130.45 (2)Ba3iii—Se2—Ba2ii149.93 (3)
Se3vi—Ba2—Se3117.43 (4)Sn4v—Se3—Mn180.62 (4)
Se5iv—Ba2—Se2vii129.74 (2)Sn4v—Se3—Ba3ix114.00 (4)
Se5v—Ba2—Se2vii80.38 (2)Mn1—Se3—Ba3ix91.78 (3)
Se4—Ba2—Se2vii72.51 (2)Sn4v—Se3—Ba291.42 (3)
Se4vi—Ba2—Se2vii78.60 (2)Mn1—Se3—Ba2107.85 (4)
Se3vi—Ba2—Se2vii69.03 (2)Ba3ix—Se3—Ba2150.40 (3)
Se3—Ba2—Se2vii149.488 (14)Sn3—Se4—Mn1vii111.94 (4)
Se5iv—Ba2—Se2viii80.38 (2)Sn3—Se4—Ba3iii118.05 (4)
Se5v—Ba2—Se2viii129.74 (2)Mn1vii—Se4—Ba3iii92.00 (4)
Se4—Ba2—Se2viii78.60 (2)Sn3—Se4—Ba2120.16 (4)
Se4vi—Ba2—Se2viii72.51 (2)Mn1vii—Se4—Ba293.59 (4)
Se3vi—Ba2—Se2viii149.489 (15)Ba3iii—Se4—Ba2113.76 (3)
Se3—Ba2—Se2viii69.03 (2)Mn2—Se5—Sn4107.90 (4)
Se2vii—Ba2—Se2viii121.99 (4)Mn2—Se5—Ba2xi119.33 (5)
Se5ix—Ba3—Se1124.48 (3)Sn4—Se5—Ba2xi92.14 (3)
Se5ix—Ba3—Se2viii73.18 (2)Mn2—Se5—Ba3x120.96 (5)
Se1—Ba3—Se2viii76.66 (2)Sn4—Se5—Ba3x91.31 (3)
Se5ix—Ba3—Se4viii65.659 (18)Ba2xi—Se5—Ba3x114.86 (3)
Se1—Ba3—Se4viii152.79 (2)Sn3—Se6—Mn281.63 (4)
Se2viii—Ba3—Se4viii83.91 (2)Sn3—Se6—Ba388.28 (3)
Se5ix—Ba3—Se8149.66 (2)Mn2—Se6—Ba3114.70 (4)
Se1—Ba3—Se862.735 (17)Sn3—Se6—Ba1vii118.29 (3)
Se2viii—Ba3—Se8133.24 (2)Mn2—Se6—Ba1vii88.54 (4)
Se4viii—Ba3—Se8123.35 (3)Ba3—Se6—Ba1vii147.80 (3)
Se5ix—Ba3—Se3x80.50 (2)Sn3—Se7—Mn281.55 (4)
Se1—Ba3—Se3x130.17 (2)Sn3—Se7—Ba188.28 (3)
Se2viii—Ba3—Se3x150.829 (18)Mn2—Se7—Ba1112.79 (4)
Se4viii—Ba3—Se3x73.79 (2)Sn3—Se7—Ba3vii118.84 (3)
Se8—Ba3—Se3x75.68 (2)Mn2—Se7—Ba3vii88.13 (4)
Se5ix—Ba3—Se6131.51 (2)Ba1—Se7—Ba3vii148.66 (3)
Se1—Ba3—Se674.95 (2)Sn4—Se8—Mn2ii112.78 (4)
Se2viii—Ba3—Se669.46 (3)Sn4—Se8—Ba3120.35 (4)
Se4viii—Ba3—Se680.52 (2)Mn2ii—Se8—Ba389.00 (4)
Se8—Ba3—Se678.08 (2)Sn4—Se8—Ba1118.66 (4)
Se3x—Ba3—Se6123.27 (4)Mn2ii—Se8—Ba188.53 (4)
Se5ix—Ba3—Se7ii77.86 (2)Ba3—Se8—Ba1116.59 (3)
Symmetry codes: (i) x+1, y, z; (ii) x+1/4, y+1/4, z+1/4; (iii) x+3/4, y1/4, z+1/4; (iv) x+3/4, y+1/4, z+3/4; (v) x1/4, y+1/4, z+3/4; (vi) x+1/2, y+1/2, z; (vii) x1/4, y+1/4, z1/4; (viii) x+3/4, y+1/4, z1/4; (ix) x+1, y+1/2, z+1/2; (x) x+1, y+1/2, z1/2; (xi) x+1/4, y+1/4, z3/4.

Experimental details

Crystal data
Chemical formulaBaMnSnSe4
Mr626.81
Crystal system, space groupOrthorhombic, Fdd2
Temperature (K)298
a, b, c (Å)22.3143 (10), 22.7057 (11), 13.4523 (6)
V3)6815.8 (5)
Z32
Radiation typeMo Kα
µ (mm1)25.93
Crystal size (mm)0.17 × 0.13 × 0.07
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.67, 0.97
No. of measured, independent and
observed [I > 2σ(I)] reflections
18387, 6703, 4800
Rint0.031
(sin θ/λ)max1)0.807
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.072, 1.13
No. of reflections6703
No. of parameters129
No. of restraints1
w = 1/[σ2(Fo2) + (0.0177P)2 + 37.4914P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.95, 1.64
Absolute structureFlack (1983), 2823 Friedel pairs
Absolute structure parameter0.044 (12)

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999).

 

Acknowledgements

Financial support from the Natural Sciences and Engineering Research Council of Canada is gratefully acknowledged.

References

First citationAssoud, A., Soheilnia, N. & Kleinke, H. (2004). Chem. Mater. 16, 2215–2221.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2000). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEisenmann, B. & Hofmann, A. (1991). Z. Kristallogr. 197, 167–168.  CrossRef CAS Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTeske, C. L. (1980a). Z. Anorg. Allg. Chem. 460, 163–168.  CrossRef CAS Web of Science Google Scholar
First citationTeske, C. L. (1980b). Z. Anorg. Allg. Chem. 468, 27–34.  CrossRef CAS Google Scholar
First citationTeske, C. L. (1980c). Z. Naturforsch. Teil B, 35, 7–11.  Google Scholar
First citationTeske, C. L. (1980d). Z. Naturforsch. Teil B, 35, 509–510.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds