metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 7| July 2008| Pages m922-m923

Poly[(μ6-benzene-1,2,4,5-tetra­carboxyl­ato)bis­­(1,10-phenanthroline-κ2N,N′)dimanganese(II)]

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China, and bDepartment of Chemistry, Key Laboratory of Medicinal Chemistry for Natural Resources, Ministry of Education, Yunnan University, Kunming 650091, People's Republic of China
*Correspondence e-mail: chmsunbw@seu.edu.cn

(Received 11 January 2008; accepted 2 June 2008; online 13 June 2008)

The title polymeric compound, [Mn2(C10H2O8)(C12H8N2)2]n, was obtained by the reaction of manganese(II) chloride tetra­hydrate with benzene-1,2,4,5-tetra­carboxylic acid (H4bta) in aqueous solution. Each Mn2+ ion is coordinated in a distorted octa­hedral geometry by two N atoms from one 1,10-phenanthroline ligand and four O atoms [Mn—O = 2.116 (2)–2.237 (2) Å] from three bta4− ligands, which also act as bridging groups between the Mn2+ ions.

Related literature

For general background, see: Rao et al. (2000[Rao, C. N. R., Rangnathan, A., Pedireddi, V. R. & Raju, A. R. (2000). Chem. Commun. pp. 39-40.]). For related structures, see: Aghabozorg et al. (2007[Aghabozorg, H., Bahrami, Z., Tabatabaie, M., Ghadermazi, M. & Attar Gharamaleki, J. (2007). Acta Cryst. E63, m2022-m2023.]); Chu et al. (2001[Chu, D.-Q., Xu, J.-Q., Duan, L.-M., Wang, T.-G., Tang, A.-Q. & Ye, L. (2001). Eur. J. Inorg. Chem. pp. 1135-1137.]); Liu & Ding (2007[Liu, Y.-H. & Ding, M.-T. (2007). Acta Cryst. E63, m1828-m1829.]); Wu et al., (2006[Wu, J.-Y., Chang, C.-H., Tseng, T.-W. & Lu, K.-L. (2006). J. Mol. Struct. 796, 69-75.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn2(C10H2O8)(C12H8N2)2]

  • Mr = 360.20

  • Monoclinic, P 21 /c

  • a = 7.5115 (7) Å

  • b = 19.8111 (19) Å

  • c = 9.6327 (9) Å

  • β = 112.027 (2)°

  • V = 1328.8 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.02 mm−1

  • T = 293 (2) K

  • 0.22 × 0.20 × 0.18 mm

Data collection
  • Rigaku Scxmini CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.796, Tmax = 0.833

  • 8026 measured reflections

  • 2336 independent reflections

  • 1853 reflections with I > 2σ(I)

  • Rint = 0.057

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.107

  • S = 0.99

  • 2336 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Selected geometric parameters (Å, °)

Mn1—O2 2.116 (2)
Mn1—O3 2.125 (2)
Mn1—O4 2.204 (2)
Mn1—O1 2.237 (2)
Mn1—N2 2.252 (3)
Mn1—N1 2.305 (3)
O2—Mn1—O3 107.56 (9)
O2—Mn1—O4 81.59 (9)
O3—Mn1—O4 99.15 (8)
O2—Mn1—O1 96.86 (9)
O3—Mn1—O1 80.40 (8)
O4—Mn1—O1 178.19 (9)
O2—Mn1—N2 86.52 (9)
O3—Mn1—N2 156.89 (9)
O4—Mn1—N2 101.02 (9)
O1—Mn1—N2 79.78 (9)
O3—Mn1—N1 98.36 (9)
O4—Mn1—N1 85.10 (9)
O1—Mn1—N1 96.70 (9)
N2—Mn1—N1 72.38 (9)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x, -y+1, -z+1.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The recent interest in the crystal engineering of special geometrical and topological coordination polymers arises from their potential application in catalysis, chemical absorption, magnetism and electrical conductivity (For related structures, see: Rao et al., 2000). The benzene-1,2,4,5-teracarboxylate ligand (bta) as a multi-connecting ligand is also an excellent candidate for the structuring of coordination polymers, and comparatively few examples have been reported to date in relation to applying it to the building of coordination polymers (For details of the preparation of related compounds, see: Aghabozorg et al., 2007; Chu et al., 2001; Liu & Ding, 2007; Wu et al., 2006). We report here the synthesis and crystal structure of the title complex, (I) (Fig. 1).

As shown in Fig.1, only one bta ligand is located in the crystallographic asymmetric unit, while each bta ligand is shared between three manganese(II) centres. The manganese atom is situated on an inversion centre and is coordinated in a trans mode by one chelated phen ligand [Mn—N = 2.252 (3) and 2.305 (3) Å] and four carboxylate oxygen atoms [Mn—O = 2.116 (2), 2.125 (2), 2.204 (2) and 2.237 (2) Å] (Table 1) from three distinct bta ligands. The coordination geometry around the MnII ion is slightly distorted octahedral. The O1 and O4 atoms occupy trans positions. Each bta ligand bridges to six manganese atoms to generate a two-dimensional sheet architecture, in which the carboxylate groups of the bta ligand all display a bridging mode (Fig. 2). Along the crystallographic a-axis, the manganese atoms are maintained in a pseudo-chain arrangement with a Mn···Mn distance of 4.611 Å (Fig. 3).

Related literature top

For general background, see: Rao et al. (2000). For related structures, see: Aghabozorg et al. (2007); Chu et al. (2001); Liu & Ding (2007); Wu et al., (2006). Scheme should reflect formula unit, with 2 Mn, 2 phen ligands, and 1 bta ligand with appropriate dangling bonds extending beyond the square brackets.

Experimental top

All reagents and solvents were used as obtained without further purification. MnCl2.4H2O (59 mg,0.3 mmol), H4bta (76 mg, 0.3 mmol) and NaOH (24 mg, 0.6 mmol) were dissolved in 10 ml of distilled water. The mixture was sealed in a Teflon-lined stainless steel vessel and kept at 443 K for one week. The vessel was gradually cooled to room temperature, and brown crystals suitable for crystallographic analysis were obtained after two weeks. These latter crystals were filtered, washed with water, and dried in air. Yield: 32 mg (30%) based on Mn.

Refinement top

Positional parameters of all H atoms were calculated geometrically and were allowed to ride on their corresponding parent C atoms, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A view of the polymeric layer for compound (I).
[Figure 3] Fig. 3. Crystal packing of the compound (I).
Poly[(µ6-benzene-1,2,4,5-tetracarboxylato)bis(1,10- phenanthroline)dimanganese(II)] top
Crystal data top
[Mn2(C10H2O8)(C12H8N2)2]F(000) = 728
Mr = 360.20Dx = 1.800 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4526 reflections
a = 7.5115 (7) Åθ = 3.3–26.0°
b = 19.8111 (19) ŵ = 1.02 mm1
c = 9.6327 (9) ÅT = 293 K
β = 112.027 (2)°Block, brown
V = 1328.8 (2) Å30.22 × 0.20 × 0.18 mm
Z = 4
Data collection top
Rigaku Scxmini 1K CCD area-detector
diffractometer
2336 independent reflections
Radiation source: fine-focus sealed tube1853 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
Detector resolution: 8.192 pixels mm-1θmax = 25.0°, θmin = 2.1°
thin–slice ω scansh = 88
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 2323
Tmin = 0.796, Tmax = 0.833l = 1110
8026 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0597P)2]
where P = (Fo2 + 2Fc2)/3
2336 reflections(Δ/σ)max < 0.001
217 parametersΔρmax = 0.58 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
[Mn2(C10H2O8)(C12H8N2)2]V = 1328.8 (2) Å3
Mr = 360.20Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.5115 (7) ŵ = 1.02 mm1
b = 19.8111 (19) ÅT = 293 K
c = 9.6327 (9) Å0.22 × 0.20 × 0.18 mm
β = 112.027 (2)°
Data collection top
Rigaku Scxmini 1K CCD area-detector
diffractometer
2336 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1853 reflections with I > 2σ(I)
Tmin = 0.796, Tmax = 0.833Rint = 0.057
8026 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.107H-atom parameters constrained
S = 0.99Δρmax = 0.58 e Å3
2336 reflectionsΔρmin = 0.35 e Å3
217 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.26486 (7)0.43326 (2)0.53505 (5)0.01340 (18)
N10.4147 (4)0.35226 (13)0.4456 (3)0.0176 (6)
N20.1642 (4)0.33159 (13)0.5808 (3)0.0166 (6)
C10.5418 (5)0.36248 (18)0.3823 (4)0.0230 (8)
H1A0.57220.40670.36770.028*
C110.2366 (5)0.27625 (16)0.5373 (4)0.0182 (7)
C20.6321 (5)0.31037 (19)0.3366 (4)0.0282 (9)
H2A0.72160.32000.29390.034*
C100.0358 (5)0.32165 (18)0.6425 (4)0.0223 (8)
H10A0.01710.35910.67090.027*
C120.3729 (5)0.28764 (16)0.4675 (4)0.0196 (8)
C70.1838 (5)0.21006 (17)0.5571 (4)0.0255 (8)
C40.4550 (5)0.23179 (18)0.4230 (4)0.0243 (8)
C30.5875 (5)0.2453 (2)0.3552 (4)0.0285 (9)
H3A0.64430.21000.32330.034*
C50.3984 (6)0.16497 (18)0.4459 (4)0.0321 (10)
H5A0.45190.12800.41650.039*
C90.0232 (5)0.2580 (2)0.6666 (4)0.0302 (9)
H9A0.11370.25350.71050.036*
C60.2683 (6)0.15507 (18)0.5097 (4)0.0311 (10)
H6A0.23330.11120.52300.037*
C80.0499 (6)0.20273 (19)0.6268 (4)0.0336 (10)
H8A0.01250.16000.64510.040*
C130.0288 (4)0.49094 (14)0.1344 (3)0.0097 (6)
C160.8525 (4)0.48483 (15)0.8620 (3)0.0127 (7)
C140.0734 (4)0.48127 (16)0.2744 (3)0.0139 (7)
C170.6894 (4)0.46887 (15)0.7169 (3)0.0138 (7)
C150.8273 (4)0.47604 (15)0.9971 (3)0.0132 (7)
H15A0.71040.45970.99530.020*
O10.0214 (3)0.42752 (11)0.3466 (2)0.0190 (5)
O40.5436 (3)0.44168 (12)0.7236 (2)0.0225 (6)
O30.2918 (3)0.51596 (11)0.4038 (2)0.0190 (5)
O20.1650 (3)0.47176 (12)0.6976 (2)0.0235 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0180 (3)0.0144 (3)0.0099 (3)0.0002 (2)0.0077 (2)0.0001 (2)
N10.0191 (16)0.0201 (16)0.0154 (15)0.0002 (12)0.0083 (12)0.0011 (11)
N20.0205 (16)0.0167 (15)0.0139 (14)0.0011 (12)0.0079 (12)0.0031 (11)
C10.023 (2)0.029 (2)0.0188 (19)0.0053 (16)0.0099 (16)0.0061 (15)
C110.024 (2)0.0169 (17)0.0111 (17)0.0008 (14)0.0040 (14)0.0005 (13)
C20.026 (2)0.036 (2)0.028 (2)0.0041 (17)0.0160 (18)0.0040 (17)
C100.022 (2)0.027 (2)0.0185 (19)0.0010 (15)0.0081 (16)0.0020 (15)
C120.0224 (19)0.0213 (19)0.0112 (17)0.0019 (14)0.0018 (15)0.0004 (13)
C70.032 (2)0.0211 (19)0.0173 (19)0.0048 (16)0.0028 (16)0.0017 (14)
C40.027 (2)0.0226 (19)0.0153 (19)0.0059 (15)0.0016 (15)0.0059 (14)
C30.028 (2)0.037 (2)0.0180 (19)0.0140 (17)0.0059 (16)0.0062 (17)
C50.046 (3)0.019 (2)0.023 (2)0.0117 (18)0.0043 (19)0.0017 (15)
C90.031 (2)0.037 (2)0.024 (2)0.0093 (18)0.0124 (18)0.0045 (17)
C60.052 (3)0.0132 (18)0.021 (2)0.0037 (17)0.0054 (19)0.0024 (14)
C80.043 (3)0.024 (2)0.028 (2)0.0164 (18)0.0059 (19)0.0072 (17)
C130.0145 (17)0.0092 (15)0.0080 (16)0.0022 (12)0.0072 (13)0.0007 (11)
C160.0195 (18)0.0104 (16)0.0087 (16)0.0019 (13)0.0059 (13)0.0009 (12)
C140.0147 (17)0.0180 (18)0.0083 (16)0.0016 (14)0.0037 (13)0.0028 (13)
C170.0152 (18)0.0133 (16)0.0133 (17)0.0008 (14)0.0060 (14)0.0013 (13)
C150.0138 (17)0.0109 (16)0.0169 (18)0.0037 (13)0.0079 (14)0.0009 (13)
O10.0222 (13)0.0204 (13)0.0156 (12)0.0013 (10)0.0086 (10)0.0051 (10)
O40.0168 (13)0.0371 (15)0.0129 (12)0.0094 (11)0.0046 (10)0.0013 (10)
O30.0248 (14)0.0225 (13)0.0097 (12)0.0064 (10)0.0065 (10)0.0032 (9)
O20.0300 (15)0.0297 (14)0.0166 (13)0.0079 (11)0.0154 (11)0.0008 (10)
Geometric parameters (Å, º) top
Mn1—O22.116 (2)C4—C51.433 (5)
Mn1—O32.125 (2)C3—H3A0.9300
Mn1—O42.204 (2)C5—C61.350 (5)
Mn1—O12.237 (2)C5—H5A0.9300
Mn1—N22.252 (3)C9—C81.344 (5)
Mn1—N12.305 (3)C9—H9A0.9300
N1—C11.327 (4)C6—H6A0.9300
N1—C121.353 (4)C8—H8A0.9300
N2—C101.323 (4)C13—C15i1.390 (4)
N2—C111.358 (4)C13—C16ii1.397 (4)
C1—C21.394 (5)C13—C141.518 (4)
C1—H1A0.9300C16—C151.394 (4)
C11—C71.404 (5)C16—C13ii1.397 (4)
C11—C121.438 (5)C16—C171.506 (4)
C2—C31.360 (5)C14—O2iii1.246 (4)
C2—H2A0.9300C14—O11.251 (4)
C10—C91.385 (5)C17—O41.244 (4)
C10—H10A0.9300C17—O3ii1.259 (4)
C12—C41.409 (5)C15—C13iv1.390 (4)
C7—C81.410 (5)C15—H15A0.9300
C7—C61.420 (5)O3—C17ii1.259 (4)
C4—C31.406 (5)O2—C14iii1.246 (4)
O2—Mn1—O3107.56 (9)C8—C7—C6124.0 (3)
O2—Mn1—O481.59 (9)C3—C4—C12117.3 (3)
O3—Mn1—O499.15 (8)C3—C4—C5123.4 (3)
O2—Mn1—O196.86 (9)C12—C4—C5119.3 (3)
O3—Mn1—O180.40 (8)C2—C3—C4119.6 (3)
O4—Mn1—O1178.19 (9)C2—C3—H3A120.2
O2—Mn1—N286.52 (9)C4—C3—H3A120.2
O3—Mn1—N2156.89 (9)C6—C5—C4120.8 (3)
O4—Mn1—N2101.02 (9)C6—C5—H5A119.6
O1—Mn1—N279.78 (9)C4—C5—H5A119.6
O2—Mn1—N1152.37 (9)C8—C9—C10120.2 (3)
O3—Mn1—N198.36 (9)C8—C9—H9A119.9
O4—Mn1—N185.10 (9)C10—C9—H9A119.9
O1—Mn1—N196.70 (9)C5—C6—C7121.5 (3)
N2—Mn1—N172.38 (9)C5—C6—H6A119.2
C1—N1—C12117.7 (3)C7—C6—H6A119.2
C1—N1—Mn1127.0 (2)C9—C8—C7119.5 (3)
C12—N1—Mn1115.2 (2)C9—C8—H8A120.2
C10—N2—C11117.5 (3)C7—C8—H8A120.2
C10—N2—Mn1125.1 (2)C15i—C13—C16ii119.2 (3)
C11—N2—Mn1117.3 (2)C15i—C13—C14117.8 (3)
N1—C1—C2123.5 (3)C16ii—C13—C14123.0 (3)
N1—C1—H1A118.3C15—C16—C13ii118.6 (3)
C2—C1—H1A118.3C15—C16—C17119.5 (3)
N2—C11—C7123.1 (3)C13ii—C16—C17121.9 (3)
N2—C11—C12117.1 (3)O2iii—C14—O1126.7 (3)
C7—C11—C12119.8 (3)O2iii—C14—C13115.0 (3)
C3—C2—C1119.1 (3)O1—C14—C13118.3 (3)
C3—C2—H2A120.4O4—C17—O3ii123.8 (3)
C1—C2—H2A120.4O4—C17—C16118.0 (3)
N2—C10—C9123.0 (3)O3ii—C17—C16118.2 (3)
N2—C10—H10A118.5C13iv—C15—C16122.2 (3)
C9—C10—H10A118.5C13iv—C15—H15A118.9
N1—C12—C4122.8 (3)C16—C15—H15A118.9
N1—C12—C11118.0 (3)C14—O1—Mn1114.4 (2)
C4—C12—C11119.2 (3)C17—O4—Mn1125.0 (2)
C11—C7—C8116.7 (3)C17ii—O3—Mn1143.3 (2)
C11—C7—C6119.3 (3)C14iii—O2—Mn1143.9 (2)
O2—Mn1—N1—C1136.3 (3)C1—C2—C3—C41.4 (5)
O3—Mn1—N1—C123.6 (3)C12—C4—C3—C20.6 (5)
O4—Mn1—N1—C175.0 (3)C5—C4—C3—C2179.4 (3)
O1—Mn1—N1—C1104.8 (3)C3—C4—C5—C6179.0 (3)
N2—Mn1—N1—C1178.2 (3)C12—C4—C5—C60.2 (5)
O2—Mn1—N1—C1240.5 (3)N2—C10—C9—C80.1 (5)
O3—Mn1—N1—C12159.7 (2)C4—C5—C6—C70.3 (6)
O4—Mn1—N1—C12101.7 (2)C11—C7—C6—C50.1 (6)
O1—Mn1—N1—C1278.5 (2)C8—C7—C6—C5178.8 (3)
N2—Mn1—N1—C121.5 (2)C10—C9—C8—C71.5 (5)
O2—Mn1—N2—C1020.7 (3)C11—C7—C8—C91.7 (5)
O3—Mn1—N2—C10108.2 (3)C6—C7—C8—C9179.5 (3)
O4—Mn1—N2—C10101.4 (3)C15i—C13—C14—O2iii80.8 (4)
O1—Mn1—N2—C1077.0 (3)C16ii—C13—C14—O2iii97.9 (4)
N1—Mn1—N2—C10177.4 (3)C15i—C13—C14—O197.1 (4)
O2—Mn1—N2—C11161.6 (2)C16ii—C13—C14—O184.2 (4)
O3—Mn1—N2—C1169.5 (3)C15—C16—C17—O47.3 (4)
O4—Mn1—N2—C1180.8 (2)C13ii—C16—C17—O4173.5 (3)
O1—Mn1—N2—C11100.8 (2)C15—C16—C17—O3ii172.5 (3)
N1—Mn1—N2—C110.3 (2)C13ii—C16—C17—O3ii6.8 (4)
C12—N1—C1—C20.6 (5)C13ii—C16—C15—C13iv0.4 (5)
Mn1—N1—C1—C2177.2 (3)C17—C16—C15—C13iv178.9 (3)
C10—N2—C11—C71.1 (5)O2iii—C14—O1—Mn188.5 (4)
Mn1—N2—C11—C7179.0 (3)C13—C14—O1—Mn193.8 (3)
C10—N2—C11—C12178.7 (3)O2—Mn1—O1—C1485.7 (2)
Mn1—N2—C11—C120.8 (4)O3—Mn1—O1—C1421.1 (2)
N1—C1—C2—C30.9 (5)N2—Mn1—O1—C14170.9 (2)
C11—N2—C10—C91.4 (5)N1—Mn1—O1—C14118.5 (2)
Mn1—N2—C10—C9179.1 (2)O3ii—C17—O4—Mn113.7 (4)
C1—N1—C12—C41.5 (5)C16—C17—O4—Mn1165.99 (19)
Mn1—N1—C12—C4178.6 (3)O2—Mn1—O4—C17130.8 (3)
C1—N1—C12—C11179.4 (3)O3—Mn1—O4—C1724.2 (3)
Mn1—N1—C12—C112.4 (4)N2—Mn1—O4—C17144.5 (3)
N2—C11—C12—N12.1 (5)N1—Mn1—O4—C1773.5 (3)
C7—C11—C12—N1177.6 (3)O2—Mn1—O3—C17ii164.7 (3)
N2—C11—C12—C4178.8 (3)O4—Mn1—O3—C17ii111.3 (3)
C7—C11—C12—C41.4 (5)O1—Mn1—O3—C17ii70.5 (3)
N2—C11—C7—C80.4 (5)N2—Mn1—O3—C17ii39.2 (5)
C12—C11—C7—C8179.8 (3)N1—Mn1—O3—C17ii25.0 (4)
N2—C11—C7—C6179.3 (3)O3—Mn1—O2—C14iii25.6 (4)
C12—C11—C7—C60.9 (5)O4—Mn1—O2—C14iii122.6 (4)
N1—C12—C4—C31.0 (5)O1—Mn1—O2—C14iii56.4 (4)
C11—C12—C4—C3180.0 (3)N2—Mn1—O2—C14iii135.7 (4)
N1—C12—C4—C5178.0 (3)N1—Mn1—O2—C14iii175.3 (3)
C11—C12—C4—C51.1 (5)
Symmetry codes: (i) x1, y, z1; (ii) x+1, y+1, z+1; (iii) x, y+1, z+1; (iv) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Mn2(C10H2O8)(C12H8N2)2]
Mr360.20
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.5115 (7), 19.8111 (19), 9.6327 (9)
β (°) 112.027 (2)
V3)1328.8 (2)
Z4
Radiation typeMo Kα
µ (mm1)1.02
Crystal size (mm)0.22 × 0.20 × 0.18
Data collection
DiffractometerRigaku Scxmini 1K CCD area-detector
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.796, 0.833
No. of measured, independent and
observed [I > 2σ(I)] reflections
8026, 2336, 1853
Rint0.057
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.107, 0.99
No. of reflections2336
No. of parameters217
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.58, 0.35

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Mn1—O22.116 (2)Mn1—N22.252 (3)
Mn1—O32.125 (2)Mn1—N12.305 (3)
Mn1—O42.204 (2)O3—C17i1.259 (4)
Mn1—O12.237 (2)O2—C14ii1.246 (4)
O2—Mn1—O3107.56 (9)O3—Mn1—N2156.89 (9)
O2—Mn1—O481.59 (9)O4—Mn1—N2101.02 (9)
O3—Mn1—O499.15 (8)O1—Mn1—N279.78 (9)
O2—Mn1—O196.86 (9)O3—Mn1—N198.36 (9)
O3—Mn1—O180.40 (8)O4—Mn1—N185.10 (9)
O4—Mn1—O1178.19 (9)O1—Mn1—N196.70 (9)
O2—Mn1—N286.52 (9)N2—Mn1—N172.38 (9)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1.
 

References

First citationAghabozorg, H., Bahrami, Z., Tabatabaie, M., Ghadermazi, M. & Attar Gharamaleki, J. (2007). Acta Cryst. E63, m2022–m2023.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationChu, D.-Q., Xu, J.-Q., Duan, L.-M., Wang, T.-G., Tang, A.-Q. & Ye, L. (2001). Eur. J. Inorg. Chem. pp. 1135–1137.  CrossRef Google Scholar
First citationLiu, Y.-H. & Ding, M.-T. (2007). Acta Cryst. E63, m1828–m1829.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationRao, C. N. R., Rangnathan, A., Pedireddi, V. R. & Raju, A. R. (2000). Chem. Commun. pp. 39–40.  Web of Science CSD CrossRef Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, J.-Y., Chang, C.-H., Tseng, T.-W. & Lu, K.-L. (2006). J. Mol. Struct. 796, 69–75.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 7| July 2008| Pages m922-m923
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds