Download citation
Download citation
link to html
In the title centrosymmetric compound, [Cu(C11H12NO2)2], the coordination geometry of the CuII atom, which is on an inversion centre, is distorted square planar, with a Cu—N distance of 1.9541 (14) and a Cu—O distance of 1.9083 (14) Å. The crystal packing is stabilized by π–π inter­actions, with a centroid-to-centroid distance of 3.7953 (12) Å, and by C—H...π inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807037919/rn2023sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807037919/rn2023Isup2.hkl
Contains datablock I

CCDC reference: 660068

Key indicators

  • Single-crystal X-ray study
  • T = 291 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.026
  • wR factor = 0.077
  • Data-to-parameter ratio = 14.0

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT230_ALERT_2_C Hirshfeld Test Diff for N1 - C7 .. 5.80 su PLAT230_ALERT_2_C Hirshfeld Test Diff for C6 - C7 .. 5.21 su PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for O1 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 1 O1 -CU1 -O1 -C1 -70.00 4.00 3.566 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 6 N1 -CU1 -N1 -C7 -143.00 7.00 3.566 1.555 1.555 1.555 PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 9 N1 -CU1 -N1 -C8 32.00 7.00 3.566 1.555 1.555 1.555
Alert level G PLAT793_ALERT_1_G Check the Absolute Configuration of C8 = ... S PLAT794_ALERT_5_G Check Predicted Bond Valency for Cu1 (2) 2.23
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 6 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 3 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 3 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

Over the last decade, C2-symmetric chiral oxazoline metal complexes have been recognized as an effective class of chiral catalyst in a variety of transition metal catalyzed asymmetric reactions (Ghosh et al., 1998). High catalytic activities and enantiomeric excesses have been obtained using C2-symmetric chiral ligands in conjunction with suitable transition metal ion, for example, the hydrosilylation of ketone (Imai et al., 1996), allylic alkylation (Chelucci 1997), Michael addition (Ji et al., 1999), Diels-Alder cycloaddition, and cyclopropanation. Thus, the design and synthesis of new chiral oxazoline ligands and their complexes have inspired many scientists to work with great efforts (Du et al., 2003; Zhang et al., 2007).

We report here the crystal structure of the title compound, (I), a CuII complex with the chiral (S)-2-(4-ethyl-4,5-dihydrooxazol -2-yl)phenol, as the coordination ligand.

The title compound, contains one centrosymmetric tetra-coordinated copper(II) complex (Fig 1). The copper atom is coordinated by two 2-(4-ethyl- 4,5-dihydrooxazol-2-yl)-phenol anions, which bind to the metal centre via the N atom and the phenolyl O atom. Pairs of equivalent ligands lie trans to each other in a slightly distorted square planar geometry about the copper(II) atom (see Table 1).

The aryl and oxazoline least-squares planes are linked by π-π stacking interactions with Cg-Cgii distances 3.7953 (12) Å (symmetry code ii: 1 - x, 1 - y, 1 - z). The C—H···Cg (aryl ring) interactions are observed with H9Aiii···Cg = 2.94 Å (symmetry code iii: x, 1/2 - y, -1/2 + z) and H9Ai···Cg = 2.89 Å (Fig 2) (Spek, 2003).

Related literature top

For related literature, see Chelucci (1997); Du et al. (2003); Ghosh et al. (1998); Ji et al. (1999); Imai et al. (1996); Zhang et al. (2007). For synthesis, see: Serrano et al. (1995).

Experimental top

The chiral ligand, (S)-2-(4-ethyl-4,5-dihydrooxazol-2-yl)phenol was prepared from 2-hydroxybenzonitrile and (S)-2-aminobutan-1-ol as literature reported (Serrano et al., 1995).

A solution of (S)-2-(4-ethyl-4,5-dihydrooxazol-2-yl)phenol (30.56 mg, 0.16 mmol) in methanol (1.60 ml) was added to a stirred solution of CuCl23H2O (34.10 mg, 0.2 mmol) in methanol(2.00 ml). Crystals suitable for diffraction analysis were obtained after a few days.

Refinement top

H atoms were positioned geometrically (aromatic C—H = 0.93 Å, aliphatic C—H = 0.96–0.98 Å) and refined with the riding model approximation, with Uiso(H) = 1.2Ueq(C) [1.5Ueq(C) for methyl H].

Structure description top

Over the last decade, C2-symmetric chiral oxazoline metal complexes have been recognized as an effective class of chiral catalyst in a variety of transition metal catalyzed asymmetric reactions (Ghosh et al., 1998). High catalytic activities and enantiomeric excesses have been obtained using C2-symmetric chiral ligands in conjunction with suitable transition metal ion, for example, the hydrosilylation of ketone (Imai et al., 1996), allylic alkylation (Chelucci 1997), Michael addition (Ji et al., 1999), Diels-Alder cycloaddition, and cyclopropanation. Thus, the design and synthesis of new chiral oxazoline ligands and their complexes have inspired many scientists to work with great efforts (Du et al., 2003; Zhang et al., 2007).

We report here the crystal structure of the title compound, (I), a CuII complex with the chiral (S)-2-(4-ethyl-4,5-dihydrooxazol -2-yl)phenol, as the coordination ligand.

The title compound, contains one centrosymmetric tetra-coordinated copper(II) complex (Fig 1). The copper atom is coordinated by two 2-(4-ethyl- 4,5-dihydrooxazol-2-yl)-phenol anions, which bind to the metal centre via the N atom and the phenolyl O atom. Pairs of equivalent ligands lie trans to each other in a slightly distorted square planar geometry about the copper(II) atom (see Table 1).

The aryl and oxazoline least-squares planes are linked by π-π stacking interactions with Cg-Cgii distances 3.7953 (12) Å (symmetry code ii: 1 - x, 1 - y, 1 - z). The C—H···Cg (aryl ring) interactions are observed with H9Aiii···Cg = 2.94 Å (symmetry code iii: x, 1/2 - y, -1/2 + z) and H9Ai···Cg = 2.89 Å (Fig 2) (Spek, 2003).

For related literature, see Chelucci (1997); Du et al. (2003); Ghosh et al. (1998); Ji et al. (1999); Imai et al. (1996); Zhang et al. (2007). For synthesis, see: Serrano et al. (1995).

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1999); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. ORTEP plot of [Cu(C11H12NO2)2]; displacement ellipsoids are drawn at the 30% probability level. (suffix A denotes symmetry code: -x, -y, -z + 1).
[Figure 2] Fig. 2. The ππ stacking interactions and C—H···π interactions between ligands. Non-interaction hydrogen atoms are omitted for clarity.
trans-Bis[(S)-2-(4-ethyl-4,5-dihydro-1,3-oxazol-2-yl)phenolato- κ2N,O]copper(II) top
Crystal data top
[Cu(C11H12NO2)2]F(000) = 462
Mr = 443.97Dx = 1.443 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3198 reflections
a = 6.6645 (9) Åθ = 2.4–26.7°
b = 14.5796 (19) ŵ = 1.10 mm1
c = 10.5615 (14) ÅT = 291 K
β = 95.163 (1)°Block, dark green
V = 1022.1 (2) Å30.48 × 0.27 × 0.19 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
1882 independent reflections
Radiation source: fine-focus sealed tube1652 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.013
Detector resolution: 0 pixels mm-1θmax = 25.5°, θmin = 2.4°
φ and ω scansh = 88
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1717
Tmin = 0.621, Tmax = 0.821l = 1212
6062 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0434P)2 + 0.1918P]
where P = (Fo2 + 2Fc2)/3
1882 reflections(Δ/σ)max < 0.001
134 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
[Cu(C11H12NO2)2]V = 1022.1 (2) Å3
Mr = 443.97Z = 2
Monoclinic, P21/cMo Kα radiation
a = 6.6645 (9) ŵ = 1.10 mm1
b = 14.5796 (19) ÅT = 291 K
c = 10.5615 (14) Å0.48 × 0.27 × 0.19 mm
β = 95.163 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1882 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1652 reflections with I > 2σ(I)
Tmin = 0.621, Tmax = 0.821Rint = 0.013
6062 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.077H-atom parameters constrained
S = 1.08Δρmax = 0.19 e Å3
1882 reflectionsΔρmin = 0.19 e Å3
134 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.00000.50000.50000.05203 (14)
O10.0943 (2)0.53611 (12)0.66862 (13)0.0721 (4)
O20.5047 (2)0.64456 (9)0.42505 (13)0.0618 (4)
N10.2068 (2)0.57490 (10)0.43014 (14)0.0491 (3)
C10.2700 (3)0.56981 (13)0.71016 (18)0.0552 (4)
C20.3213 (3)0.57523 (15)0.84174 (19)0.0688 (5)
H20.22710.55730.89670.083*
C30.5071 (4)0.60636 (15)0.8920 (2)0.0726 (6)
H30.53630.60890.97970.087*
C40.6509 (3)0.63390 (15)0.8124 (2)0.0715 (6)
H40.77740.65340.84620.086*
C50.6042 (3)0.63190 (14)0.6845 (2)0.0609 (5)
H50.69980.65130.63130.073*
C60.4154 (3)0.60134 (12)0.62996 (17)0.0490 (4)
C70.3682 (3)0.60446 (12)0.49455 (17)0.0487 (4)
C80.2135 (3)0.60125 (12)0.29532 (16)0.0504 (4)
H80.19460.54680.24110.060*
C90.4282 (3)0.63686 (15)0.2930 (2)0.0632 (5)
H9A0.50910.59440.24850.076*
H9B0.42890.69610.25120.076*
C100.0526 (3)0.67215 (15)0.2555 (2)0.0665 (5)
H10A0.07640.65100.27990.080*
H10B0.08480.72930.29980.080*
C110.0365 (4)0.68926 (19)0.1130 (2)0.0902 (8)
H11A0.16560.70750.08790.135*
H11B0.06000.73700.09200.135*
H11C0.00620.63400.06900.135*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0521 (2)0.0579 (2)0.0478 (2)0.01417 (13)0.01397 (14)0.00670 (13)
O10.0673 (9)0.0990 (11)0.0521 (8)0.0319 (8)0.0174 (7)0.0150 (8)
O20.0532 (7)0.0665 (9)0.0667 (9)0.0141 (6)0.0114 (6)0.0104 (7)
N10.0506 (8)0.0491 (8)0.0487 (8)0.0064 (6)0.0097 (6)0.0020 (6)
C10.0607 (11)0.0506 (10)0.0548 (10)0.0062 (8)0.0081 (8)0.0073 (8)
C20.0817 (14)0.0709 (13)0.0545 (11)0.0105 (11)0.0097 (10)0.0077 (10)
C30.0901 (16)0.0666 (13)0.0580 (12)0.0029 (11)0.0105 (11)0.0065 (10)
C40.0680 (13)0.0644 (13)0.0779 (15)0.0036 (10)0.0173 (11)0.0024 (11)
C50.0542 (11)0.0533 (11)0.0742 (13)0.0025 (8)0.0007 (9)0.0033 (9)
C60.0515 (9)0.0390 (9)0.0564 (10)0.0012 (7)0.0041 (8)0.0013 (7)
C70.0489 (9)0.0373 (9)0.0613 (11)0.0005 (7)0.0132 (8)0.0020 (7)
C80.0578 (10)0.0462 (9)0.0489 (9)0.0023 (8)0.0141 (8)0.0009 (8)
C90.0633 (12)0.0657 (12)0.0623 (12)0.0030 (9)0.0154 (9)0.0145 (10)
C100.0670 (13)0.0693 (13)0.0634 (12)0.0140 (10)0.0076 (10)0.0008 (10)
C110.1026 (19)0.0967 (19)0.0690 (14)0.0271 (15)0.0048 (13)0.0096 (13)
Geometric parameters (Å, º) top
Cu1—O1i1.9083 (14)C4—H40.9300
Cu1—O11.9083 (14)C5—C61.408 (3)
Cu1—N11.9541 (14)C5—H50.9300
Cu1—N1i1.9541 (14)C6—C71.437 (3)
O1—C11.309 (2)C8—C101.521 (3)
O2—C71.352 (2)C8—C91.524 (3)
O2—C91.446 (3)C8—H80.9800
N1—C71.294 (2)C9—H9A0.9700
N1—C81.479 (2)C9—H9B0.9700
C1—C21.403 (3)C10—C111.520 (3)
C1—C61.419 (3)C10—H10A0.9700
C2—C31.379 (3)C10—H10B0.9700
C2—H20.9300C11—H11A0.9600
C3—C41.390 (3)C11—H11B0.9600
C3—H30.9300C11—H11C0.9600
C4—C51.359 (3)
O1i—Cu1—O1180C1—C6—C7120.29 (16)
O1i—Cu1—N189.19 (6)N1—C7—O2115.27 (16)
O1—Cu1—N190.81 (6)N1—C7—C6127.55 (16)
O1i—Cu1—N1i90.81 (6)O2—C7—C6117.16 (16)
O1—Cu1—N1i89.19 (6)N1—C8—C10111.15 (14)
N1—Cu1—N1i180N1—C8—C9102.36 (14)
C1—O1—Cu1128.74 (12)C10—C8—C9113.79 (17)
C7—O2—C9107.09 (14)N1—C8—H8109.8
C7—N1—C8108.87 (14)C10—C8—H8109.8
C7—N1—Cu1124.68 (12)C9—C8—H8109.8
C8—N1—Cu1126.31 (11)O2—C9—C8105.14 (14)
O1—C1—C2118.93 (18)O2—C9—H9A110.7
O1—C1—C6124.03 (17)C8—C9—H9A110.7
C2—C1—C6117.03 (18)O2—C9—H9B110.7
C3—C2—C1122.0 (2)C8—C9—H9B110.7
C3—C2—H2119.0H9A—C9—H9B108.8
C1—C2—H2119.0C11—C10—C8111.75 (17)
C2—C3—C4120.4 (2)C11—C10—H10A109.3
C2—C3—H3119.8C8—C10—H10A109.3
C4—C3—H3119.8C11—C10—H10B109.3
C5—C4—C3119.1 (2)C8—C10—H10B109.3
C5—C4—H4120.5H10A—C10—H10B107.9
C3—C4—H4120.5C10—C11—H11A109.5
C4—C5—C6122.0 (2)C10—C11—H11B109.5
C4—C5—H5119.0H11A—C11—H11B109.5
C6—C5—H5119.0C10—C11—H11C109.5
C5—C6—C1119.43 (18)H11A—C11—H11C109.5
C5—C6—C7120.26 (17)H11B—C11—H11C109.5
O1i—Cu1—O1—C170 (4)C2—C1—C6—C7175.30 (18)
N1—Cu1—O1—C120.2 (2)C8—N1—C7—O24.4 (2)
N1i—Cu1—O1—C1159.8 (2)Cu1—N1—C7—O2171.45 (11)
O1i—Cu1—N1—C7161.26 (15)C8—N1—C7—C6173.99 (16)
O1—Cu1—N1—C718.74 (15)Cu1—N1—C7—C610.1 (3)
N1i—Cu1—N1—C7143 (7)C9—O2—C7—N13.2 (2)
O1i—Cu1—N1—C813.88 (15)C9—O2—C7—C6178.17 (16)
O1—Cu1—N1—C8166.12 (15)C5—C6—C7—N1176.24 (18)
N1i—Cu1—N1—C832 (7)C1—C6—C7—N15.5 (3)
Cu1—O1—C1—C2167.87 (16)C5—C6—C7—O25.4 (3)
Cu1—O1—C1—C611.8 (3)C1—C6—C7—O2172.87 (16)
O1—C1—C2—C3177.2 (2)C7—N1—C8—C10112.28 (18)
C6—C1—C2—C32.4 (3)Cu1—N1—C8—C1071.94 (19)
C1—C2—C3—C40.2 (4)C7—N1—C8—C99.56 (19)
C2—C3—C4—C51.6 (3)Cu1—N1—C8—C9166.22 (12)
C3—C4—C5—C61.0 (3)C7—O2—C9—C89.1 (2)
C4—C5—C6—C11.3 (3)N1—C8—C9—O211.01 (19)
C4—C5—C6—C7176.96 (18)C10—C8—C9—O2109.00 (18)
O1—C1—C6—C5176.67 (19)N1—C8—C10—C11171.40 (18)
C2—C1—C6—C53.0 (3)C9—C8—C10—C1173.7 (2)
O1—C1—C6—C75.1 (3)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···Cgii0.972.893.632 (2)134
C9—H9A···Cgiii0.972.943.814 (2)151
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formula[Cu(C11H12NO2)2]
Mr443.97
Crystal system, space groupMonoclinic, P21/c
Temperature (K)291
a, b, c (Å)6.6645 (9), 14.5796 (19), 10.5615 (14)
β (°) 95.163 (1)
V3)1022.1 (2)
Z2
Radiation typeMo Kα
µ (mm1)1.10
Crystal size (mm)0.48 × 0.27 × 0.19
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.621, 0.821
No. of measured, independent and
observed [I > 2σ(I)] reflections
6062, 1882, 1652
Rint0.013
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.077, 1.08
No. of reflections1882
No. of parameters134
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.19

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1999), SHELXTL and PLATON (Spek, 2003).

Selected geometric parameters (Å, º) top
Cu1—O11.9083 (14)Cu1—N11.9541 (14)
O1i—Cu1—O1180O1—Cu1—N1i89.19 (6)
O1—Cu1—N190.81 (6)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···Cgii0.972.893.632 (2)134
C9—H9A···Cgiii0.972.943.814 (2)151
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x, y+3/2, z1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds