metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Chloridobis{N-[(di­methyl­amino)­di­methyl­sil­yl]-2,6-di­methyl­anilido-κ2N,N′}titanium(III)

aDepartment of Chemistry, Taiyuan Teachers College, Taiyuan 030031, People's Republic of China
*Correspondence e-mail: sdbai@sxu.edu.cn

(Received 22 June 2010; accepted 26 June 2010; online 3 July 2010)

In the monomeric title titanium(III) compound, [Ti(C12H21N2Si)2Cl], the metal atom is surrounded by two N–silylated anilide ligands in an N,N′′-chelating mode. The two ends of the N—Si—N chelating unit exhibit different affinity to the metal center. The Ti—Namine bond is longer than the Ti—Nanilide bond by about 0.29 Å. The two ligands are arranged trans to each other and the mol­ecule demonstrates a pseudo-twofold rotation along the axis of the Ti—Cl bond. The five–coordinate Ti atom demonstrates a highly distorted trigonal-bipyramidal geometry.

Related literature

For related titanium compounds, see: Ovchinnikov et al. (1993[Ovchinnikov, Y. E., Ustinov, M. V., Igonin, V. A., Struchkov, Y. T., Kalikhman, I. D. & Voronkov, M. G. (1993). J. Organomet. Chem. 461, 75-80.]); Chomitz et al. (2008[Chomitz, W. A., Mickenberg, S. F. & Arnold, J. (2008). Inorg. Chem. 47, 373-380.]). For amido titanium compounds as olefin polymerization catalyts, see: Alesso et al. (2008[Alesso, G., Sanz, M., Mosquera, M. E. G. & Cuenca, T. (2008). Eur. J. Inorg. Chem. pp. 4638-4649.]); Oakes et al. (2004[Oakes, D. C. H., Kimberley, B. S., Gibson, V. C., Jones, D. J., White, A. J. P. & Williams, D. J. (2004). Chem. Commun. pp. 2174-2175.]); Tabernero et al. (2009[Tabernero, V., Cuenca, T., Mosquera, M. E. G. & Ramirez de Arellano, C. (2009). Polyhedron, 28, 2545-2554.]). For catalytic applications of related N–silylated analido group-4-metal compounds towards olefin polymerization, see: Gibson et al. (1998[Gibson, V. C., Kimberley, B. S., White, A. J. P., Willianms, D. J. & Howard, P. (1998). Chem. Commun. pp. 313-314.]); Hill & Hitchcock (2002[Hill, M. S. & Hitchcock, P. B. (2002). Organometallics, 21, 3258-3262.]); Yuan et al. (2010[Yuan, S. F., Wei, X. H., Tong, H. B., Zhang, L. P., Liu, D. S. & Sun, W. H. (2010). Organometallics, 29, 2085-2092.]). For related organometallic compounds with analogous analido ligands, see: Schumann et al. (2000[Schumann, H., Gottfriedsen, J., Dechert, S. & Girgsdies, F. (2000). Z. Anorg. Allg. Chem. 626, 747-758.]); Chen (2008[Chen, J. (2008). Acta Cryst. E64, m938.], 2009[Chen, J. (2009). Acta Cryst. E65, m1307.]).

[Scheme 1]

Experimental

Crystal data
  • [Ti(C12H21N2Si)2Cl]

  • Mr = 526.12

  • Monoclinic, C 2/c

  • a = 34.145 (5) Å

  • b = 9.2718 (15) Å

  • c = 20.909 (3) Å

  • β = 122.894 (2)°

  • V = 5558.2 (15) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.51 mm−1

  • T = 213 K

  • 0.40 × 0.30 × 0.15 mm

Data collection
  • Bruker SMART area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.814, Tmax = 0.928

  • 10981 measured reflections

  • 4866 independent reflections

  • 4473 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.072

  • wR(F2) = 0.168

  • S = 1.17

  • 4866 reflections

  • 289 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Selected bond lengths (Å)

Ti1—N1 1.989 (3)
Ti1—N3 1.995 (3)
Ti1—N2 2.282 (4)
Ti1—N4 2.291 (4)
Ti1—Cl1 2.3374 (13)

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Group 4 metal amides supported with the N–silylated anilido ligands were active catalysts for olefin polymerization (Gibson et al., 1998; Hill & Hitchcock, 2002). In particular, titanium amides were found to be more efficient and applicable (Alesso et al., 2008; Oakes et al., 2004; Tabernero et al., 2009). Therefore, the monoionic N–silylated anilido ligand bearing a pendant amino group was employed for synthesizing titanium compound. Analogous compounds with different metals including Zn (Schumann et al., 2000), Zr (Chen, 2009) and Fe (Chen, 2008) have been synthesized. Moreover, a group of zirconium amides with the similar ligand were reported showing good performance in ethylene polymerization (Yuan et al., 2010). It implied that the title titanium compound would behave better in catalysis application.

The title compound was prepared by the metathetical reaction of TiCl4(THF)2 with [LiN(SiMe2NMe2)(2,6-Me2C6H3)]2. It is interesting that the valence of Ti has changed from IV to III. Similar situation could be found in Ovchinnikov's work (Ovchinnikov et al., 1993) and other - Chomitz et al., 2008). The driving factors for reduction will be investigated in further research. The suitable single–crystal of the title compound was obtained by recrystallization in toluene. Its molecular structure is shown in Fig. 1. In the monomeric molecular structure of title compound, the metal center is coordinated by two N–silylated anilido ligands. Each ligand has an N—Si—N chelating moiety, which is presumed to be a "quasi" conjugated unit owing to d···π–interaction between Si and N atoms. Two ligands are arranged in trans– to each other and obey the pseudo–C2 symmetrical operation. Such arrangement makes Ti atom right in the triangular planes of N1···N3···Cl1 and N2···N4···Cl1. The five–coordinate Ti(III) center demonstrates a highly distorted trigonal–bipyramid geometry (N2– and N4–apical atoms). The configuration is as same as the Fe(III) compound reported previously (Chen, 2008), presumably due to the same valence. The metal center Ti is chelated with an average N—Ti—N bite angle of 74.18 (13)°. The corresponding N—Si—N of the ligand is constrained to be about 95.25 (16)°. The mean Ti—Nanilido bond is 1.992 (3)Å, whereas the mean Ti—Namino bond is 2.286 (4)Å in the title compound. It suggests the former is much tighter than the latter. They are different from corresponding bond lengths 1.972 (4)Å and 2.356 (6)Å in a related amido Ti(III) compound reported by Chomitz et al. (2008).

Related literature top

For related titanium compounds, see: Ovchinnikov et al. (1993); Chomitz et al. (2008). For amido titanium compounds as olefin polymerization catalyts, see: Alesso et al. (2008); Oakes et al. (2004); Tabernero et al. (2009). For catalytic applications of related N–silylated analido group 4 metal compounds towards olefin polymerization, see: Gibson et al. (1998); Hill & Hitchcock (2002); Yuan et al. (2010). For related organometallic compounds with analogous analido ligands, see: Schumann et al. (2000); Chen (2008, 2009).

Experimental top

TiCl4(THF)2 (0.48 g, 1.45 mmol) was added into the solution of [LiN(SiMe2NMe2)(2,6-Me2C6H3)]2 (0.66 g, 1.45 mmol) in Et2O (30 ml) at 273 K. The reaction mixture was warmed to room temperature and kept stirring for 12 h. It was dried in vacuum to remove all volatiles and the residue was extracted with CH2Cl2 (30 ml). Concentration of the filtrate under reduced pressure and recrystallization in toluene gave the title compound as purple crystals (yield 0.50 g, 66%).

Refinement top

The methyl H atoms were constrained to an ideal geometry, with C—H distances of 0.97Å and Uiso(H) = 1.5Ueq(C), but each group was allowed to rotate freely about its C—C, C—N and C—Si bonds. The other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances in the range 0.94Å and Uiso(H) = 1.2Ueq(C).

Structure description top

Group 4 metal amides supported with the N–silylated anilido ligands were active catalysts for olefin polymerization (Gibson et al., 1998; Hill & Hitchcock, 2002). In particular, titanium amides were found to be more efficient and applicable (Alesso et al., 2008; Oakes et al., 2004; Tabernero et al., 2009). Therefore, the monoionic N–silylated anilido ligand bearing a pendant amino group was employed for synthesizing titanium compound. Analogous compounds with different metals including Zn (Schumann et al., 2000), Zr (Chen, 2009) and Fe (Chen, 2008) have been synthesized. Moreover, a group of zirconium amides with the similar ligand were reported showing good performance in ethylene polymerization (Yuan et al., 2010). It implied that the title titanium compound would behave better in catalysis application.

The title compound was prepared by the metathetical reaction of TiCl4(THF)2 with [LiN(SiMe2NMe2)(2,6-Me2C6H3)]2. It is interesting that the valence of Ti has changed from IV to III. Similar situation could be found in Ovchinnikov's work (Ovchinnikov et al., 1993) and other - Chomitz et al., 2008). The driving factors for reduction will be investigated in further research. The suitable single–crystal of the title compound was obtained by recrystallization in toluene. Its molecular structure is shown in Fig. 1. In the monomeric molecular structure of title compound, the metal center is coordinated by two N–silylated anilido ligands. Each ligand has an N—Si—N chelating moiety, which is presumed to be a "quasi" conjugated unit owing to d···π–interaction between Si and N atoms. Two ligands are arranged in trans– to each other and obey the pseudo–C2 symmetrical operation. Such arrangement makes Ti atom right in the triangular planes of N1···N3···Cl1 and N2···N4···Cl1. The five–coordinate Ti(III) center demonstrates a highly distorted trigonal–bipyramid geometry (N2– and N4–apical atoms). The configuration is as same as the Fe(III) compound reported previously (Chen, 2008), presumably due to the same valence. The metal center Ti is chelated with an average N—Ti—N bite angle of 74.18 (13)°. The corresponding N—Si—N of the ligand is constrained to be about 95.25 (16)°. The mean Ti—Nanilido bond is 1.992 (3)Å, whereas the mean Ti—Namino bond is 2.286 (4)Å in the title compound. It suggests the former is much tighter than the latter. They are different from corresponding bond lengths 1.972 (4)Å and 2.356 (6)Å in a related amido Ti(III) compound reported by Chomitz et al. (2008).

For related titanium compounds, see: Ovchinnikov et al. (1993); Chomitz et al. (2008). For amido titanium compounds as olefin polymerization catalyts, see: Alesso et al. (2008); Oakes et al. (2004); Tabernero et al. (2009). For catalytic applications of related N–silylated analido group 4 metal compounds towards olefin polymerization, see: Gibson et al. (1998); Hill & Hitchcock (2002); Yuan et al. (2010). For related organometallic compounds with analogous analido ligands, see: Schumann et al. (2000); Chen (2008, 2009).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure, showing the atom–numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius.
Chloridobis{N-[(dimethylamino)dimethylsilyl]-2,6-dimethylanilido- κ2N,N'}titanium(III) top
Crystal data top
[Ti(C12H21N2Si)2Cl]F(000) = 2248
Mr = 526.12Dx = 1.258 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4223 reflections
a = 34.145 (5) Åθ = 2.3–27.6°
b = 9.2718 (15) ŵ = 0.51 mm1
c = 20.909 (3) ÅT = 213 K
β = 122.894 (2)°Block, purple
V = 5558.2 (15) Å30.40 × 0.30 × 0.15 mm
Z = 8
Data collection top
Bruker SMART area-detector
diffractometer
4866 independent reflections
Radiation source: fine–focus sealed tube4473 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
φ and ω scansθmax = 25.0°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 4040
Tmin = 0.814, Tmax = 0.928k = 611
10981 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.072Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.168H-atom parameters constrained
S = 1.17 w = 1/[σ2(Fo2) + (0.062P)2 + 21.4919P]
where P = (Fo2 + 2Fc2)/3
4866 reflections(Δ/σ)max = 0.001
289 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.48 e Å3
Crystal data top
[Ti(C12H21N2Si)2Cl]V = 5558.2 (15) Å3
Mr = 526.12Z = 8
Monoclinic, C2/cMo Kα radiation
a = 34.145 (5) ŵ = 0.51 mm1
b = 9.2718 (15) ÅT = 213 K
c = 20.909 (3) Å0.40 × 0.30 × 0.15 mm
β = 122.894 (2)°
Data collection top
Bruker SMART area-detector
diffractometer
4866 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4473 reflections with I > 2σ(I)
Tmin = 0.814, Tmax = 0.928Rint = 0.033
10981 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0720 restraints
wR(F2) = 0.168H-atom parameters constrained
S = 1.17 w = 1/[σ2(Fo2) + (0.062P)2 + 21.4919P]
where P = (Fo2 + 2Fc2)/3
4866 reflectionsΔρmax = 0.47 e Å3
289 parametersΔρmin = 0.48 e Å3
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ti10.15222 (2)0.34275 (8)0.06414 (4)0.0231 (2)
Si10.14374 (4)0.45890 (13)0.18120 (7)0.0284 (3)
Si20.12637 (4)0.23530 (14)0.08132 (7)0.0291 (3)
Cl10.23284 (4)0.30582 (13)0.13779 (7)0.0399 (3)
N10.12378 (11)0.3088 (4)0.12435 (18)0.0249 (7)
N20.15461 (11)0.5585 (4)0.11873 (19)0.0278 (8)
N30.12846 (11)0.4008 (4)0.04285 (18)0.0266 (8)
N40.13576 (12)0.1310 (4)0.0022 (2)0.0302 (8)
C10.09894 (14)0.1945 (4)0.1318 (2)0.0255 (9)
C20.12258 (15)0.0776 (5)0.1805 (2)0.0310 (10)
C30.0969 (2)0.0339 (5)0.1844 (3)0.0461 (13)
H3A0.11260.11270.21660.055*
C40.0490 (2)0.0317 (6)0.1420 (3)0.0547 (15)
H4A0.03210.10750.14600.066*
C50.02597 (18)0.0816 (6)0.0941 (3)0.0492 (14)
H5A0.00680.08230.06490.059*
C60.04990 (15)0.1948 (5)0.0877 (3)0.0347 (10)
C70.17487 (16)0.0709 (5)0.2274 (3)0.0430 (12)
H7A0.18490.01710.25720.064*
H7B0.18710.15360.26120.064*
H7C0.18640.07190.19400.064*
C80.02325 (15)0.3130 (6)0.0313 (3)0.0456 (13)
H8A0.00990.29560.00640.068*
H8B0.03140.31480.00650.068*
H8C0.03110.40500.05760.068*
C90.10009 (19)0.5429 (6)0.1969 (3)0.0472 (13)
H9A0.11480.56590.25040.071*
H9B0.07460.47600.18140.071*
H9C0.08820.63050.16690.071*
C100.19967 (18)0.4424 (6)0.2747 (3)0.0453 (12)
H10A0.19620.48270.31420.068*
H10B0.22380.49450.27340.068*
H10C0.20820.34150.28560.068*
C110.11430 (17)0.6473 (5)0.0631 (3)0.0384 (11)
H11A0.11520.73910.08610.058*
H11B0.08560.59730.04810.058*
H11C0.11570.66390.01860.058*
C120.19724 (17)0.6475 (5)0.1534 (3)0.0409 (11)
H12A0.19270.73510.17400.061*
H12B0.20380.67220.11500.061*
H12C0.22330.59370.19410.061*
C130.12235 (15)0.5317 (5)0.0824 (2)0.0293 (10)
C140.07746 (16)0.5910 (5)0.1291 (2)0.0354 (11)
C150.0718 (2)0.7169 (6)0.1689 (3)0.0481 (13)
H15A0.04180.75610.20040.058*
C160.1094 (2)0.7862 (6)0.1633 (3)0.0550 (15)
H16A0.10500.87020.19160.066*
C170.1533 (2)0.7303 (5)0.1156 (3)0.0440 (12)
H17A0.17900.77890.11040.053*
C180.16069 (17)0.6047 (5)0.0751 (3)0.0357 (11)
C190.03519 (16)0.5235 (6)0.1355 (3)0.0473 (13)
H19A0.00770.57980.17020.071*
H19B0.03950.52150.08570.071*
H19C0.03130.42580.15470.071*
C200.20968 (17)0.5505 (6)0.0233 (3)0.0490 (13)
H20A0.23110.61450.02620.074*
H20B0.21220.45430.03880.074*
H20C0.21730.54780.02870.074*
C210.17307 (18)0.1982 (6)0.0987 (3)0.0476 (13)
H21A0.15930.16240.15020.071*
H21B0.19420.12640.06280.071*
H21C0.19010.28640.09240.071*
C220.06979 (18)0.1932 (6)0.1711 (3)0.0499 (13)
H22A0.07560.15800.20890.075*
H22B0.05090.27990.19000.075*
H22C0.05350.12000.16120.075*
C230.17362 (19)0.0209 (6)0.0299 (3)0.0484 (13)
H23A0.16290.06380.00260.073*
H23B0.18190.00590.08060.073*
H23C0.20070.06060.03250.073*
C240.09293 (18)0.0616 (6)0.0162 (3)0.0447 (13)
H24A0.08750.02730.04430.067*
H24B0.06670.12600.04550.067*
H24C0.09650.04030.03210.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ti10.0230 (4)0.0245 (4)0.0225 (4)0.0011 (3)0.0128 (3)0.0006 (3)
Si10.0335 (6)0.0254 (6)0.0285 (6)0.0036 (5)0.0184 (5)0.0021 (5)
Si20.0284 (6)0.0325 (7)0.0267 (6)0.0002 (5)0.0153 (5)0.0005 (5)
Cl10.0239 (5)0.0453 (7)0.0430 (7)0.0024 (5)0.0133 (5)0.0003 (5)
N10.0232 (17)0.0258 (19)0.0262 (17)0.0005 (14)0.0138 (15)0.0010 (15)
N20.0294 (18)0.0220 (19)0.0297 (18)0.0025 (15)0.0146 (16)0.0010 (15)
N30.0267 (18)0.0282 (19)0.0234 (17)0.0012 (15)0.0126 (15)0.0037 (15)
N40.035 (2)0.0255 (19)0.0329 (19)0.0025 (16)0.0204 (17)0.0018 (16)
C10.033 (2)0.024 (2)0.026 (2)0.0014 (18)0.0208 (19)0.0013 (18)
C20.042 (3)0.025 (2)0.028 (2)0.0020 (19)0.021 (2)0.0024 (19)
C30.069 (4)0.030 (3)0.038 (3)0.007 (2)0.028 (3)0.001 (2)
C40.072 (4)0.044 (3)0.056 (3)0.030 (3)0.039 (3)0.002 (3)
C50.039 (3)0.061 (4)0.047 (3)0.024 (3)0.023 (2)0.005 (3)
C60.034 (2)0.038 (3)0.036 (2)0.005 (2)0.022 (2)0.004 (2)
C70.048 (3)0.034 (3)0.040 (3)0.012 (2)0.019 (2)0.011 (2)
C80.023 (2)0.052 (3)0.052 (3)0.003 (2)0.014 (2)0.003 (3)
C90.065 (3)0.037 (3)0.060 (3)0.003 (3)0.047 (3)0.011 (3)
C100.055 (3)0.039 (3)0.031 (2)0.012 (2)0.017 (2)0.004 (2)
C110.046 (3)0.030 (3)0.038 (3)0.005 (2)0.023 (2)0.006 (2)
C120.042 (3)0.033 (3)0.046 (3)0.012 (2)0.022 (2)0.007 (2)
C130.039 (2)0.029 (2)0.020 (2)0.0034 (19)0.0163 (19)0.0016 (18)
C140.046 (3)0.035 (3)0.026 (2)0.007 (2)0.020 (2)0.002 (2)
C150.060 (3)0.044 (3)0.034 (3)0.021 (3)0.022 (3)0.012 (2)
C160.097 (5)0.031 (3)0.054 (3)0.008 (3)0.052 (4)0.011 (3)
C170.068 (4)0.029 (3)0.051 (3)0.003 (2)0.043 (3)0.002 (2)
C180.048 (3)0.032 (3)0.035 (2)0.005 (2)0.028 (2)0.005 (2)
C190.039 (3)0.055 (3)0.042 (3)0.016 (2)0.018 (2)0.008 (3)
C200.043 (3)0.050 (3)0.057 (3)0.018 (2)0.029 (3)0.003 (3)
C210.054 (3)0.049 (3)0.054 (3)0.001 (3)0.039 (3)0.003 (3)
C220.046 (3)0.053 (3)0.039 (3)0.002 (3)0.015 (2)0.010 (3)
C230.062 (3)0.036 (3)0.044 (3)0.017 (2)0.026 (3)0.007 (2)
C240.060 (3)0.042 (3)0.047 (3)0.023 (3)0.039 (3)0.015 (2)
Geometric parameters (Å, º) top
Ti1—N11.989 (3)C10—H10A0.9700
Ti1—N31.995 (3)C10—H10B0.9700
Ti1—N22.282 (4)C10—H10C0.9700
Ti1—N42.291 (4)C11—H11A0.9700
Ti1—Cl12.3374 (13)C11—H11B0.9700
Si1—N11.713 (4)C11—H11C0.9700
Si1—N21.795 (4)C12—H12A0.9700
Si1—C101.855 (5)C12—H12B0.9700
Si1—C91.861 (5)C12—H12C0.9700
Si2—N31.716 (4)C13—C181.406 (6)
Si2—N41.789 (4)C13—C141.407 (6)
Si2—C211.851 (5)C14—C151.386 (7)
Si2—C221.863 (5)C14—C191.511 (7)
N1—C11.418 (5)C15—C161.383 (8)
N2—C121.476 (5)C15—H15A0.9400
N2—C111.479 (6)C16—C171.374 (8)
N3—C131.419 (5)C16—H16A0.9400
N4—C241.474 (6)C17—C181.380 (7)
N4—C231.490 (6)C17—H17A0.9400
C1—C21.403 (6)C18—C201.502 (7)
C1—C61.406 (6)C19—H19A0.9700
C2—C31.387 (6)C19—H19B0.9700
C2—C71.500 (6)C19—H19C0.9700
C3—C41.374 (8)C20—H20A0.9700
C3—H3A0.9400C20—H20B0.9700
C4—C51.367 (8)C20—H20C0.9700
C4—H4A0.9400C21—H21A0.9700
C5—C61.381 (6)C21—H21B0.9700
C5—H5A0.9400C21—H21C0.9700
C6—C81.501 (7)C22—H22A0.9700
C7—H7A0.9700C22—H22B0.9700
C7—H7B0.9700C22—H22C0.9700
C7—H7C0.9700C23—H23A0.9700
C8—H8A0.9700C23—H23B0.9700
C8—H8B0.9700C23—H23C0.9700
C8—H8C0.9700C24—H24A0.9700
C9—H9A0.9700C24—H24B0.9700
C9—H9B0.9700C24—H24C0.9700
C9—H9C0.9700
N1—Ti1—N3135.36 (14)H8B—C8—H8C109.5
N1—Ti1—N273.69 (13)Si1—C9—H9A109.5
N3—Ti1—N2101.94 (14)Si1—C9—H9B109.5
N1—Ti1—N4101.77 (13)H9A—C9—H9B109.5
N3—Ti1—N474.68 (14)Si1—C9—H9C109.5
N2—Ti1—N4169.84 (13)H9A—C9—H9C109.5
N1—Ti1—Cl1111.41 (10)H9B—C9—H9C109.5
N3—Ti1—Cl1113.23 (10)Si1—C10—H10A109.5
N2—Ti1—Cl195.13 (9)Si1—C10—H10B109.5
N4—Ti1—Cl195.00 (10)H10A—C10—H10B109.5
N3—Ti1—Si1134.19 (11)Si1—C10—H10C109.5
N4—Ti1—Si1138.01 (9)H10A—C10—H10C109.5
Cl1—Ti1—Si197.07 (5)H10B—C10—H10C109.5
N1—Ti1—Si2130.26 (10)N2—C11—H11A109.5
N2—Ti1—Si2138.34 (9)N2—C11—H11B109.5
Cl1—Ti1—Si2102.91 (4)H11A—C11—H11B109.5
Si1—Ti1—Si2159.95 (4)N2—C11—H11C109.5
N1—Si1—N294.26 (16)H11A—C11—H11C109.5
N1—Si1—C10117.3 (2)H11B—C11—H11C109.5
N2—Si1—C10108.0 (2)N2—C12—H12A109.5
N1—Si1—C9114.0 (2)N2—C12—H12B109.5
N2—Si1—C9114.5 (2)H12A—C12—H12B109.5
C10—Si1—C9108.3 (2)N2—C12—H12C109.5
C10—Si1—Ti1110.52 (18)H12A—C12—H12C109.5
C9—Si1—Ti1141.20 (18)H12B—C12—H12C109.5
N3—Si2—N496.25 (16)C18—C13—C14119.1 (4)
N3—Si2—C21116.0 (2)C18—C13—N3121.0 (4)
N4—Si2—C21109.9 (2)C14—C13—N3119.9 (4)
N3—Si2—C22114.6 (2)C15—C14—C13119.4 (5)
N4—Si2—C22112.7 (2)C15—C14—C19118.8 (4)
C21—Si2—C22107.2 (2)C13—C14—C19121.9 (4)
C21—Si2—Ti1118.36 (18)C16—C15—C14121.3 (5)
C22—Si2—Ti1134.44 (18)C16—C15—H15A119.3
C1—N1—Si1124.5 (3)C14—C15—H15A119.3
C1—N1—Ti1135.6 (3)C17—C16—C15118.9 (5)
Si1—N1—Ti199.43 (16)C17—C16—H16A120.6
C12—N2—C11108.9 (4)C15—C16—H16A120.6
C12—N2—Si1117.9 (3)C16—C17—C18121.9 (5)
C11—N2—Si1112.8 (3)C16—C17—H17A119.1
C12—N2—Ti1119.6 (3)C18—C17—H17A119.1
C11—N2—Ti1109.2 (3)C17—C18—C13119.4 (5)
Si1—N2—Ti187.02 (14)C17—C18—C20119.1 (4)
C13—N3—Si2122.5 (3)C13—C18—C20121.6 (4)
C13—N3—Ti1136.5 (3)C14—C19—H19A109.5
Si2—N3—Ti199.94 (17)C14—C19—H19B109.5
C24—N4—C23108.3 (4)H19A—C19—H19B109.5
C24—N4—Si2113.1 (3)C14—C19—H19C109.5
C23—N4—Si2117.5 (3)H19A—C19—H19C109.5
C24—N4—Ti1112.7 (3)H19B—C19—H19C109.5
C23—N4—Ti1116.6 (3)C18—C20—H20A109.5
Si2—N4—Ti187.61 (15)C18—C20—H20B109.5
C2—C1—C6119.2 (4)H20A—C20—H20B109.5
C2—C1—N1121.0 (4)C18—C20—H20C109.5
C6—C1—N1119.8 (4)H20A—C20—H20C109.5
C3—C2—C1119.0 (4)H20B—C20—H20C109.5
C3—C2—C7119.8 (4)Si2—C21—H21A109.5
C1—C2—C7121.2 (4)Si2—C21—H21B109.5
C4—C3—C2121.4 (5)H21A—C21—H21B109.5
C4—C3—H3A119.3Si2—C21—H21C109.5
C2—C3—H3A119.3H21A—C21—H21C109.5
C5—C4—C3119.5 (5)H21B—C21—H21C109.5
C5—C4—H4A120.2Si2—C22—H22A109.5
C3—C4—H4A120.2Si2—C22—H22B109.5
C4—C5—C6121.4 (5)H22A—C22—H22B109.5
C4—C5—H5A119.3Si2—C22—H22C109.5
C6—C5—H5A119.3H22A—C22—H22C109.5
C5—C6—C1119.4 (5)H22B—C22—H22C109.5
C5—C6—C8119.5 (4)N4—C23—H23A109.5
C1—C6—C8121.0 (4)N4—C23—H23B109.5
C2—C7—H7A109.5H23A—C23—H23B109.5
C2—C7—H7B109.5N4—C23—H23C109.5
H7A—C7—H7B109.5H23A—C23—H23C109.5
C2—C7—H7C109.5H23B—C23—H23C109.5
H7A—C7—H7C109.5N4—C24—H24A109.5
H7B—C7—H7C109.5N4—C24—H24B109.5
C6—C8—H8A109.5H24A—C24—H24B109.5
C6—C8—H8B109.5N4—C24—H24C109.5
H8A—C8—H8B109.5H24A—C24—H24C109.5
C6—C8—H8C109.5H24B—C24—H24C109.5
H8A—C8—H8C109.5

Experimental details

Crystal data
Chemical formula[Ti(C12H21N2Si)2Cl]
Mr526.12
Crystal system, space groupMonoclinic, C2/c
Temperature (K)213
a, b, c (Å)34.145 (5), 9.2718 (15), 20.909 (3)
β (°) 122.894 (2)
V3)5558.2 (15)
Z8
Radiation typeMo Kα
µ (mm1)0.51
Crystal size (mm)0.40 × 0.30 × 0.15
Data collection
DiffractometerBruker SMART area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.814, 0.928
No. of measured, independent and
observed [I > 2σ(I)] reflections
10981, 4866, 4473
Rint0.033
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.072, 0.168, 1.17
No. of reflections4866
No. of parameters289
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.062P)2 + 21.4919P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.47, 0.48

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Ti1—N11.989 (3)Ti1—N42.291 (4)
Ti1—N31.995 (3)Ti1—Cl12.3374 (13)
Ti1—N22.282 (4)
 

Acknowledgements

This work was carried out under the sponsorship of the Natural Science Foundation of Shanxi Province (2008011024).

References

First citationAlesso, G., Sanz, M., Mosquera, M. E. G. & Cuenca, T. (2008). Eur. J. Inorg. Chem. pp. 4638–4649.  Web of Science CSD CrossRef Google Scholar
First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, J. (2008). Acta Cryst. E64, m938.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChen, J. (2009). Acta Cryst. E65, m1307.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChomitz, W. A., Mickenberg, S. F. & Arnold, J. (2008). Inorg. Chem. 47, 373–380.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationGibson, V. C., Kimberley, B. S., White, A. J. P., Willianms, D. J. & Howard, P. (1998). Chem. Commun. pp. 313–314.  Web of Science CSD CrossRef Google Scholar
First citationHill, M. S. & Hitchcock, P. B. (2002). Organometallics, 21, 3258–3262.  Web of Science CSD CrossRef CAS Google Scholar
First citationOakes, D. C. H., Kimberley, B. S., Gibson, V. C., Jones, D. J., White, A. J. P. & Williams, D. J. (2004). Chem. Commun. pp. 2174–2175.  Web of Science CSD CrossRef Google Scholar
First citationOvchinnikov, Y. E., Ustinov, M. V., Igonin, V. A., Struchkov, Y. T., Kalikhman, I. D. & Voronkov, M. G. (1993). J. Organomet. Chem. 461, 75–80.  CSD CrossRef CAS Web of Science Google Scholar
First citationSchumann, H., Gottfriedsen, J., Dechert, S. & Girgsdies, F. (2000). Z. Anorg. Allg. Chem. 626, 747–758.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTabernero, V., Cuenca, T., Mosquera, M. E. G. & Ramirez de Arellano, C. (2009). Polyhedron, 28, 2545–2554.  Web of Science CSD CrossRef CAS Google Scholar
First citationYuan, S. F., Wei, X. H., Tong, H. B., Zhang, L. P., Liu, D. S. & Sun, W. H. (2010). Organometallics, 29, 2085–2092.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds