Download citation
Download citation
link to html
This paper reports an investigation of the chemistry, crystal structure refinement and thermal behavior (80–1650 K) of ludwigite from the Iten'yurginskoe deposit (Eastern Chukotka, Russia). Its chemical composition was determined by electron microprobe analysis, giving an empirical formula (Mg1.70Fe2+0.29Mn0.01)Σ2.00(Fe3+0.90Al0.08Mg0.02)Σ1.00O2(BO3). A refinement of the crystal structure from single-crystal X-ray diffraction data (SCXRD) was provided for the first time for ludwigite from this deposit (R = 0.047). The structure can be described as a framework composed of [MO6]n octahedra and isolated [BO3]3− triangles located in triangular interstices of the framework. Based on a comprehensive analysis of SCXRD and Mössbauer spectroscopy data, the M1 site is occupied by Mg, M2 and M3 by Mg and Fe2+, M4 by Fe3+, Mg and Al. There are also oxo-centered [O4M4]n+ and [O2M5]n+ polyhedra building up a framework with the [BO3]3− triangles located in its hexagonal interstices. No indications of magnetic ordering are found in the temperature range investigated. The Fe2+ → Fe3+ oxidation occurs above 600 K, and is accompanied by a decrease of the unit-cell parameters and subsequent incomplete solid-phase decomposition with the formation of hematite, warwickite and magnetite. The mineral melts at temperatures above 1582 K. The thermal expansion of ludwigite is slightly anisotropic, which is explained by a dense packing of the [MO6]n octahedra as well as a virtually perpendicular orientation of the oxo-centered double chains to each other. At room temperature, maximum expansion is along the c axis (αc = 9.1 × 10−6 K−1) and minimum expansion is in the ab plane (αa = 8.6 × 10−6, αb = 7.6 × 10−6 K−1), which is due to the preferred orientation of the [BO3]3− triangles. A comparison of the thermal behavior of three oxoborates of the ludwigite group, namely azoproite (Mg,Fe2+)2(Fe3+,Ti,Mg,Al)O2(BO3), vonsenite (Fe2+,Mg)2(Fe3+,Mn2+,Sn,Al)O2(BO3) and ludwigite (Mg,Fe2+,Mn)2(Fe3+,Al,Mg)O2(BO3), is provided.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2052520623006455/ra5133sup1.cif
Contains datablocks global, I

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2052520623006455/ra5133sup2.pdf
Supporting Information

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520623006455/ra5133Isup7.hkl
Contains datablock I

CCDC reference: 2284280

Computing details top

Data collection: CrysAlis PRO 1.171.41.104a (Rigaku OD, 2021); cell refinement: CrysAlis PRO 1.171.41.104a (Rigaku OD, 2021); data reduction: CrysAlis PRO 1.171.41.104a (Rigaku OD, 2021).

(I) top
Crystal data top
Al0.08BFe1.183Mg1.737O5F(000) = 389
Mr = 201.26Dx = 3.881 Mg m3
Orthorhombic, PbamMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P -2xab;-2yab;-2zCell parameters from 436 reflections
a = 9.2532 (14) Åθ = 4.0–32.7°
b = 12.3025 (18) ŵ = 5.35 mm1
c = 3.0256 (5) ÅT = 293 K
V = 344.43 (9) Å3Prism, black
Z = 40.2 × 0.05 × 0.05 mm
Data collection top
XtaLAB Synergy, Single source at home/near, HyPix
diffractometer
380 independent reflections
Radiation source: X-ray tube272 reflections with I > 3σ(I)
Mirror monochromatorRint = 0.100
Detector resolution: 10.0000 pixels mm-1θmax = 33.0°, θmin = 4.0°
ω scansh = 1013
Absorption correction: multi-scan
CrysAlisPro 1.171.41.104a (Rigaku Oxford Diffraction, 2021) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 1816
Tmin = 0.582, Tmax = 1l = 44
2325 measured reflections
Refinement top
Refinement on F0 restraints
R[F2 > 2σ(F2)] = 0.04710 constraints
wR(F2) = 0.043Weighting scheme based on measured s.u.'s w = 1/(σ2(F) + 0.0001F2)
S = 1.53(Δ/σ)max = 0.045
380 reflectionsΔρmax = 1.40 e Å3
60 parametersΔρmin = 1.64 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Fe40.73942 (19)0.38552 (11)0.50.0065 (5)0.90
Mg40.73942 (19)0.38552 (11)0.50.0065 (5)0.02
Al40.73942 (19)0.38552 (11)0.50.0065 (5)0.08
Mg20.500.50.0089 (9)0.477 (18)
Fe2'0.500.50.0089 (9)0.523 (18)
Mg30.0021 (4)0.2796 (2)00.0101 (11)0.978 (12)
Fe3'0.0021 (4)0.2796 (2)00.0101 (11)0.022 (12)
Mg10000.0077 (14)
O50.3498 (8)0.2624 (5)0.50.008 (2)
O30.6253 (7)0.1418 (5)0.50.011 (2)
O10.8499 (8)0.0442 (5)0.50.010 (2)
O40.1104 (7)0.1419 (5)00.011 (2)
O20.3843 (7)0.0769 (5)00.012 (2)
B10.2733 (14)0.3588 (8)0.50.010 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe40.0051 (9)0.0075 (8)0.0071 (8)0.0021 (7)00
Mg40.0051 (9)0.0075 (8)0.0071 (8)0.0021 (7)00
Al40.0051 (9)0.0075 (8)0.0071 (8)0.0021 (7)00
Mg20.0134 (19)0.0055 (14)0.0077 (16)0.0005 (12)00
Fe2'0.0134 (19)0.0055 (14)0.0077 (16)0.0005 (12)00
Mg30.012 (2)0.0090 (17)0.0094 (19)0.0011 (16)00
Fe3'0.012 (2)0.0090 (17)0.0094 (19)0.0011 (16)00
Mg10.010 (3)0.008 (2)0.005 (2)0.001 (2)00
O50.011 (4)0.009 (3)0.006 (4)0.003 (3)00
O30.008 (4)0.015 (3)0.010 (3)0.004 (3)00
O10.006 (4)0.012 (3)0.012 (4)0.002 (3)00
O40.016 (4)0.007 (3)0.009 (4)0.000 (3)00
O20.014 (4)0.007 (3)0.016 (4)0.003 (3)00
B10.024 (8)0.006 (4)0.001 (5)0.004 (5)00
Geometric parameters (Å, º) top
Fe4—O5i2.087 (7)Fe2'—O22.081 (4)
Fe4—O1ii2.120 (7)Fe2'—O2v2.081 (4)
Fe4—O4iii1.956 (4)Fe2'—O2iv2.081 (4)
Fe4—O4i1.956 (4)Fe2'—O2vi2.081 (4)
Fe4—O2iii2.074 (5)Mg3—O5vii2.131 (6)
Fe4—O2i2.074 (5)Mg3—O5viii2.131 (6)
Mg4—O5i2.087 (7)Mg3—O3vii2.127 (5)
Mg4—O1ii2.120 (7)Mg3—O3viii2.127 (5)
Mg4—O4iii1.956 (4)Mg3—O41.968 (7)
Mg4—O4i1.956 (4)Mg3—O2vii2.075 (7)
Mg4—O2iii2.074 (5)Fe3'—O5vii2.131 (6)
Mg4—O2i2.074 (5)Fe3'—O5viii2.131 (6)
Al4—O5i2.087 (7)Fe3'—O3vii2.127 (5)
Al4—O1ii2.120 (7)Fe3'—O3viii2.127 (5)
Al4—O4iii1.956 (4)Fe3'—O41.968 (7)
Al4—O4i1.956 (4)Fe3'—O2vii2.075 (7)
Al4—O2iii2.074 (5)Mg1—O1ix2.124 (5)
Al4—O2i2.074 (5)Mg1—O1x2.124 (5)
Mg2—O32.095 (6)Mg1—O1xi2.124 (5)
Mg2—O3iv2.095 (6)Mg1—O1iv2.124 (5)
Mg2—O22.081 (4)Mg1—O42.023 (6)
Mg2—O2v2.081 (4)Mg1—O4xii2.023 (6)
Mg2—O2iv2.081 (4)O5—B11.381 (13)
Mg2—O2vi2.081 (4)O3—B1i1.369 (14)
Fe2'—O32.095 (6)O1—B1i1.388 (13)
Fe2'—O3iv2.095 (6)
O5i—Mg4—O4iii98.5 (2)O3iv—Fe2'—O295.4 (2)
O5i—Mg4—O4i98.5 (2)O3iv—Fe2'—O2v95.4 (2)
O5i—Mg4—O2iii83.0 (2)O3iv—Fe2'—O2iv84.6 (2)
O5i—Mg4—O2i83.0 (2)O3iv—Fe2'—O2vi84.6 (2)
O4iii—Mg4—O4i101.3 (2)O2—Fe2'—O2v93.29 (18)
O4iii—Mg4—O2iii82.5 (2)O2—Fe2'—O2iv86.71 (18)
O4iii—Mg4—O2i175.6 (2)O2—Fe2'—O2vi180
O4i—Mg4—O2iii175.6 (2)O2v—Fe2'—O2iv180
O4i—Mg4—O2i82.5 (2)O2v—Fe2'—O2vi86.71 (18)
O2iii—Mg4—O2i93.7 (2)O2iv—Fe2'—O2vi93.29 (18)
O3—Mg2—O3iv180O4—Mg3—O2vii178.9 (3)
O3—Mg2—O284.6 (2)O5vii—Fe3'—O5viii90.4 (2)
O3—Mg2—O2v84.6 (2)O5vii—Fe3'—O3vii87.70 (19)
O3—Mg2—O2iv95.4 (2)O5vii—Fe3'—O3viii165.8 (3)
O3—Mg2—O2vi95.4 (2)O5vii—Fe3'—O497.4 (2)
O3iv—Mg2—O295.4 (2)O5vii—Fe3'—O2vii81.9 (2)
O3iv—Mg2—O2v95.4 (2)O5viii—Fe3'—O3vii165.8 (3)
O3iv—Mg2—O2iv84.6 (2)O5viii—Fe3'—O3viii87.70 (19)
O3iv—Mg2—O2vi84.6 (2)O5viii—Fe3'—O497.4 (2)
O2—Mg2—O2v93.29 (18)O5viii—Fe3'—O2vii81.9 (2)
O2—Mg2—O2iv86.71 (18)O3vii—Fe3'—O3viii90.7 (2)
O2—Mg2—O2vi180O3vii—Fe3'—O496.8 (3)
O2v—Mg2—O2iv180O3vii—Fe3'—O2vii83.9 (2)
O2v—Mg2—O2vi86.71 (18)O3viii—Fe3'—O496.8 (3)
O2iv—Mg2—O2vi93.29 (18)O3viii—Fe3'—O2vii83.9 (2)
O3—Fe2'—O3iv180O4—Fe3'—O2vii178.9 (3)
O3—Fe2'—O284.6 (2)O4—Mg1—O4xii180
O3—Fe2'—O2v84.6 (2)O5—B1—O3viii120.6 (9)
O3—Fe2'—O2iv95.4 (2)O5—B1—O1viii118.5 (10)
O3—Fe2'—O2vi95.4 (2)O3viii—B1—O1viii121.0 (9)
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+3/2, y+1/2, z+1; (iii) x+1/2, y+1/2, z; (iv) x+1, y, z; (v) x, y, z+1; (vi) x+1, y, z+1; (vii) x1/2, y+1/2, z; (viii) x1/2, y+1/2, z+1; (ix) x1, y, z1; (x) x1, y, z; (xi) x+1, y, z1; (xii) x, y, z.
 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds