Download citation
Download citation
link to html
Podand-type ligands are an inter­esting class of acyclic ligands which can form host-guest complexes with many transition metals and can undergo conformational changes. Organic phosphates are components of many biological mol­ecules. A new route for the synthesis of phosphate esters with a retained six-membered ring has been used to prepare 2,2'-[benzene-1,2-diylbis(­oxy)]bis­(5,5-dimethyl-1,3,2-dioxaphosphinane) 2,2'-dioxide, C6H4{O[cyclo-P(O)OCH2CMe2CH2O]}2 or C16H24O8P2, (1), 2-[(2'-hy­droxy­biphenyl-2-yl)­oxy]-5,5-di­methyl-1,3,2-dioxaphosphinane 2-oxide, [cyclo-P(O)OCH2CMe2CH2O](2,2'-OC6H4-C6H4OH), (2), and oxybis(5,5-dimethyl-1,3,2-dioxaphosphinane) 2,2'-dioxide, O[cyclo-P(O)OCH2CMe2CH2O]2, (3). Compound (1) is novel, whereas the results for compounds (2) and (3) have been reported previously, but we record here our results for compound (3), which we find are more precise and accurate than those currently reported in the literature. In (1), two cyclo-P(O)OCH2CMe2CH2O groups are linked through a catechol group. The conformations about the two catechol O atoms are quite different, viz. one C-C-O-P torsion angle is -169.11 (11)° and indicates a trans arrangement, whereas the other C-C-O-P torsion angle is 92.48 (16)°, showing a gauche conformation. Both six-membered POCCCO rings have good chair-shape conformations. In both the trans and gauche conformations, the catechol O atoms are in the axial sites and the short P=O bonds are equatorially bound.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S205322961502015X/qs3050sup1.cif
Contains datablocks musa25, musa26, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S205322961502015X/qs3050musa25sup2.hkl
Contains datablock musa25

cdx

Chemdraw file https://doi.org/10.1107/S205322961502015X/qs3050musa25sup4.cdx
Supplementary material

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S205322961502015X/qs3050musa26sup3.hkl
Contains datablock musa26

cdx

Chemdraw file https://doi.org/10.1107/S205322961502015X/qs3050musa26sup5.cdx
Supplementary material

CCDC references: 1433081; 1433080

Introduction top

Podand-type ligands are an inter­esting class of acyclic ligands (Fenton, 1987). They have potential donor atoms, such as oxygen, nitro­gen and sulfur, which can form host–guest complexes with many transition metals and can undergo conformational changes due to high flexibility (Oepen et al., 1978; Vögtle et al., 1981; Kumar et al., 2013). These metal complexes can be stabilized by the presence of spheroidal cavities. Such compounds can catalyze reactions and have a high significance in materials science (Neogi & Bharadwaj, 2006). Furthermore, organic phosphates have special importance as they are components of many biological molecules, such as nucleic acids, vitamins and enzymes, which perform essential functions in key life processes (Timosheva et al. 2005).

Inter­estingly, from hydrolysis studies, Kumara Swamy has noted the formation of several phosphate esters of type I while investigating penta- and hexacoordinated cyclic phospho­ranes with six- and higher-membered rings (Kumara Swamy et al., 1998). These reactions are helpful in determining the hydrolytic stability of phospho­rane rings (Kumara Swamy et al., 2000). Compound (2) (literature yield 19%) and other similar compounds were synthesized previously by us through hydrolysis of spiro­phospho­ranes with a saturated 1,3,2-dioxa­phospho­rine ring (see Scheme 1). An alternative route for the synthesis of similar compounds was explored by reacting ClP(O)(OCH2CMe2CH2O) with an equimolar amount of diol in the presence of Et3N (Kumara Swamy et al., 1998).

In this paper, we use a new method to synthesize 2,2'-[benzene-1,2-diylbis(­oxy)]bis­(5,5-di­methyl-1,3,2-dioxaphosphinane) 2,2'-dioxide, C6H4{O[cyclo-P(O)OCH2CMe2CH2O]}2, (1), 2-[(2'-hy­droxy­biphenyl-2-yl)­oxy]-5,5-di­methyl-1,3,2-dioxaphosphinane 2-oxide, [cyclo-P(O)OCH2CMe2CH2O](2,2'-OC6H4–C6H4OH), (2), and oxybis(5,5-di­methyl-1,3,2-dioxaphosphinane) 2,2'-dioxide, O[cyclo-P(O)OCH2CMe2CH2O]2, (3). This involves the use of cyclo-[P(O)(H)OCH2CMe2CH2O] and the corresponding diol in the presence of N-chloro­diiso­propyl­amine (NCDA). Using this novel approach and adjusting the ratios of rea­cta­nts, one or both of the –OH groups of the diol could be reacted with thydrogen phosphite under fewer [less stringent?] air-restriction conditions.

Compounds (1), (2) and (3) are readily isolated in a pure crystalline state by reacting hydrogen phosphite and diol/ClN(iPr)2, and recrystallizing the product from di­chloro­methane and n-hexane. The side product [H2(iPr)2N]+.Cl- is easily removed by washing the precipitate with water. Our new synthetic route leading to compounds (1)–(3) in this study is illustrated in Scheme 2. A range of products can be prepared by reacting 5,5-di­methyl-1,3,2-dioxaphosphinane 2-oxide with either one mole or half a mole of the diol (as in Scheme 2).

The products were characterized by NMR and X-ray methods. The δ phospho­rus NMR values [-13.89 p.p.m. for (1), -14.26 p.p.m. for (2) and -21.13 p.p.m. for (3)] are in the expected range for tetra­coordinated phosphate esters. An inter­esting feature in the 1H NMR spectra for the OCH2 groups in all three compounds is illustrated in Fig. 1. A clear AX pattern is observed for compounds (1) and (3), whereas an AB pattern is observed for compound (2). This is due to hydrogen–hydrogen coupling and then 3J coupling to phospho­rus, as shown in Fig. 1. Furthermore, two separate signals are observed for the CH3 group in 5,5-di­methyl-1,3,2-dioxaphosphinane.

Experimental top

Chemicals were procured from Aldrich or from local manufacturers and were purified when required. Solvents were purified according to standard procedures (Perrin et al., 1986). NMR spectra were recorded on a Bruker 400 MHz spectrometer. Chemical shifts (CDCl3, p.p.m.) are measured against tetra­methyl­silane (1H and 13C) or external 85% H3PO4.

Synthesis and crystallization top

N-Chloro­diiso­propyl­amine was prepared as described in the literature (Antczak et al., 1977). Preparations of [cyclo-P(O)OCH2CMe2CH2O](2,2'-OC6H4—C6H4OH), (2) (Kumara Swamy et al., 1998), and O[cyclo-P(O)OCH2CMe2CH2O]2, (3) (Bukowska-Strzyzewska & Dobrowolska, 1978; Cook & White, 1976), have also been described.

Preparation of 2,2'-[benzene-1,2-diylbis(­oxy)]bis­(5,5-di­methyl-1,3,2-dioxaphosphinane) 2,2'-dioxide, (1) top

To an ice-cold mixture of 5,5-di­methyl-1,3,2-dioxaphosphinane 2-oxide (0.38 g, 2.53 mmol) and 1,2-di­hydroxy­benzene (0.14 g, 1.27 mmol) in dry di­ethyl ether (30 ml) was added N-chloro­diisoproyl­amine (0.34 g, 2.53 mmol) dropwise using a syringe over a period of 5 min. The mixture was brought slowly to room temperature and stirred under nitro­gen overnight. The solvent was reduced to 10 ml under vacuum and n-hexane (3 ml) was added to afford (1) and the diiso­propyl­amine hydro­chloride salt. The solid was collected, washed quickly with water (15 ml) and then dried in air. The solid was crystallized from di­chloro­methane and n-hexane (2:1 v/v) to produce a white crystalline solid (yield 0.26 g, 50%; m.p. 420–423 K). 1H NMR (CDCl3, 400 MHz): δ 7.36–7.06 (m, 4H, Ar—H), 4.36 (d, 4H, CH2), 3.91 (dd, 4H, CH2), 1.26 (s, 6H, CH3), 0.84 (s, 6H, CH3). 13C NMR (CDCl3, 400 MHz): δ 141.05, 125.91, 121.36 (aromatic carbons), 78.59 (2C, CMe2), 32.29 (4C, CH2), 21.94 (2C, CH3) 20.11 (2C, CH3). 31P NMR (CDCl3, 400 MHz): δ -13.89. Analysis calculated for C16H24O8P2: C 47.30, H 5.95%; found: C 47.43, H 6.16%.

Preparation of 2-[(2'-hy­droxy­biphenyl-2-yl)­oxy]-5,5-di­methyl-1,3,2-dioxaphosphinane 2-oxide, (2) top

The procedure was essentially the same as that for the preparation of (1) using 5,5-di­methyl-1,3,2-dioxaphosphinane 2-oxide (0.65 g, 4.33 mmol), 2,2'-biphenol (0.81 g, 4.33 mmol) and N-chloro­diisoproyl­amine (0.59 g, 4.33 mmol) [yield: 0.94 g, 65%; m.p. 451–454 K (literature 455 K)]. 1H NMR (CDCl3, 400 MHz): δ 6.94–7.66 (m, 8H, Ar—H), 5.35 (br, 1H, OH), 3.45–3.60 (m, 4H, CH2), 1.11 (s, 3H, CH3), 0.44 (s, 3H, CH3). 31P NMR (CDCl3, 400 MHz): δ -14.26 (literature value in DMSO + CDCl2 is -15.1). Analysis calculated for C17H19O5P: C 61.08, H 5.73%; found: C 61.19, H 5.95%.

Preparation of oxybis(5,5-di­methyl-1,3,2-dioxaphosphinane) 2,2'-dioxide, (3) top

The procedure was essentially the same as that for the preparation of (1) using 5,5-di­methyl-1,3,2-dioxaphosphinane 2-oxide (0.46 g, 3.06 mmol), H2O (0.03 g, 1.53 mmol) and N-chloro­diisoproyl­amine (0.41 g, 3.06 mmol) [yield 0.26 g, 58%; m.p. 441 K (literature 461–465 K)]. 1H NMR (CDCl3, 400 MHz): 4.41 (d, 4H, CH2), 3.93 (dd, 4H, CH2), 1.26 (s, 6H, CH3), 0.84 (s, 6H, CH3). 31P NMR (CDCl3, 400 MHz): δ -21.13. Analysis calculated for C10H20O7P2: C 38.23, H 6.24%; found: C 38.31, H 6.33%.

Refinement top

Crystal data, data collection and structure refinement details for compounds (1) and (3) are summarized in Table 1. Intensity data were measured for crystals of three compounds (1)–(3). Compound (1) is novel, where as the results for compounds (2) and (3) have been reported previously [for (2), see Kumara Swamy et al. (1998); for (3), see Cook & White (1976) and Bukowska-Strzyzewska & Dobrowolska (1978)], but we record here our results for compound (3) which we find are more precise and accurate than those currently reported in the literature. In both analyses, all H atoms were located in difference maps. In the refinements, the methyl-group H atoms were refined as rigid groups by rotation about the C—C bond to agree best with the electron density, while the remaining H atoms (coordinates and isotropic displacement parameters) were refined freely.

Results and discussion top

X-ray and NMR analyses of compounds (1) and (3) confirm that the six-membered phospho­rinane ring is intact and always adopts the chair conformation. The molecular structure of compound (1) (Fig. 2) confirms that the two cyclo-P(O)OCH2CMe2CH2O groups are linked through a catechol group. The conformations about the two catechol O atoms are quite different, viz. the C2—C1—O1—P1 torsion angle is -169.11 (11)° and indicates a trans arrangement, whereas the C1—C2—O2—P2 angle is 92.48 (16)°, and indicates a gauche conformation. Both six-membered POCCCO rings have good chair shapes; in each, the catechol O atom is in an axial site, and the short P1—O16 and P2—O26 bonds are equatorially bound [the PO distances are 1.4493 (13) and 1.4473 (13) Å, respectively, whereas the other P—O distances are in the range 1.5509 (13)–1.5894 (12) Å].

In compound (3), the two cyclo-P(O)OCH2CMe2CH2O groups are linked through a central O atom, and are related by a pseudo-twofold symmetry axis (Fig. 3). Both six-membered rings have chair conformations. At both P atoms, the linking O3 atom is in an axial position and a shorter PO bond is equatorially bonded; the order of P—O bond lengths in both groups is P O (as P1—O1 ca 1.44 Å) < P—Oring (as P1—O11 ca 1.55 Å) < P—Olinking (as P1—O3 ca 1.60 Å).

These dimensions for (1) and (3) are very similar to those for compound (2) (Kumara Swamy et al., 1998). We also note that the angles about the P atoms are very similar, and, following the atom-numbering scheme for compound (1), find that the O16—P1—O1/O11/O15 angles in compound (1) and the corresponding angles in all three compounds are greater than the regular tetra­hedral angle (109.5°), lying in the range 111.97 (9)–115.97 (7)°. The angles corresponding to O11—P1—O15 lie in the narrow range 106.03 (12)–107.24 (6)°. The angles involving a link atom, e.g. O1 in (1), fall into two groups, viz. 100.67 (6)–101.96 (13) and 104.11 (14)–106.92 (8)°, depending on the orientation of the atom beyond the link atom, e.g. C1 is trans to O11 about the O1—P1 bond and, typically, the O1—P1—O11 angle of 100.67 (6)° is in the first group, with the least obtuse angles, and C1 is cis to O15 about the same bond and the O1—P1—O15 angle of 106.28 (7)° is in the second group.

In the phospho­rinane rings we note a consistency in the chair conformations through all the rings in compounds (1) and (3). In each ring, there are three distinct groupings of torsion angles, viz low (absolute) values in the angles about the P atom, medium values about the O—C bonds and higher values about the C—C bonds. In compound (3), the ranges of values in the two phospho­rinane rings are, respectively, -39.6 (3) to -43.6 (3), 49.9 (4) to 54.5 (4), and -55.8 (4) to 57.9 (4)°. The values in the P1-containing ring in compound (1) are very similar, but the second ring in (1) shows more extreme values, viz. 34.44 (14) to -35.32 (14), -49.53 (18) to 51.53 (19) and 59.36 (19) to -60.63 (19)° for the three pairs; here the chair is slightly flatter around the P atoms and deeper at the opposite end.

There are few short inter­molecular contacts in either of compounds (1) and (3). The shortest inter­molecular distances are of C—H···O contacts with a minimum H···O distance of 2.58 Å [2.656 (16) and 2.34 (2) Å in CIF] in compound (1) and 2.64 (3) Å in compound (3).

Computing details top

For both compounds, data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEPII (Johnson, 1976) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The 1H NMR spectra of the OCH2 group in the 1,3,2-dioxaphosphorinane ring of compounds (1), (2) and (3).
[Figure 2] Fig. 2. View of a molecule of (1), indicating the atom-numbering scheme. H atoms have been omitted for clarity. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 3] Fig. 3. View of a molecule of (3), indicating the atom-numbering scheme. H atoms have been omitted for clarity. Displacement ellipsoids are drawn at the 50% probability level.
(musa25) 2,2'-[Benzene-1,2-diylbis(oxy)]bis(5,5-dimethyl-1,3,2-dioxaphosphinane) 2,2'-dioxide top
Crystal data top
C16H24O8P2Z = 2
Mr = 406.29F(000) = 428
Triclinic, P1Dx = 1.389 Mg m3
a = 9.5706 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.2415 (5) ÅCell parameters from 6760 reflections
c = 11.6998 (5) Åθ = 2.9–32.6°
α = 94.507 (4)°µ = 0.26 mm1
β = 110.270 (4)°T = 293 K
γ = 111.616 (5)°Polyhedron, colourless
V = 971.75 (8) Å30.28 × 0.22 × 0.22 mm
Data collection top
Oxford Diffraction Xcalibur 3/Sapphire3 CCD
diffractometer
3522 independent reflections
Radiation source: Enhance (Mo) X-ray Source3111 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
Detector resolution: 16.0050 pixels mm-1θmax = 25.3°, θmin = 2.9°
Thin slice φ and ω scansh = 1111
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 1212
Tmin = 0.970, Tmax = 1.000l = 1414
13183 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: mixed
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0467P)2 + 0.2387P]
where P = (Fo2 + 2Fc2)/3
3522 reflections(Δ/σ)max = 0.001
287 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
C16H24O8P2γ = 111.616 (5)°
Mr = 406.29V = 971.75 (8) Å3
Triclinic, P1Z = 2
a = 9.5706 (5) ÅMo Kα radiation
b = 10.2415 (5) ŵ = 0.26 mm1
c = 11.6998 (5) ÅT = 293 K
α = 94.507 (4)°0.28 × 0.22 × 0.22 mm
β = 110.270 (4)°
Data collection top
Oxford Diffraction Xcalibur 3/Sapphire3 CCD
diffractometer
3522 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
3111 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 1.000Rint = 0.018
13183 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.17 e Å3
3522 reflectionsΔρmin = 0.37 e Å3
287 parameters
Special details top

Experimental. CrysAlisPro, Agilent Technologies, Version 1.171.36.21 Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.63738 (18)0.36947 (17)0.56114 (14)0.0383 (3)
C20.7132 (2)0.50869 (18)0.54993 (15)0.0425 (4)
C30.7894 (3)0.5337 (3)0.46828 (19)0.0622 (5)
C40.7932 (3)0.4196 (3)0.3998 (2)0.0716 (6)
C50.7198 (3)0.2817 (3)0.41188 (19)0.0619 (5)
C60.6412 (2)0.2556 (2)0.49250 (17)0.0485 (4)
O10.55679 (14)0.35278 (11)0.64127 (10)0.0425 (3)
P10.48663 (5)0.21159 (4)0.68809 (4)0.04313 (14)
O110.41657 (13)0.26452 (13)0.77506 (11)0.0478 (3)
C120.5333 (2)0.3758 (2)0.88942 (17)0.0468 (4)
C130.6671 (2)0.33522 (18)0.96936 (16)0.0446 (4)
C1310.7915 (3)0.4668 (2)1.07755 (18)0.0623 (5)
H13A0.73860.48841.12790.094*
H13B0.83370.54841.04440.094*
H13C0.88040.44621.12820.094*
C1320.5956 (3)0.2043 (2)1.0188 (2)0.0687 (6)
H13D0.51830.12300.94960.103*
H13E0.54090.22531.06780.103*
H13F0.68260.18201.07020.103*
C140.7544 (2)0.3058 (2)0.89078 (17)0.0458 (4)
O150.63898 (15)0.19196 (12)0.77626 (11)0.0485 (3)
O160.36583 (18)0.08262 (14)0.59102 (13)0.0673 (4)
O20.70552 (14)0.62353 (12)0.61712 (11)0.0446 (3)
P20.84618 (5)0.71344 (4)0.75157 (4)0.04369 (14)
O210.78129 (14)0.82044 (12)0.78995 (11)0.0477 (3)
C220.7949 (2)0.94625 (19)0.73635 (19)0.0458 (4)
C230.96791 (19)1.02969 (16)0.74533 (15)0.0394 (4)
C2310.9688 (3)1.1526 (2)0.67952 (19)0.0591 (5)
H23A1.07751.20740.68480.089*
H23B0.93561.21440.71930.089*
H23C0.89361.11330.59300.089*
C2321.0925 (2)1.0900 (2)0.88173 (17)0.0561 (5)
H23D1.09161.01170.92200.084*
H23E1.06381.15330.92450.084*
H23F1.20031.14280.88440.084*
C241.0084 (2)0.92816 (19)0.67482 (19)0.0480 (4)
O251.00235 (14)0.80403 (12)0.72902 (12)0.0508 (3)
O260.87952 (18)0.62723 (14)0.84088 (13)0.0689 (4)
H30.842 (3)0.628 (3)0.465 (2)0.076 (7)*
H40.845 (3)0.440 (3)0.347 (2)0.084 (7)*
H50.717 (3)0.203 (2)0.364 (2)0.067 (6)*
H60.593 (2)0.164 (2)0.4979 (17)0.051 (5)*
H1210.581 (2)0.464 (2)0.8678 (16)0.046 (5)*
H1220.469 (2)0.383 (2)0.9349 (18)0.056 (5)*
H1410.828 (2)0.267 (2)0.9339 (18)0.059 (5)*
H1420.811 (2)0.390 (2)0.8635 (17)0.049 (5)*
H2210.716 (2)0.911 (2)0.6498 (18)0.047 (5)*
H2220.765 (2)0.999 (2)0.7866 (18)0.057 (5)*
H2410.934 (2)0.894 (2)0.589 (2)0.054 (5)*
H2421.117 (3)0.975 (2)0.6787 (18)0.060 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0345 (8)0.0408 (8)0.0341 (8)0.0151 (7)0.0087 (6)0.0084 (6)
C20.0423 (9)0.0417 (9)0.0376 (8)0.0172 (7)0.0099 (7)0.0116 (7)
C30.0714 (13)0.0601 (13)0.0551 (11)0.0210 (11)0.0305 (10)0.0247 (10)
C40.0831 (16)0.0895 (17)0.0542 (12)0.0355 (13)0.0411 (12)0.0211 (12)
C50.0695 (13)0.0698 (14)0.0483 (11)0.0337 (11)0.0233 (10)0.0043 (10)
C60.0489 (10)0.0442 (10)0.0460 (9)0.0194 (8)0.0136 (8)0.0054 (8)
O10.0457 (6)0.0333 (6)0.0473 (6)0.0137 (5)0.0208 (5)0.0086 (5)
P10.0428 (2)0.0308 (2)0.0453 (3)0.00669 (18)0.0167 (2)0.00380 (18)
O110.0353 (6)0.0501 (7)0.0505 (7)0.0114 (5)0.0171 (5)0.0072 (5)
C120.0457 (10)0.0431 (10)0.0519 (10)0.0189 (8)0.0212 (8)0.0048 (8)
C130.0453 (9)0.0389 (9)0.0446 (9)0.0141 (7)0.0168 (8)0.0086 (7)
C1310.0599 (12)0.0614 (12)0.0488 (10)0.0190 (10)0.0128 (9)0.0007 (9)
C1320.0756 (14)0.0655 (13)0.0651 (13)0.0229 (11)0.0328 (11)0.0297 (11)
C140.0432 (9)0.0422 (9)0.0525 (10)0.0206 (8)0.0170 (8)0.0130 (8)
O150.0583 (7)0.0366 (6)0.0542 (7)0.0240 (6)0.0230 (6)0.0081 (5)
O160.0688 (9)0.0416 (7)0.0580 (8)0.0039 (6)0.0210 (7)0.0036 (6)
O20.0442 (6)0.0352 (6)0.0466 (6)0.0160 (5)0.0103 (5)0.0114 (5)
P20.0440 (3)0.0328 (2)0.0454 (3)0.01260 (19)0.0111 (2)0.01387 (18)
O210.0504 (7)0.0383 (6)0.0548 (7)0.0120 (5)0.0285 (6)0.0129 (5)
C220.0446 (10)0.0374 (9)0.0563 (11)0.0182 (8)0.0207 (9)0.0108 (8)
C230.0402 (8)0.0313 (8)0.0413 (8)0.0107 (7)0.0151 (7)0.0095 (6)
C2310.0689 (12)0.0414 (10)0.0612 (12)0.0186 (9)0.0228 (10)0.0212 (9)
C2320.0534 (11)0.0474 (10)0.0461 (10)0.0063 (9)0.0129 (8)0.0080 (8)
C240.0480 (10)0.0410 (9)0.0558 (11)0.0137 (8)0.0274 (9)0.0115 (8)
O250.0420 (6)0.0405 (6)0.0704 (8)0.0191 (5)0.0213 (6)0.0143 (6)
O260.0764 (9)0.0460 (7)0.0577 (8)0.0174 (7)0.0040 (7)0.0232 (6)
Geometric parameters (Å, º) top
C1—C61.382 (2)C132—H13D0.9600
C1—C21.382 (2)C132—H13E0.9600
C1—O11.3900 (19)C132—H13F0.9600
C2—C31.376 (3)C14—O151.468 (2)
C2—O21.402 (2)C14—H1410.94 (2)
C3—C41.383 (3)C14—H1420.98 (2)
C3—H30.92 (2)O2—P21.5894 (12)
C4—C51.370 (3)P2—O261.4473 (13)
C4—H40.91 (3)P2—O211.5509 (13)
C5—C61.383 (3)P2—O251.5667 (13)
C5—H50.93 (2)O21—C221.460 (2)
C6—H60.90 (2)C22—C231.518 (2)
O1—P11.5830 (12)C22—H2210.969 (19)
P1—O161.4493 (13)C22—H2220.95 (2)
P1—O111.5597 (12)C23—C241.515 (2)
P1—O151.5611 (13)C23—C2311.525 (2)
O11—C121.457 (2)C23—C2321.528 (2)
C12—C131.520 (2)C231—H23A0.9600
C12—H1210.952 (19)C231—H23B0.9600
C12—H1220.96 (2)C231—H23C0.9600
C13—C141.519 (2)C232—H23D0.9600
C13—C1321.524 (3)C232—H23E0.9600
C13—C1311.530 (2)C232—H23F0.9600
C131—H13A0.9600C24—O251.456 (2)
C131—H13B0.9600C24—H2410.96 (2)
C131—H13C0.9600C24—H2420.95 (2)
C6—C1—C2120.07 (16)H13D—C132—H13F109.5
C6—C1—O1123.55 (15)H13E—C132—H13F109.5
C2—C1—O1116.36 (14)O15—C14—C13111.47 (14)
C3—C2—C1120.02 (17)O15—C14—H141103.7 (12)
C3—C2—O2119.93 (16)C13—C14—H141110.4 (12)
C1—C2—O2119.98 (15)O15—C14—H142106.2 (11)
C2—C3—C4119.8 (2)C13—C14—H142114.2 (11)
C2—C3—H3117.6 (15)H141—C14—H142110.4 (16)
C4—C3—H3122.5 (15)C14—O15—P1117.81 (10)
C5—C4—C3120.3 (2)C2—O2—P2120.58 (10)
C5—C4—H4121.9 (16)O26—P2—O21113.95 (8)
C3—C4—H4117.8 (16)O26—P2—O25111.94 (8)
C4—C5—C6120.2 (2)O21—P2—O25107.24 (6)
C4—C5—H5121.8 (13)O26—P2—O2114.73 (7)
C6—C5—H5117.9 (14)O21—P2—O2101.88 (7)
C1—C6—C5119.64 (19)O25—P2—O2106.26 (7)
C1—C6—H6121.9 (12)C22—O21—P2120.39 (10)
C5—C6—H6118.4 (12)O21—C22—C23111.45 (14)
C1—O1—P1126.34 (10)O21—C22—H221107.1 (11)
O16—P1—O11113.30 (8)C23—C22—H221111.1 (11)
O16—P1—O15113.22 (8)O21—C22—H222101.8 (12)
O11—P1—O15106.22 (7)C23—C22—H222112.7 (12)
O16—P1—O1115.97 (7)H221—C22—H222112.2 (16)
O11—P1—O1100.67 (6)C24—C23—C22107.77 (14)
O15—P1—O1106.28 (7)C24—C23—C231108.23 (14)
C12—O11—P1117.71 (10)C22—C23—C231108.12 (14)
O11—C12—C13112.49 (14)C24—C23—C232111.05 (15)
O11—C12—H121109.1 (11)C22—C23—C232111.39 (15)
C13—C12—H121110.0 (11)C231—C23—C232110.17 (14)
O11—C12—H122104.9 (12)C23—C231—H23A109.5
C13—C12—H122109.0 (12)C23—C231—H23B109.5
H121—C12—H122111.3 (16)H23A—C231—H23B109.5
C14—C13—C12108.54 (14)C23—C231—H23C109.5
C14—C13—C132111.04 (16)H23A—C231—H23C109.5
C12—C13—C132111.07 (16)H23B—C231—H23C109.5
C14—C13—C131107.97 (15)C23—C232—H23D109.5
C12—C13—C131107.27 (15)C23—C232—H23E109.5
C132—C13—C131110.81 (15)H23D—C232—H23E109.5
C13—C131—H13A109.5C23—C232—H23F109.5
C13—C131—H13B109.5H23D—C232—H23F109.5
H13A—C131—H13B109.5H23E—C232—H23F109.5
C13—C131—H13C109.5O25—C24—C23111.35 (14)
H13A—C131—H13C109.5O25—C24—H241108.6 (12)
H13B—C131—H13C109.5C23—C24—H241111.1 (11)
C13—C132—H13D109.5O25—C24—H242106.1 (12)
C13—C132—H13E109.5C23—C24—H242111.4 (13)
H13D—C132—H13E109.5H241—C24—H242108.2 (17)
C13—C132—H13F109.5C24—O25—P2119.42 (11)
C6—C1—C2—C31.4 (2)C131—C13—C14—O15173.11 (14)
O1—C1—C2—C3177.12 (15)C13—C14—O15—P154.46 (17)
C6—C1—C2—O2178.32 (14)O16—P1—O15—C14169.25 (12)
O1—C1—C2—O20.2 (2)O11—P1—O15—C1444.30 (13)
C1—C2—C3—C41.5 (3)O1—P1—O15—C1462.31 (13)
O2—C2—C3—C4178.38 (18)C3—C2—O2—P290.64 (18)
C2—C3—C4—C50.7 (3)C1—C2—O2—P292.48 (16)
C3—C4—C5—C60.2 (3)C2—O2—P2—O2653.81 (15)
C2—C1—C6—C50.6 (3)C2—O2—P2—O21177.43 (11)
O1—C1—C6—C5177.88 (16)C2—O2—P2—O2570.43 (13)
C4—C5—C6—C10.2 (3)O26—P2—O21—C22158.91 (12)
C6—C1—O1—P112.4 (2)O25—P2—O21—C2234.44 (14)
C2—C1—O1—P1169.11 (11)O2—P2—O21—C2276.96 (13)
C1—O1—P1—O1658.42 (15)P2—O21—C22—C2349.53 (18)
C1—O1—P1—O11178.93 (12)O21—C22—C23—C2459.36 (19)
C1—O1—P1—O1568.38 (13)O21—C22—C23—C231176.13 (14)
O16—P1—O11—C12168.51 (12)O21—C22—C23—C23262.68 (19)
O15—P1—O11—C1243.60 (13)C22—C23—C24—O2560.63 (19)
O1—P1—O11—C1267.00 (13)C231—C23—C24—O25177.34 (15)
P1—O11—C12—C1353.54 (18)C232—C23—C24—O2561.62 (19)
O11—C12—C13—C1457.12 (19)C23—C24—O25—P251.53 (19)
O11—C12—C13—C13265.2 (2)O26—P2—O25—C24161.00 (13)
O11—C12—C13—C131173.54 (15)O21—P2—O25—C2435.32 (14)
C12—C13—C14—O1557.14 (18)O2—P2—O25—C2473.05 (13)
C132—C13—C14—O1565.23 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O160.90 (2)2.656 (19)3.224 (2)122.2 (15)
C14—H142···O260.98 (2)2.34 (2)3.239 (2)152.9 (15)
C22—H221···O16i0.969 (19)2.663 (19)3.540 (2)150.6 (14)
C231—H23C···O16i0.962.603.489 (2)154
C22—H222···O15ii0.95 (2)2.66 (2)3.441 (2)140.4 (15)
C131—H13C···O26iii0.962.593.471 (3)152
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z; (iii) x+2, y+1, z+2.
(musa26) 2-[(2'-Hydroxybiphenyl-2-yl)oxy]-5,5-dimethyl-1,3,2-dioxaphosphinane 2-oxide top
Crystal data top
C10H20O7P2Dx = 1.398 Mg m3
Mr = 314.20Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 7659 reflections
a = 9.8434 (2) Åθ = 2.9–32.5°
b = 11.3589 (3) ŵ = 0.32 mm1
c = 26.6986 (8) ÅT = 293 K
V = 2985.18 (13) Å3Prism, colourless
Z = 80.40 × 0.18 × 0.14 mm
F(000) = 1328
Data collection top
Oxford Diffraction Xcalibur 3/Sapphire3 CCD
diffractometer
2141 independent reflections
Radiation source: Enhance (Mo) X-ray Source1920 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
Detector resolution: 16.0050 pixels mm-1θmax = 23.3°, θmin = 3.1°
Thin slice φ and ω scansh = 1010
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 1212
Tmin = 0.847, Tmax = 1.000l = 2929
33060 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: mixed
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.14 w = 1/[σ2(Fo2) + (0.0182P)2 + 4.2243P]
where P = (Fo2 + 2Fc2)/3
2141 reflections(Δ/σ)max = 0.001
208 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C10H20O7P2V = 2985.18 (13) Å3
Mr = 314.20Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 9.8434 (2) ŵ = 0.32 mm1
b = 11.3589 (3) ÅT = 293 K
c = 26.6986 (8) Å0.40 × 0.18 × 0.14 mm
Data collection top
Oxford Diffraction Xcalibur 3/Sapphire3 CCD
diffractometer
2141 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
1920 reflections with I > 2σ(I)
Tmin = 0.847, Tmax = 1.000Rint = 0.038
33060 measured reflectionsθmax = 23.3°
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.14Δρmax = 0.24 e Å3
2141 reflectionsΔρmin = 0.29 e Å3
208 parameters
Special details top

Experimental. CrysAlisPro, Agilent Technologies, Version 1.171.36.21 Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.45899 (9)0.53260 (8)0.61971 (3)0.0490 (3)
O10.4212 (3)0.4270 (2)0.64655 (11)0.0842 (9)
O110.4325 (2)0.52680 (18)0.56282 (8)0.0515 (6)
C120.4428 (4)0.6361 (4)0.53372 (15)0.0594 (10)
C130.3530 (3)0.7315 (3)0.55525 (12)0.0478 (8)
C1310.2040 (3)0.6951 (3)0.55180 (14)0.0636 (10)
H13A0.18900.62650.57210.095*
H13B0.18170.67760.51760.095*
H13C0.14760.75830.56360.095*
C1320.3768 (5)0.8453 (4)0.52559 (17)0.0938 (16)
H13D0.31790.90590.53810.141*
H13E0.35770.83160.49080.141*
H13F0.46970.86950.52930.141*
C140.3931 (4)0.7527 (3)0.60888 (15)0.0558 (9)
O150.3881 (2)0.6456 (2)0.63904 (8)0.0544 (6)
P20.75239 (9)0.49307 (8)0.61789 (3)0.0476 (2)
O20.7449 (3)0.4006 (2)0.58107 (9)0.0713 (7)
O210.7854 (2)0.44840 (18)0.67142 (8)0.0536 (6)
C220.8171 (4)0.5358 (4)0.70966 (14)0.0593 (10)
C230.9300 (3)0.6177 (3)0.69381 (11)0.0457 (8)
C2311.0617 (4)0.5494 (4)0.68676 (15)0.0763 (12)
H23A1.08060.50440.71640.115*
H23B1.13490.60340.68070.115*
H23C1.05280.49710.65870.115*
C2320.9474 (5)0.7134 (4)0.73355 (14)0.0826 (13)
H23D0.86320.75500.73770.124*
H23E1.01680.76750.72310.124*
H23F0.97310.67790.76480.124*
C240.8875 (4)0.6773 (3)0.64565 (13)0.0540 (9)
O250.8577 (2)0.5910 (2)0.60644 (8)0.0545 (6)
O30.6157 (2)0.5672 (2)0.62471 (10)0.0640 (7)
H1210.541 (4)0.660 (3)0.5358 (12)0.066 (11)*
H1220.412 (4)0.615 (3)0.5020 (14)0.075 (12)*
H1410.482 (4)0.780 (3)0.6115 (13)0.064 (11)*
H1420.335 (4)0.806 (3)0.6248 (12)0.065 (11)*
H2210.846 (3)0.491 (3)0.7376 (13)0.063 (10)*
H2220.734 (4)0.577 (4)0.7158 (14)0.089 (14)*
H2410.959 (3)0.721 (3)0.6335 (11)0.052 (9)*
H2420.808 (4)0.723 (3)0.6510 (12)0.063 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0390 (5)0.0484 (5)0.0597 (6)0.0035 (4)0.0082 (4)0.0031 (4)
O10.0702 (18)0.0701 (17)0.112 (2)0.0042 (15)0.0012 (16)0.0369 (16)
O110.0488 (13)0.0462 (13)0.0594 (14)0.0086 (11)0.0104 (11)0.0125 (11)
C120.059 (3)0.070 (3)0.049 (2)0.019 (2)0.0053 (19)0.0011 (19)
C130.0449 (18)0.0511 (19)0.0474 (19)0.0139 (16)0.0055 (15)0.0043 (15)
C1310.050 (2)0.075 (3)0.066 (2)0.0138 (19)0.0110 (18)0.005 (2)
C1320.089 (3)0.080 (3)0.113 (4)0.030 (3)0.034 (3)0.041 (3)
C140.048 (2)0.046 (2)0.074 (3)0.0039 (18)0.000 (2)0.0137 (19)
O150.0554 (15)0.0649 (15)0.0428 (12)0.0116 (12)0.0045 (11)0.0030 (11)
P20.0389 (5)0.0475 (5)0.0563 (5)0.0013 (4)0.0077 (4)0.0025 (4)
O20.0698 (17)0.0644 (16)0.0797 (17)0.0022 (13)0.0101 (15)0.0171 (14)
O210.0502 (14)0.0472 (13)0.0634 (14)0.0076 (11)0.0058 (11)0.0150 (11)
C220.058 (2)0.071 (3)0.049 (2)0.000 (2)0.0056 (19)0.015 (2)
C230.048 (2)0.0509 (19)0.0383 (17)0.0042 (16)0.0008 (15)0.0003 (14)
C2310.046 (2)0.100 (3)0.083 (3)0.001 (2)0.015 (2)0.010 (2)
C2320.112 (4)0.079 (3)0.057 (2)0.015 (3)0.002 (2)0.013 (2)
C240.057 (2)0.051 (2)0.054 (2)0.014 (2)0.0004 (19)0.0078 (17)
O250.0576 (15)0.0648 (15)0.0412 (12)0.0149 (12)0.0023 (11)0.0074 (11)
O30.0413 (13)0.0538 (14)0.0969 (19)0.0054 (11)0.0222 (13)0.0075 (13)
Geometric parameters (Å, º) top
P1—O11.446 (3)P2—O21.440 (2)
P1—O111.542 (2)P2—O251.551 (2)
P1—O151.549 (2)P2—O211.551 (2)
P1—O31.597 (2)P2—O31.597 (2)
O11—C121.468 (4)O21—C221.458 (4)
C12—C131.512 (5)C22—C231.510 (5)
C12—H1211.00 (4)C22—H2210.95 (3)
C12—H1220.93 (4)C22—H2220.96 (4)
C13—C141.505 (5)C23—C241.512 (5)
C13—C1311.527 (5)C23—C2311.523 (5)
C13—C1321.534 (5)C23—C2321.529 (4)
C131—H13A0.9600C231—H23A0.9600
C131—H13B0.9600C231—H23B0.9600
C131—H13C0.9600C231—H23C0.9600
C132—H13D0.9600C232—H23D0.9600
C132—H13E0.9600C232—H23E0.9600
C132—H13F0.9600C232—H23F0.9600
C14—O151.460 (4)C24—O251.463 (4)
C14—H1410.93 (4)C24—H2410.92 (3)
C14—H1420.94 (3)C24—H2420.95 (3)
O1—P1—O11114.16 (16)O2—P2—O21113.65 (14)
O1—P1—O15113.95 (15)O25—P2—O21106.03 (12)
O11—P1—O15106.70 (12)O2—P2—O3114.75 (15)
O1—P1—O3114.26 (15)O25—P2—O3101.96 (13)
O11—P1—O3104.83 (14)O21—P2—O3104.11 (14)
O15—P1—O3101.76 (13)C22—O21—P2117.9 (2)
C12—O11—P1118.3 (2)O21—C22—C23112.4 (3)
O11—C12—C13111.4 (3)O21—C22—H221105 (2)
O11—C12—H121105 (2)C23—C22—H221109 (2)
C13—C12—H121110 (2)O21—C22—H222106 (2)
O11—C12—H122104 (2)C23—C22—H222112 (3)
C13—C12—H122110 (2)H221—C22—H222113 (3)
H121—C12—H122115 (3)C22—C23—C24108.1 (3)
C14—C13—C12108.8 (3)C22—C23—C231110.3 (3)
C14—C13—C131110.7 (3)C24—C23—C231111.0 (3)
C12—C13—C131110.2 (3)C22—C23—C232109.1 (3)
C14—C13—C132108.4 (3)C24—C23—C232107.6 (3)
C12—C13—C132108.6 (3)C231—C23—C232110.7 (3)
C131—C13—C132110.1 (3)C23—C231—H23A109.5
C13—C131—H13A109.5C23—C231—H23B109.5
C13—C131—H13B109.5H23A—C231—H23B109.5
H13A—C131—H13B109.5C23—C231—H23C109.5
C13—C131—H13C109.5H23A—C231—H23C109.5
H13A—C131—H13C109.5H23B—C231—H23C109.5
H13B—C131—H13C109.5C23—C232—H23D109.5
C13—C132—H13D109.5C23—C232—H23E109.5
C13—C132—H13E109.5H23D—C232—H23E109.5
H13D—C132—H13E109.5C23—C232—H23F109.5
C13—C132—H13F109.5H23D—C232—H23F109.5
H13D—C132—H13F109.5H23E—C232—H23F109.5
H13E—C132—H13F109.5O25—C24—C23111.4 (3)
O15—C14—C13112.5 (3)O25—C24—H241105.4 (19)
O15—C14—H141106 (2)C23—C24—H241109 (2)
C13—C14—H141112 (2)O25—C24—H242108 (2)
O15—C14—H142106 (2)C23—C24—H242110 (2)
C13—C14—H142112 (2)H241—C24—H242113 (3)
H141—C14—H142109 (3)C24—O25—P2118.3 (2)
C14—O15—P1119.4 (2)P1—O3—P2132.41 (15)
O2—P2—O25115.03 (15)
O1—P1—O11—C12168.6 (2)P2—O21—C22—C2353.7 (4)
O15—P1—O11—C1241.8 (3)O21—C22—C23—C2457.8 (4)
O3—P1—O11—C1265.6 (3)O21—C22—C23—C23163.7 (4)
P1—O11—C12—C1354.3 (4)O21—C22—C23—C232174.6 (3)
O11—C12—C13—C1457.9 (4)C22—C23—C24—O2557.7 (4)
O11—C12—C13—C13163.6 (4)C231—C23—C24—O2563.4 (4)
O11—C12—C13—C132175.8 (3)C232—C23—C24—O25175.4 (3)
C12—C13—C14—O1555.8 (4)C23—C24—O25—P254.5 (4)
C131—C13—C14—O1565.4 (4)O2—P2—O25—C24170.1 (2)
C132—C13—C14—O15173.8 (3)O21—P2—O25—C2443.6 (3)
C13—C14—O15—P149.8 (4)O3—P2—O25—C2465.1 (3)
O1—P1—O15—C14166.5 (2)O1—P1—O3—P249.1 (3)
O11—P1—O15—C1439.6 (3)O11—P1—O3—P276.6 (2)
O3—P1—O15—C1470.0 (3)O15—P1—O3—P2172.4 (2)
O2—P2—O21—C22170.2 (2)O2—P2—O3—P132.1 (3)
O25—P2—O21—C2242.9 (3)O25—P2—O3—P1157.1 (2)
O3—P2—O21—C2264.2 (3)O21—P2—O3—P192.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C24—H241···O1i0.92 (3)2.64 (3)3.405 (5)141 (2)
Symmetry code: (i) x+3/2, y+1/2, z.

Experimental details

(musa25)(musa26)
Crystal data
Chemical formulaC16H24O8P2C10H20O7P2
Mr406.29314.20
Crystal system, space groupTriclinic, P1Orthorhombic, Pbca
Temperature (K)293293
a, b, c (Å)9.5706 (5), 10.2415 (5), 11.6998 (5)9.8434 (2), 11.3589 (3), 26.6986 (8)
α, β, γ (°)94.507 (4), 110.270 (4), 111.616 (5)90, 90, 90
V3)971.75 (8)2985.18 (13)
Z28
Radiation typeMo KαMo Kα
µ (mm1)0.260.32
Crystal size (mm)0.28 × 0.22 × 0.220.40 × 0.18 × 0.14
Data collection
DiffractometerOxford Diffraction Xcalibur 3/Sapphire3 CCD
diffractometer
Oxford Diffraction Xcalibur 3/Sapphire3 CCD
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Multi-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.970, 1.0000.847, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
13183, 3522, 3111 33060, 2141, 1920
Rint0.0180.038
θmax (°)25.323.3
(sin θ/λ)max1)0.6000.555
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.090, 1.05 0.046, 0.094, 1.14
No. of reflections35222141
No. of parameters287208
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.370.24, 0.29

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), ORTEPII (Johnson, 1976) and ORTEP-3 for Windows (Farrugia, 2012), SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 2012).

 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds