Download citation
Download citation
link to html
Cyclo­hexyl­amine reacts with 5-chloro-3-methyl-1-(pyridin-2-yl)-1H-pyrazole-4-carbaldehyde to give 5-cyclo­hexyl­amino-3-methyl-1-(pyridin-2-yl)-1H-pyrazole-4-carbaldehyde, C16H20N4O, (I), formed by nucleophilic substitution, but with 5-chloro-3-methyl-1-phenyl-1H-pyrazole-4-carbaldehyde the product is (Z)-4-[(cyclo­hexyl­amino)­methyl­idene]-3-methyl-1-phenyl-1H-pyrazol-5(4H)-one, C17H21N3O, (II), formed by condensation followed by hydrolysis. Compound (II) crystallizes with Z' = 2, and in one of the two independent mol­ecular types the cyclo­hexyl­amine unit is disordered over two sets of atomic sites having occupancies of 0.65 (3) and 0.35 (3). The vinyl­ogous amide portion in each compound shows evidence of electronic polarization, such that in each the O atom carries a partial negative charge and the N atom of the cyclo­hexyl­amine portion carries a partial positive charge. The mol­ecules of (I) contain an intra­molecular N-H...N hydrogen bond, and they are linked by C-H...O hydrogen bonds to form sheets. Each of the two independent mol­ecules of (II) contains an intra­molecular N-H...O hydrogen bond and each mol­ecular type forms a centrosymmetric dimer containing one R22(4) ring and two inversion-related S(6) rings.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229615006403/qs3046sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229615006403/qs3046Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229615006403/qs3046IIsup3.hkl
Contains datablock II

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229615006403/qs3046Isup4.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229615006403/qs3046IIsup5.cml
Supplementary material

CCDC references: 1056707; 1056706

Introduction top

\ Pyrazole derivatives show a broad range of biological applications in the agrochemical and pharmaceutical fields, and a number of them have been commercialized. For example, the insecticide chlorantraniliprole {systematic name: 3-bromo-N-[4-chloro-2-methyl-6-(methyl­carbamoyl)phenyl]-1-(3-chloro-2-\ pyridin-2-yl)-1H- pyrazole-5-carboxamide} acts as a potent and selective activator of ryanodine receptors in insects with high activity in a broad range of Lepidoptera (Lahm et al., 2007), and celecoxib {systematic name: 4-[5-(4-methyl­phenyl)-3-(tri­fluoro­methyl)­pyrazol-1-yl]benzene­sulfonamide} acts as a potent COX-2 inhibitor used in the treatment of inflammation and acute pain (Penning et al., 1997).

Fluoride-mediated nucleophilic substitution of 5-chloro­pyrazoles containing an electron-withdrawing group at the 4-position has recently been utilized in the preparation of 5-alkyl­amino­pyrazoles and 5-alk­oxy­pyrazoles (Shavnya et al., 2005). In a similar fashion, we have now studied a synthetic route for the preparation of 5-alkyl­amino derivatives from 5-chloro-1H-pyrazole-4-carbaldehydes via nucleophilic aromatic substitution with cyclo­hexyl­amine, as straightforward molecular diversification from the resulting 5-alkyl­amino-1H-4-carbaldehydes should then give access to a variety of new pyrazole derivatives. Thus, the reaction of 5-chloro-3-methyl-1-(pyridin-2-yl)-1H-pyrazole-4-carbaldehyde with cyclo­hexyl­amine, using caesium carbonate in N,N-di­methyl­formamide under microwave irradiation, affords the required substitution product 5-cyclo­hexyl­amino-3-methyl-1-(pyridin-2-yl)-1H-pyrazole-4-carbaldehyde, (I), in high yield. However, no such substitution reaction was observed with 5-chloro-3-methyl-1-phenyl-1H-pyrazole-4-carbaldehyde, despite the use of entirely similar reaction conditions. This difference can plausibly be ascribed to the stronger activating ability of the 1-(pyridin-2-yl) substituent, in contrast with the lower activating ability of a 1-phenyl substituent. However, the use of ethanol rather than N,N-di­methyl­formamide as solvent in the reaction between 5-chloro-3-methyl-1-phenyl-1H-pyrazole-4-carbaldehyde and cyclo­hexyl­amine in the presence of caesium carbonate under microwave irradiation affords the unexpected product (Z)-4-[(cyclo­hexyl­amino)­methyl­idene]-3-methyl-1-phenyl-1H-\ pyrazol-5(4H)-one, (II). The production of (II) is presumably due to an initial condensation reaction at the formyl group to form an inter­mediate imine, followed by a hydrolysis reaction at position 5 (see scheme). We report here the molecular structures and supra­molecular assembly of (I) and (II). The aims of this study are thus the confirmation of the molecular constitutions of (I) and (II) and the exploration and comparison of the supra­molecular assembly in the two compounds.

Experimental top

Synthesis and crystallization top

For the synthesis of (I) and (II), cyclo­hexyl­amine (0.9024 mmol) and caesium carbonate (0.1470 mmol) were added to a solution of either 5-chloro-3-methyl-1-(pyridin-2-yl)-1H-pyrazole-4-carbaldehyde (0.4512 mmol) in N,N-di­methyl­formamide (1 ml) for (I) or 5-chloro-3-methyl-1-phenyl-1H-pyrazole-4-carbaldehyde (0.4532 mmol) in ethanol (1 ml) for (II). The resulting reaction mixtures were stirred and heated at 433 K for 10 min [for (I)] or 30 min [for (II)] under microwave irradiation. The mixtures were filtered, and the filtrates were diluted with water (50 ml) and then extracted with di­chloro­methane (3 × 15 ml). The combined organic extracts were dried over anhydrous sodium sulfate and then the solvent was removed under reduced pressure. The resulting crude products were purified by silica-gel column chromatography using di­chloro­methane–ethyl acetate as eluent (30:1 v/v). Crystallization from N,N-di­methyl­formamide at ambient temperature and in the presence of air gave crystals of (I) and (II) suitable for single-crystal X-ray diffraction.

Analytical data top

Compound (I): colourless crystals, yield 93%, m.p. 378 K; HR—MS (ESI), m/z found [M+H]+ 285.1723, [M+Na]+ 307.1538; calculated for [C16H20N4O+H]+ 285.1710, [C16H20N4O+Na]+ 307.1529. Compound (II): pale-yellow crystals, yield 65%, m. p. 377 K; HR—MS (ESI), m/z found [M+H]+ 284.2011; [M+Na]+ 306.1575, calculated for [C17H21N3O+H]+ 284.1757, [C17H21N3O+Na]+ 306.1577.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. A number of crystals of (II) were examined but it did not prove possible to obtain a satisfactory data set at 120 K, possibly because of crystal damage during cooling. However, an entirely satisfactory data set was collected for (II) at ambient temperature and it became obvious at an early stage that in one of the two independent molecules of (II) the cyclo­hexyl­amine unit exhibited positional disorder over two sets of atomic sites having unequal occupancies. For the minor disorder component, the bonded distances and the one-angle non-bonded distances were restrained to be identical to the corresponding distances in the major component, subject to uncertainties of 0.005 and 0.01 Å, respectively. The anisotropic displacement parameters for those pairs of partial-occupancy atoms occupying approximately the same physical space were constrained to be identical. The partial occupancy H atoms were included in calculated positions, with C—H = 0.97 (CH2) or 0.98 Å (aliphatic C—H) and N—H = 0.86 Å, and with Uiso(H) = 1.2Ueq(C,N). Subject to these conditions, the site occupancies refined to values of 0.65 (3) and 0.35 (3). For (I) and for the ordered components of (II), all H atoms were located in difference maps. For these components, C-bound H atoms were then treated as riding in geometrically idealized positions, with C—H = 0.95 (alkenyl, aromatic and pyridyl), 0.98 (CH3), 0.99 (CH2) or 1.00 Å (aliphatic C—H) at 120 K, or 0.93 (alkenyl, aromatic and pyridyl), 0.96 (CH3), 0.97 (CH2) or 0.98 Å (aliphatic C—H) at 294 K, and with Uiso(H) = kUeq(C) where k = 1.5 for the methyl groups, which were permitted to rotate but not to tilt, or 1.2 for all other C-bound H atoms. For the H atoms bonded to ordered N atoms, the atomic coordinates were refined with Uiso(H) = 1.2Ueq(N), giving the N—H distances shown in Table 3. For (I), one low-angle reflection, i.e. 310, which had been attenuated by the beam stop, was omitted from the refinements. A rather high value of K was found for the group of very weak reflections having Fc/Fc(max) in the range 0 < Fc/Fc(max) < 0.007. Examination of the .fcf file for (II) showed that around a dozen high-angle reflections, although very weak, had quite high ratios of Fo2/Fc2, leading to a Level B alert in checkCIF. This accounts for the high value of K in the analysis of variance for the reflection group having Fc/Fc(max) in the range 0 < Fc/Fc(max) < 0.004. As there appeared to be no experimental justification for the removal of these weak reflections from the data set, they were retained.

Comment top

The molecular constitutions of (I) and (II) (Figs. 1 and 2) confirm the occurrence of two different reaction pathways based on, respectively, nucleophilic substitution to form (I), and initial imine formation by condensation followed by hydrolysis to form (II) (see scheme).

In (I), the non-H atoms, apart from those of the cyclo­hexyl substituent, are nearly coplanar. Thus, the dihedral angle between the planes of the pyridyl and pyrazole rings is only 2.47 (5)°, while that between the planes of the pyrazole ring and the carbaldehyde unit is 5.06 (6)°. The pyridyl ring is oriented such that its N atom can participate in the formation of an intra­molecular N—H···N hydrogen bond (Fig. 1 and Table 3), forming an S(6) (Bernstein et al., 1995) motif. Within the pyrazole ring of (I), the short N2—C3 distance (Table 2) is consistent with the presence of an isolated double bond. On the other hand, the three C—C distances, C3—C4, C4—C5 and C4—C41, span a range of little more than 0.02 Å, despite the fact that C4—C5 is formally a double bond and the other two are formally single bonds. In addition, the geometry at the amino atom N5 is planar within the rather large experimental uncertainty (Table 2), and the C—O distance is long, even for a conjugated aldehyde [mean value (Allen et al., 1987) = 1.211 Å; upper quartile value = 1.216 Å]. These observations thus suggest that the polarized form (Ia) (see scheme) is a significant contributor to the overall electronic structure of (I).

Compound (II) crystallizes with Z' = 2, and it will be convenient to refer to the molecules containing atoms O15 and O25 (Fig. 2) as types 1 and 2, respectively. The type 1 molecules exhibit positional disorder of the cyclo­hexyl­amine fragment (Fig. 2a), with site occupancies for the two disorder conponents of 0.65 (3) and 0.35 (3), respectively. With a common position for the amine N atom in the two disorder components, the positional difference between the cyclo­hexyl rings depends only on small differences in the two torsion angles defining their positions relative to the remainder of the molecule: the relevant C—N—C—C angles differ by 7.6 (8)° between the two forms, but the N—C—C—C angles differ by less than 1.0°. Accordingly, a search for possible additional crystallographic symmetry was made but found none. Despite this, the conformations of and bond distances in the two independent molecules are very similar. The key geometric parameters in the two disorder components of the type 1 molecule are essentially identical, and hence the discussion of geometry will be confined to the major form. The dihedral angles between the planes of the phenyl and pyrazole rings are 32.97 (5) and 29.73 (5)° for the type 1 and 2 molecules, respectively, and the corresponding values for the dihedral angles between the pyrazole rings and the exocyclic CC—N units are 5.51 (16)° for the major conformer of the type 1 molecule and 5.57 (11)° for the type 2 molecule, where the overall orientation of the cyclo­hexyl­amine unit in each type of molecule permits the participation of the N—H bond in the formation of an intra­molecular N—H···O hydrogen bond (Fig. 2 and Table 5), forming S(6) motifs, as in (I). Also as in (I), the geometry at the amine N atoms is planar within experimental uncertainty (Table 4). The Cx6—Nx7 distances (x = 1 or 2) differ little from the Nx2—Cx3 distances, while the Cx5—Ox5 distance is long in both molecules. As for (I), these observations suggest that the polarized form (IIa) (see scheme) is a major contributor to the overall electronic structure of (II). Accordingly, any hydrogen bonds involving the amine and carbonyl units are charge-assisted hydrogen bonds (Gilli et al., 1994).

As noted above, the molecule of (I) contains an intra­molecular N—H···N hydrogen bond and the N—H bond plays no role in the supra­molecular assembly. Instead, a combination of two C—H···O hydrogen bonds (Table 3) links the molecules of (I) into sheets, the formation of which is readily analysed in terms of two very simple substructures (Ferguson et al., 1998a,b; Gregson et al., 2000). The C—H···O hydrogen bond involving atom C51 links pairs of inversion-related molecules into centrosymmetric dimers characterized by an R22(14) motif, where the reference dimer is centred at (1/4, 3/4, 1/2). The C—H···O hydrogen bond involving atom C16 links molecules related by the 21 screw axis along (1/4, y, 1/4) to form a simple C(9) chain running parallel to the [010] direction. The effect of such chains is to link the reference dimer centred at (1/4, 3/4, 1/2) directly to the four related dimers centred at (1/4, 1/4, 0), (1/4, 1/4, 1), (1/4, 5/4, 0) and (1/4, 5/4, 1), so forming a hydrogen-bonded sheet lying parallel to (100) (Fig. 3) in the domain 0 < x < 0.5. A second such sheet, related to the first by inversion, lies in the domain 0.5 < x < 1.0, but there are no direction-specific inter­actions between adjacent sheets. There are no C—H···π inter­actions in the structure of (I) and the only short inter-ring contacts involve the pyrazole ring which, as noted above, shows no significant aromatic character.

The supra­molecular assembly of (II) is entirely different from that in (I), even though the potentially available hydrogen-bond donors and acceptors are similar for the two compounds. In (II), each of the two independent molecules contains an intra­molecular N—H···O hydrogen bond (Table 5), forming an S(6) motif. Each molecular type forms a centrosymmetric dimer, built from planar three-centre N—H···O hydrogen bonds, containing a central R22(4) ring flanked by two inversion-related S(6) rings (Fig. 4). For the selected asymmetric unit, the dimers formed by the type 1 and 2 molecules (Fig. 2) are centred at (1/2, 1/2, 1/2) and (1/2, 1, 0) respectively, but there are no direction-specific inter­actions between the dimers.

In summary, we have demonstrated the different types of reaction product dependent upon the nature of the 1-aryl substituent, consistent with the occurrence of two different reaction pathways, and we have demonstrated the very different modes of supra­molecular assembly in (I) and (II).

Computing details top

Data collection: COLLECT (Nonius, 1999) for (I); CrysAlis PRO (Agilent, 2012) for (II). Cell refinement: DIRAX/LSQ (Duisenberg et al., 2000) for (I); CrysAlis PRO (Agilent, 2012) for (II). Data reduction: EVALCCD (Duisenberg et al., 2003) for (I); CrysAlis PRO (Agilent, 2012) for (II). For both compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-labelling scheme and the intramolecular hydrogen bond (dashed line). Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The structures of the two independent molecules of (II), showing the atom-labelling schemes and the intramolecular hydrogen bonds (dashed lines) for (a) a type 1 molecule and (b) a type 2 molecule. Displacement ellipsoids are drawn at the 30% probability level. In the type 1 molecules, the two disorder components have occupancies of 0.65 (3) and 0.35 (3); the atomic sites designated N17 and N18 have identical coordinates, but the atomic coordinates of the associated H atoms, H17 and H18, are very slightly different.
[Figure 3] Fig. 3. A stereoview of part of the crystal structure of (I), showing the formation of a hydrogen-bonded sheet lying parallel to (100). Hydrogen bonds are shown as dashed lines and, for the sake of clarity, H atoms bonded to C atoms and not involved in the motifs shown have been omitted.
[Figure 4] Fig. 4. Part of the crystal structure of (II), showing the formation of two independent centrosymmetric dimers. Hydrogen bonds are shown as dashed lines and, for the sake of clarity, H atoms bonded to C atoms have been omitted, and only the major disorder component of the type 1 molecule is shown. O atoms marked with an asterisk (*) or a hash (#) are at the symmetry positions (-x + 1, -y + 1, -z + 1) and (-x + 1, -y + 2, -z), respectively.
(I) 5-Cyclohexylamino-3-methyl-1-(pyridin-2-yl)-1H-pyrazole-4-carbaldehyde top
Crystal data top
C16H20N4OF(000) = 1216
Mr = 284.36Dx = 1.286 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 21.369 (2) ÅCell parameters from 3370 reflections
b = 20.489 (3) Åθ = 27.5–2.8°
c = 6.7444 (10) ŵ = 0.08 mm1
β = 95.978 (10)°T = 120 K
V = 2936.8 (7) Å3Block, colourless
Z = 80.32 × 0.24 × 0.21 mm
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
3367 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode2149 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 4.0°
ϕ and ω scansh = 2327
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 2626
Tmin = 0.788, Tmax = 0.983l = 88
10192 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.049H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.115 w = 1/[σ2(Fo2) + (0.0561P)2 + 0.4348P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3367 reflectionsΔρmax = 0.21 e Å3
194 parametersΔρmin = 0.30 e Å3
Crystal data top
C16H20N4OV = 2936.8 (7) Å3
Mr = 284.36Z = 8
Monoclinic, C2/cMo Kα radiation
a = 21.369 (2) ŵ = 0.08 mm1
b = 20.489 (3) ÅT = 120 K
c = 6.7444 (10) Å0.32 × 0.24 × 0.21 mm
β = 95.978 (10)°
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
3367 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2149 reflections with I > 2σ(I)
Tmin = 0.788, Tmax = 0.983Rint = 0.051
10192 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.21 e Å3
3367 reflectionsΔρmin = 0.30 e Å3
194 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.14685 (6)0.56995 (6)0.1959 (2)0.0179 (3)
N20.09455 (6)0.61028 (7)0.1463 (2)0.0200 (3)
C30.11659 (8)0.66985 (8)0.1628 (2)0.0197 (4)
C40.18315 (7)0.67205 (8)0.2203 (2)0.0192 (4)
C50.20087 (7)0.60579 (8)0.2411 (2)0.0178 (4)
N110.18853 (6)0.46476 (7)0.2333 (2)0.0206 (3)
C120.13779 (7)0.50181 (8)0.1891 (2)0.0180 (4)
C130.07774 (8)0.47694 (9)0.1360 (2)0.0222 (4)
H130.04250.50510.10920.027*
C140.07108 (8)0.40990 (9)0.1235 (3)0.0254 (4)
H140.03100.39110.08450.031*
C150.12321 (8)0.37033 (9)0.1681 (3)0.0258 (4)
H150.11950.32420.16090.031*
C160.18056 (8)0.39942 (8)0.2233 (2)0.0231 (4)
H160.21620.37220.25580.028*
C310.07300 (8)0.72615 (9)0.1171 (3)0.0276 (4)
H31A0.03100.70980.06930.041*
H31B0.08880.75350.01400.041*
H31C0.07060.75210.23810.041*
C410.22074 (8)0.72994 (8)0.2375 (3)0.0229 (4)
H410.26500.72470.26460.027*
O410.20020 (6)0.78596 (6)0.21984 (19)0.0304 (3)
N50.25577 (6)0.57556 (7)0.2949 (2)0.0220 (3)
H50.2518 (8)0.5328 (10)0.297 (3)0.026*
C510.31307 (7)0.60696 (8)0.3867 (2)0.0194 (4)
H510.30110.64700.45840.023*
C520.35723 (8)0.62656 (9)0.2328 (3)0.0233 (4)
H52A0.33560.65760.13610.028*
H52B0.36890.58750.15870.028*
C530.41653 (8)0.65845 (9)0.3370 (3)0.0294 (4)
H53A0.44510.67040.23640.035*
H53B0.40490.69890.40440.035*
C540.45051 (8)0.61238 (10)0.4900 (3)0.0312 (5)
H54A0.48720.63510.56060.037*
H54B0.46630.57410.42060.037*
C550.40692 (8)0.58925 (9)0.6413 (3)0.0268 (4)
H55A0.39640.62660.72480.032*
H55B0.42900.55620.72990.032*
C560.34627 (8)0.55978 (9)0.5383 (3)0.0235 (4)
H56A0.35630.51890.46980.028*
H56B0.31770.54870.63980.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0167 (7)0.0186 (7)0.0183 (7)0.0004 (6)0.0005 (5)0.0007 (6)
N20.0180 (7)0.0217 (8)0.0199 (8)0.0037 (6)0.0002 (5)0.0014 (6)
C30.0222 (9)0.0204 (9)0.0164 (8)0.0008 (7)0.0021 (6)0.0005 (7)
C40.0215 (8)0.0204 (8)0.0157 (8)0.0009 (7)0.0018 (6)0.0008 (7)
C50.0184 (8)0.0209 (9)0.0145 (8)0.0014 (7)0.0033 (6)0.0007 (6)
N110.0234 (8)0.0195 (7)0.0190 (8)0.0001 (6)0.0032 (5)0.0004 (6)
C120.0235 (9)0.0190 (8)0.0118 (8)0.0020 (7)0.0027 (6)0.0015 (6)
C130.0225 (9)0.0252 (10)0.0187 (9)0.0023 (7)0.0006 (6)0.0002 (7)
C140.0295 (10)0.0270 (10)0.0200 (9)0.0093 (8)0.0038 (7)0.0026 (7)
C150.0379 (11)0.0191 (9)0.0214 (10)0.0051 (8)0.0079 (7)0.0011 (7)
C160.0305 (9)0.0199 (9)0.0195 (9)0.0014 (7)0.0060 (7)0.0004 (7)
C310.0245 (9)0.0231 (9)0.0343 (11)0.0038 (8)0.0013 (7)0.0021 (8)
C410.0229 (9)0.0217 (9)0.0238 (9)0.0010 (7)0.0014 (7)0.0002 (7)
O410.0317 (7)0.0184 (7)0.0405 (8)0.0003 (6)0.0010 (6)0.0007 (5)
N50.0176 (7)0.0180 (8)0.0296 (8)0.0013 (6)0.0014 (6)0.0031 (6)
C510.0172 (8)0.0184 (8)0.0219 (9)0.0021 (7)0.0010 (6)0.0010 (7)
C520.0204 (9)0.0272 (9)0.0220 (9)0.0004 (7)0.0012 (7)0.0034 (7)
C530.0204 (9)0.0349 (11)0.0324 (11)0.0049 (8)0.0003 (7)0.0104 (8)
C540.0189 (9)0.0372 (11)0.0360 (11)0.0025 (8)0.0044 (7)0.0085 (9)
C550.0256 (9)0.0272 (10)0.0258 (10)0.0023 (8)0.0055 (7)0.0073 (8)
C560.0228 (9)0.0229 (9)0.0245 (10)0.0024 (7)0.0012 (7)0.0031 (7)
Geometric parameters (Å, º) top
N1—N21.4020 (18)C31—H31C0.9800
N2—C31.309 (2)C41—H410.9500
C3—C41.435 (2)N5—C511.462 (2)
C4—C51.412 (2)N5—H50.88 (2)
C5—N11.375 (2)C51—C561.527 (2)
C4—C411.430 (2)C51—C521.527 (2)
C41—O411.230 (2)C51—H511.0000
C5—N51.343 (2)C52—C531.530 (2)
N1—C121.410 (2)C52—H52A0.9900
C3—C311.495 (2)C52—H52B0.9900
N11—C121.332 (2)C53—C541.525 (2)
N11—C161.350 (2)C53—H53A0.9900
C12—C131.393 (2)C53—H53B0.9900
C13—C141.383 (2)C54—C551.527 (3)
C13—H130.9500C54—H54A0.9900
C14—C151.385 (3)C54—H54B0.9900
C14—H140.9500C55—C561.530 (2)
C15—C161.379 (2)C55—H55A0.9900
C15—H150.9500C55—H55B0.9900
C16—H160.9500C56—H56A0.9900
C31—H31A0.9800C56—H56B0.9900
C31—H31B0.9800
C5—N1—N2111.59 (13)C5—N5—H5112.4 (12)
C5—N1—C12130.18 (14)C51—N5—H5120.5 (12)
N2—N1—C12118.21 (13)N5—C51—C56108.37 (13)
C3—N2—N1104.98 (12)N5—C51—C52112.15 (14)
N2—C3—C4112.95 (14)C56—C51—C52110.15 (13)
N2—C3—C31119.42 (15)N5—C51—H51108.7
C4—C3—C31127.61 (15)C56—C51—H51108.7
C5—C4—C41130.27 (15)C52—C51—H51108.7
C5—C4—C3104.15 (14)C51—C52—C53109.95 (14)
C41—C4—C3125.47 (15)C51—C52—H52A109.7
N5—C5—N1120.21 (15)C53—C52—H52A109.7
N5—C5—C4133.46 (15)C51—C52—H52B109.7
N1—C5—C4106.32 (13)C53—C52—H52B109.7
C12—N11—C16117.29 (14)H52A—C52—H52B108.2
N11—C12—C13123.79 (15)C54—C53—C52111.07 (15)
N11—C12—N1116.84 (14)C54—C53—H53A109.4
C13—C12—N1119.37 (15)C52—C53—H53A109.4
C14—C13—C12117.73 (16)C54—C53—H53B109.4
C14—C13—H13121.1C52—C53—H53B109.4
C12—C13—H13121.1H53A—C53—H53B108.0
C13—C14—C15119.53 (16)C53—C54—C55111.33 (15)
C13—C14—H14120.2C53—C54—H54A109.4
C15—C14—H14120.2C55—C54—H54A109.4
C16—C15—C14118.53 (16)C53—C54—H54B109.4
C16—C15—H15120.7C55—C54—H54B109.4
C14—C15—H15120.7H54A—C54—H54B108.0
N11—C16—C15123.10 (16)C54—C55—C56111.46 (15)
N11—C16—H16118.5C54—C55—H55A109.3
C15—C16—H16118.5C56—C55—H55A109.3
C3—C31—H31A109.5C54—C55—H55B109.3
C3—C31—H31B109.5C56—C55—H55B109.3
H31A—C31—H31B109.5H55A—C55—H55B108.0
C3—C31—H31C109.5C51—C56—C55111.52 (14)
H31A—C31—H31C109.5C51—C56—H56A109.3
H31B—C31—H31C109.5C55—C56—H56A109.3
O41—C41—C4125.03 (16)C51—C56—H56B109.3
O41—C41—H41117.5C55—C56—H56B109.3
C4—C41—H41117.5H56A—C56—H56B108.0
C5—N5—C51125.51 (14)
C5—N1—N2—C30.44 (18)N2—N1—C12—C130.7 (2)
C12—N1—N2—C3179.22 (14)N11—C12—C13—C141.8 (3)
N1—N2—C3—C40.70 (18)N1—C12—C13—C14177.57 (15)
N1—N2—C3—C31179.12 (15)C12—C13—C14—C151.5 (2)
N2—C3—C4—C50.71 (19)C13—C14—C15—C160.3 (3)
C31—C3—C4—C5178.97 (17)C12—N11—C16—C150.7 (2)
N2—C3—C4—C41175.79 (16)C14—C15—C16—N110.9 (3)
C31—C3—C4—C412.5 (3)C5—C4—C41—O41178.60 (17)
N2—N1—C5—N5179.16 (14)C3—C4—C41—O415.9 (3)
C12—N1—C5—N52.3 (3)N1—C5—N5—C51166.12 (15)
N2—N1—C5—C40.01 (18)C4—C5—N5—C5112.7 (3)
C12—N1—C5—C4178.60 (15)C5—N5—C51—C56143.57 (16)
C41—C4—C5—N55.1 (3)C5—N5—C51—C5294.62 (19)
C3—C4—C5—N5178.60 (18)N5—C51—C52—C53179.43 (14)
C41—C4—C5—N1175.88 (16)C56—C51—C52—C5358.63 (18)
C3—C4—C5—N10.39 (17)C51—C52—C53—C5458.3 (2)
C16—N11—C12—C130.7 (2)C52—C53—C54—C5555.7 (2)
C16—N11—C12—N1178.70 (14)C53—C54—C55—C5653.4 (2)
C5—N1—C12—N110.2 (3)N5—C51—C56—C55179.97 (14)
N2—N1—C12—N11178.76 (13)C52—C51—C56—C5556.99 (19)
C5—N1—C12—C13179.17 (16)C54—C55—C56—C5154.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5···N110.88 (2)1.958 (19)2.696 (2)140.4 (16)
C16—H16···O41i0.952.433.441 (2)168
C51—H51···O41ii1.002.573.477 (2)151
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1/2, y+3/2, z+1.
(II) (Z)-4-[(Cyclohexylamino)methylidene]-3-methyl-1-phenyl-1H-pyrazol-5(4H)-one top
Crystal data top
C17H21N3OZ = 4
Mr = 283.37F(000) = 608
Triclinic, P1Dx = 1.217 Mg m3
a = 7.3348 (3) ÅCu Kα radiation, λ = 1.54184 Å
b = 7.3614 (10) ÅCell parameters from 5553 reflections
c = 29.2335 (6) Åθ = 3.0–69.9°
α = 91.243 (3)°µ = 0.61 mm1
β = 92.678 (10)°T = 294 K
γ = 101.004 (4)°Needle, pale yellow
V = 1547.0 (2) Å30.24 × 0.07 × 0.05 mm
Data collection top
Agilent SuperNova Dual
diffractometer with Cu at zero and Atlas detector
5553 independent reflections
Radiation source: fine-focus sealed tube4785 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
Detector resolution: 5.3072 pixels mm-1θmax = 68.1°, θmin = 3.0°
ω scansh = 88
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 88
Tmin = 0.868, Tmax = 0.970l = 3535
48525 measured reflections
Refinement top
Refinement on F217 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.046H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.139 w = 1/[σ2(Fo2) + (0.0671P)2 + 0.3343P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max < 0.001
5553 reflectionsΔρmax = 0.17 e Å3
403 parametersΔρmin = 0.19 e Å3
Crystal data top
C17H21N3Oγ = 101.004 (4)°
Mr = 283.37V = 1547.0 (2) Å3
Triclinic, P1Z = 4
a = 7.3348 (3) ÅCu Kα radiation
b = 7.3614 (10) ŵ = 0.61 mm1
c = 29.2335 (6) ÅT = 294 K
α = 91.243 (3)°0.24 × 0.07 × 0.05 mm
β = 92.678 (10)°
Data collection top
Agilent SuperNova Dual
diffractometer with Cu at zero and Atlas detector
5553 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
4785 reflections with I > 2σ(I)
Tmin = 0.868, Tmax = 0.970Rint = 0.051
48525 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04617 restraints
wR(F2) = 0.139H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.17 e Å3
5553 reflectionsΔρmin = 0.19 e Å3
403 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N110.85583 (18)0.7725 (2)0.41579 (4)0.0491 (3)
N121.04864 (18)0.8406 (2)0.42198 (5)0.0528 (3)
C131.0894 (2)0.8147 (2)0.46486 (5)0.0475 (4)
C140.9308 (2)0.7291 (2)0.48826 (5)0.0441 (3)
C150.7777 (2)0.7001 (2)0.45505 (5)0.0439 (3)
O150.61219 (16)0.62744 (18)0.45914 (4)0.0566 (3)
C1110.7668 (2)0.7933 (2)0.37306 (5)0.0476 (4)
C1120.5874 (3)0.8250 (2)0.37051 (6)0.0553 (4)
H1120.52440.83360.39710.066*
C1130.5018 (3)0.8439 (3)0.32822 (7)0.0658 (5)
H1130.38000.86310.32650.079*
C1140.5939 (3)0.8347 (3)0.28899 (7)0.0772 (6)
H1140.53570.84800.26060.093*
C1150.7725 (3)0.8056 (4)0.29187 (7)0.0833 (7)
H1150.83580.80010.26520.100*
C1160.8604 (3)0.7844 (3)0.33334 (6)0.0666 (5)
H1160.98190.76420.33470.080*
C1311.2824 (2)0.8751 (3)0.48463 (6)0.0626 (5)
H13A1.35360.95650.46400.094*
H13B1.33840.76880.48920.094*
H13C1.27980.93910.51350.094*
C160.9184 (2)0.6963 (2)0.53432 (5)0.0472 (4)0.68 (3)
H161.02680.72930.55290.057*0.68 (3)
N170.7672 (2)0.62286 (19)0.55411 (4)0.0509 (3)0.68 (3)
H170.67080.58290.53620.061*0.68 (3)
C1710.7421 (8)0.6004 (8)0.60308 (8)0.0555 (5)0.68 (3)
H1710.69780.46840.60800.067*0.68 (3)
C1720.5909 (13)0.7031 (12)0.6172 (2)0.0629 (12)0.68 (3)
H17A0.62930.83400.61170.075*0.68 (3)
H17B0.47740.65710.59880.075*0.68 (3)
C1730.5536 (19)0.6774 (13)0.6677 (2)0.0788 (18)0.68 (3)
H17C0.46400.75140.67650.095*0.68 (3)
H17D0.50080.54860.67260.095*0.68 (3)
C1740.731 (2)0.7345 (14)0.69727 (18)0.089 (2)0.68 (3)
H17E0.70560.70860.72900.106*0.68 (3)
H17F0.77550.86680.69520.106*0.68 (3)
C1750.8801 (18)0.6324 (18)0.68246 (15)0.0908 (17)0.68 (3)
H17G0.84030.50120.68730.109*0.68 (3)
H17H0.99340.67570.70120.109*0.68 (3)
C1760.9202 (11)0.6618 (17)0.63217 (16)0.0668 (12)0.68 (3)
H17I0.96960.79160.62750.080*0.68 (3)
H17J1.01210.59070.62330.080*0.68 (3)
C180.9184 (2)0.6963 (2)0.53432 (5)0.0472 (4)0.32 (3)
H18X1.02680.72930.55290.057*0.32 (3)
N180.7672 (2)0.62286 (19)0.55411 (4)0.0509 (3)0.32 (3)
H180.66820.58470.53700.061*0.32 (3)
C1810.7549 (14)0.6010 (17)0.60380 (14)0.0555 (5)0.32 (3)
H1810.69530.47270.60890.067*0.32 (3)
C1820.632 (2)0.727 (3)0.6226 (3)0.0629 (12)0.32 (3)
H18A0.51060.69900.60650.075*0.32 (3)
H18B0.68660.85480.61740.075*0.32 (3)
C1830.609 (2)0.700 (3)0.6738 (4)0.0788 (18)0.32 (3)
H18C0.53590.78630.68530.095*0.32 (3)
H18D0.54280.57560.67870.095*0.32 (3)
C1840.796 (3)0.732 (3)0.6997 (3)0.089 (2)0.32 (3)
H18E0.77910.70670.73170.106*0.32 (3)
H18F0.85680.86080.69760.106*0.32 (3)
C1850.919 (3)0.608 (4)0.6803 (3)0.0908 (17)0.32 (3)
H18G0.86350.48010.68500.109*0.32 (3)
H18H1.03960.63480.69660.109*0.32 (3)
C1860.9435 (17)0.637 (4)0.6293 (3)0.0668 (12)0.32 (3)
H18I1.00680.76310.62450.080*0.32 (3)
H18J1.01890.55350.61760.080*0.32 (3)
N210.2331 (2)0.63012 (18)0.08195 (4)0.0491 (3)
N220.1660 (2)0.43879 (18)0.07478 (5)0.0533 (4)
C230.1905 (2)0.4051 (2)0.03193 (5)0.0478 (4)
C240.2739 (2)0.5671 (2)0.00926 (5)0.0443 (4)
C250.3038 (2)0.7147 (2)0.04306 (5)0.0439 (3)
O250.37499 (18)0.88094 (15)0.03984 (4)0.0577 (3)
C2110.2112 (2)0.7113 (2)0.12484 (5)0.0486 (4)
C2120.1853 (2)0.8922 (3)0.12845 (6)0.0582 (4)
H2120.18150.96190.10240.070*
C2130.1650 (3)0.9689 (3)0.17104 (7)0.0723 (6)
H2130.15011.09130.17360.087*
C2140.1666 (3)0.8663 (4)0.20937 (7)0.0827 (7)
H2140.15320.91860.23800.099*
C2150.1878 (3)0.6869 (4)0.20548 (7)0.0838 (7)
H2150.18630.61670.23160.101*
C2160.2114 (3)0.6073 (3)0.16355 (6)0.0656 (5)
H2160.22730.48510.16140.079*
C2310.1310 (3)0.2152 (2)0.01157 (7)0.0656 (5)
H23A0.05530.13920.03240.098*
H23B0.23860.16350.00580.098*
H23C0.06050.22030.01670.098*
C260.3037 (2)0.5852 (2)0.03669 (5)0.0469 (4)
H260.26990.47930.05540.056*
N270.3757 (2)0.7387 (2)0.05621 (4)0.0502 (3)
H270.414 (3)0.844 (3)0.0393 (6)0.060*
C2710.3937 (2)0.7644 (3)0.10545 (5)0.0537 (4)
H2710.52490.81370.11030.064*
C2720.2827 (3)0.9097 (3)0.12060 (6)0.0658 (5)
H27A0.32561.02340.10260.079*
H27B0.15220.86640.11530.079*
C2730.3050 (3)0.9479 (4)0.17133 (7)0.0789 (6)
H27G0.22711.03450.18080.095*
H27H0.43321.00420.17600.095*
C2740.2522 (4)0.7735 (4)0.20009 (7)0.0914 (8)
H27E0.27590.80080.23180.110*
H27F0.12020.72520.19830.110*
C2750.3611 (4)0.6279 (4)0.18447 (7)0.0942 (8)
H27I0.49190.67080.18940.113*
H27J0.31870.51470.20270.113*
C2760.3374 (3)0.5870 (3)0.13382 (6)0.0702 (5)
H27C0.20870.53240.12910.084*
H27D0.41410.49930.12440.084*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N110.0423 (7)0.0615 (9)0.0402 (7)0.0006 (6)0.0047 (5)0.0052 (6)
N120.0425 (7)0.0630 (9)0.0500 (8)0.0014 (6)0.0076 (6)0.0013 (6)
C130.0439 (8)0.0498 (9)0.0488 (9)0.0090 (7)0.0040 (7)0.0036 (7)
C140.0459 (8)0.0453 (8)0.0417 (8)0.0096 (7)0.0038 (6)0.0000 (6)
C150.0446 (9)0.0461 (9)0.0399 (8)0.0051 (7)0.0069 (6)0.0019 (6)
O150.0468 (7)0.0705 (8)0.0477 (6)0.0021 (6)0.0059 (5)0.0088 (5)
C1110.0517 (9)0.0472 (9)0.0412 (8)0.0023 (7)0.0039 (7)0.0055 (6)
C1120.0587 (10)0.0542 (10)0.0541 (10)0.0117 (8)0.0063 (8)0.0066 (8)
C1130.0623 (11)0.0625 (12)0.0716 (12)0.0095 (9)0.0064 (9)0.0188 (9)
C1140.0804 (15)0.0885 (15)0.0545 (11)0.0039 (12)0.0094 (10)0.0260 (10)
C1150.0789 (15)0.121 (2)0.0436 (10)0.0003 (13)0.0123 (9)0.0162 (11)
C1160.0573 (11)0.0948 (15)0.0460 (9)0.0077 (10)0.0103 (8)0.0084 (9)
C1310.0454 (9)0.0774 (13)0.0632 (11)0.0084 (9)0.0008 (8)0.0050 (9)
C160.0509 (9)0.0458 (9)0.0440 (8)0.0086 (7)0.0013 (7)0.0012 (7)
N170.0557 (8)0.0540 (8)0.0395 (7)0.0023 (6)0.0009 (6)0.0004 (6)
C1710.0772 (14)0.0455 (9)0.0407 (8)0.0024 (9)0.0082 (8)0.0025 (7)
C1720.075 (3)0.057 (2)0.0525 (14)0.003 (2)0.0107 (16)0.0052 (13)
C1730.118 (5)0.053 (2)0.0627 (19)0.002 (3)0.033 (3)0.0058 (15)
C1740.147 (8)0.0747 (16)0.0416 (12)0.013 (4)0.013 (2)0.0036 (12)
C1750.135 (5)0.098 (4)0.0416 (11)0.030 (3)0.0025 (17)0.0046 (14)
C1760.086 (2)0.071 (3)0.0420 (11)0.0137 (16)0.0041 (11)0.0018 (12)
C180.0509 (9)0.0458 (9)0.0440 (8)0.0086 (7)0.0013 (7)0.0012 (7)
N180.0557 (8)0.0540 (8)0.0395 (7)0.0023 (6)0.0009 (6)0.0004 (6)
C1810.0772 (14)0.0455 (9)0.0407 (8)0.0024 (9)0.0082 (8)0.0025 (7)
C1820.075 (3)0.057 (2)0.0525 (14)0.003 (2)0.0107 (16)0.0052 (13)
C1830.118 (5)0.053 (2)0.0627 (19)0.002 (3)0.033 (3)0.0058 (15)
C1840.147 (8)0.0747 (16)0.0416 (12)0.013 (4)0.013 (2)0.0036 (12)
C1850.135 (5)0.098 (4)0.0416 (11)0.030 (3)0.0025 (17)0.0046 (14)
C1860.086 (2)0.071 (3)0.0420 (11)0.0137 (16)0.0041 (11)0.0018 (12)
N210.0635 (9)0.0408 (7)0.0389 (7)0.0008 (6)0.0035 (6)0.0043 (5)
N220.0665 (9)0.0405 (7)0.0483 (8)0.0013 (6)0.0011 (6)0.0087 (6)
C230.0530 (9)0.0410 (8)0.0481 (9)0.0072 (7)0.0051 (7)0.0044 (6)
C240.0480 (8)0.0438 (8)0.0410 (8)0.0087 (7)0.0011 (6)0.0037 (6)
C250.0482 (8)0.0422 (9)0.0397 (8)0.0048 (7)0.0004 (6)0.0060 (6)
O250.0746 (8)0.0428 (7)0.0504 (6)0.0031 (6)0.0062 (6)0.0055 (5)
C2110.0452 (8)0.0571 (10)0.0394 (8)0.0005 (7)0.0020 (6)0.0026 (7)
C2120.0557 (10)0.0607 (11)0.0570 (10)0.0076 (8)0.0055 (8)0.0017 (8)
C2130.0583 (11)0.0790 (14)0.0772 (14)0.0068 (10)0.0134 (10)0.0199 (11)
C2140.0684 (13)0.114 (2)0.0565 (12)0.0068 (13)0.0161 (10)0.0232 (12)
C2150.0926 (16)0.1088 (19)0.0406 (10)0.0056 (14)0.0061 (10)0.0077 (11)
C2160.0777 (13)0.0699 (12)0.0451 (9)0.0027 (10)0.0038 (8)0.0111 (8)
C2310.0838 (14)0.0426 (10)0.0668 (11)0.0062 (9)0.0079 (10)0.0005 (8)
C260.0485 (9)0.0487 (9)0.0427 (8)0.0083 (7)0.0017 (6)0.0007 (7)
N270.0567 (8)0.0510 (8)0.0391 (7)0.0017 (7)0.0005 (6)0.0018 (6)
C2710.0499 (9)0.0684 (11)0.0395 (8)0.0024 (8)0.0024 (7)0.0074 (7)
C2720.0671 (12)0.0767 (13)0.0528 (10)0.0109 (10)0.0016 (8)0.0160 (9)
C2730.0638 (12)0.1108 (18)0.0594 (12)0.0077 (12)0.0022 (9)0.0321 (12)
C2740.0844 (16)0.138 (2)0.0441 (10)0.0010 (15)0.0050 (10)0.0190 (12)
C2750.116 (2)0.116 (2)0.0457 (11)0.0115 (16)0.0094 (11)0.0067 (11)
C2760.0837 (14)0.0795 (14)0.0445 (9)0.0092 (11)0.0036 (9)0.0034 (9)
Geometric parameters (Å, º) top
N11—N121.4091 (18)C184—C1851.514 (6)
N12—C131.302 (2)C184—H18E0.9700
C13—C141.425 (2)C184—H18F0.9700
C14—C151.431 (2)C185—C1861.525 (4)
C15—N111.3788 (19)C185—H18G0.9700
C14—C161.377 (2)C185—H18H0.9700
C16—N171.305 (2)C186—H18I0.9700
C15—O151.2419 (19)C186—H18J0.9700
N11—C1111.407 (2)N21—N221.4080 (18)
C13—C1311.486 (2)N22—C231.299 (2)
C111—C1121.379 (2)C23—C241.424 (2)
C111—C1161.383 (2)C24—C251.431 (2)
C112—C1131.382 (2)C25—N211.3825 (19)
C112—H1120.9300C24—C261.376 (2)
C113—C1141.365 (3)C26—N271.307 (2)
C113—H1130.9300C25—O251.2431 (19)
C114—C1151.366 (3)N21—C2111.407 (2)
C114—H1140.9300C23—C2311.485 (2)
C115—C1161.372 (3)C211—C2161.380 (2)
C115—H1150.9300C211—C2121.383 (2)
C116—H1160.9300C212—C2131.382 (3)
C131—H13A0.9600C212—H2120.9300
C131—H13B0.9600C213—C2141.366 (3)
C131—H13C0.9600C213—H2130.9300
C16—H160.9300C214—C2151.362 (4)
N17—C1711.461 (2)C214—H2140.9300
N17—H170.8600C215—C2161.380 (3)
C171—C1761.513 (3)C215—H2150.9300
C171—C1721.524 (3)C216—H2160.9300
C171—H1710.9800C231—H23A0.9600
C172—C1731.523 (3)C231—H23B0.9600
C172—H17A0.9700C231—H23C0.9600
C172—H17B0.9700C26—H260.9300
C173—C1741.513 (5)N27—C2711.465 (2)
C173—H17C0.9700N27—H270.90 (2)
C173—H17D0.9700C271—C2761.510 (3)
C174—C1751.514 (5)C271—C2721.524 (3)
C174—H17E0.9700C271—H2710.9800
C174—H17F0.9700C272—C2731.526 (3)
C175—C1761.524 (3)C272—H27A0.9700
C175—H17G0.9700C272—H27B0.9700
C175—H17H0.9700C273—C2741.496 (4)
C176—H17I0.9700C273—H27G0.9700
C176—H17J0.9700C273—H27H0.9700
C181—C1861.514 (4)C274—C2751.520 (4)
C181—C1821.523 (5)C274—H27E0.9700
C181—H1810.9800C274—H27F0.9700
C182—C1831.524 (5)C275—C2761.528 (3)
C182—H18A0.9700C275—H27I0.9700
C182—H18B0.9700C275—H27J0.9700
C183—C1841.513 (6)C276—H27C0.9700
C183—H18C0.9700C276—H27D0.9700
C183—H18D0.9700
C15—N11—C111128.49 (13)C185—C184—H18E109.5
C15—N11—N12112.79 (12)C183—C184—H18F109.5
C111—N11—N12118.64 (13)C185—C184—H18F109.5
C13—N12—N11105.14 (13)H18E—C184—H18F108.1
N12—C13—C14112.21 (14)C184—C185—C186111.6 (6)
N12—C13—C131120.74 (15)C184—C185—H18G109.3
C14—C13—C131127.03 (15)C186—C185—H18G109.3
C16—C14—C13128.12 (15)C184—C185—H18H109.3
C16—C14—C15125.41 (15)C186—C185—H18H109.3
C13—C14—C15106.17 (13)H18G—C185—H18H108.0
O15—C15—N11126.52 (14)C181—C186—C185109.6 (5)
O15—C15—C14129.81 (14)C181—C186—H18I109.8
N11—C15—C14103.66 (13)C185—C186—H18I109.8
C112—C111—C116119.61 (16)C181—C186—H18J109.8
C112—C111—N11120.43 (15)C185—C186—H18J109.8
C116—C111—N11119.95 (16)H18I—C186—H18J108.2
C111—C112—C113119.65 (17)C25—N21—C211128.78 (13)
C111—C112—H112120.2C25—N21—N22112.62 (12)
C113—C112—H112120.2C211—N21—N22118.48 (13)
C114—C113—C112120.76 (19)C23—N22—N21105.28 (12)
C114—C113—H113119.6N22—C23—C24112.31 (14)
C112—C113—H113119.6N22—C23—C231120.50 (15)
C113—C114—C115119.20 (18)C24—C23—C231127.18 (15)
C113—C114—H114120.4C26—C24—C23127.73 (15)
C115—C114—H114120.4C26—C24—C25125.83 (15)
C114—C115—C116121.3 (2)C23—C24—C25106.16 (13)
C114—C115—H115119.3O25—C25—N21126.31 (14)
C116—C115—H115119.3O25—C25—C24130.08 (14)
C115—C116—C111119.45 (19)N21—C25—C24103.61 (13)
C115—C116—H116120.3C216—C211—C212119.83 (16)
C111—C116—H116120.3C216—C211—N21119.36 (16)
C13—C131—H13A109.5C212—C211—N21120.79 (15)
C13—C131—H13B109.5C213—C212—C211119.60 (19)
H13A—C131—H13B109.5C213—C212—H212120.2
C13—C131—H13C109.5C211—C212—H212120.2
H13A—C131—H13C109.5C214—C213—C212120.5 (2)
H13B—C131—H13C109.5C214—C213—H213119.7
N17—C16—C14125.39 (15)C212—C213—H213119.7
N17—C16—H16117.3C215—C214—C213119.63 (19)
C14—C16—H16117.3C215—C214—H214120.2
C16—N17—C171127.7 (3)C213—C214—H214120.2
C16—N17—H17116.1C214—C215—C216121.2 (2)
C171—N17—H17116.1C214—C215—H215119.4
N17—C171—C176113.1 (3)C216—C215—H215119.4
N17—C171—C172108.8 (3)C215—C216—C211119.2 (2)
C176—C171—C172111.6 (3)C215—C216—H216120.4
N17—C171—H171107.7C211—C216—H216120.4
C176—C171—H171107.7C23—C231—H23A109.5
C172—C171—H171107.7C23—C231—H23B109.5
C173—C172—C171111.0 (3)H23A—C231—H23B109.5
C173—C172—H17A109.4C23—C231—H23C109.5
C171—C172—H17A109.4H23A—C231—H23C109.5
C173—C172—H17B109.4H23B—C231—H23C109.5
C171—C172—H17B109.4N27—C26—C24125.53 (15)
H17A—C172—H17B108.0N27—C26—H26117.2
C174—C173—C172110.8 (3)C24—C26—H26117.2
C174—C173—H17C109.5C26—N27—C271126.32 (15)
C172—C173—H17C109.5C26—N27—H27120.4 (12)
C174—C173—H17D109.5C271—N27—H27113.2 (12)
C172—C173—H17D109.5N27—C271—C276113.45 (15)
H17C—C173—H17D108.1N27—C271—C272108.77 (14)
C173—C174—C175111.3 (3)C276—C271—C272111.56 (15)
C173—C174—H17E109.4N27—C271—H271107.6
C175—C174—H17E109.4C276—C271—H271107.6
C173—C174—H17F109.4C272—C271—H271107.6
C175—C174—H17F109.4C271—C272—C273110.61 (17)
H17E—C174—H17F108.0C271—C272—H27A109.5
C174—C175—C176111.7 (3)C273—C272—H27A109.5
C174—C175—H17G109.3C271—C272—H27B109.5
C176—C175—H17G109.3C273—C272—H27B109.5
C174—C175—H17H109.3H27A—C272—H27B108.1
C176—C175—H17H109.3C274—C273—C272111.25 (18)
H17G—C175—H17H108.0C274—C273—H27G109.4
C171—C176—C175109.2 (3)C272—C273—H27G109.4
C171—C176—H17I109.8C274—C273—H27H109.4
C175—C176—H17I109.8C272—C273—H27H109.4
C171—C176—H17J109.8H27G—C273—H27H108.0
C175—C176—H17J109.8C273—C274—C275111.48 (19)
H17I—C176—H17J108.3C273—C274—H27E109.3
C186—C181—C182110.7 (6)C275—C274—H27E109.3
C186—C181—H181107.8C273—C274—H27F109.3
C182—C181—H181107.8C275—C274—H27F109.3
C181—C182—C183110.9 (5)H27E—C274—H27F108.0
C181—C182—H18A109.5C274—C275—C276111.7 (2)
C183—C182—H18A109.5C274—C275—H27I109.3
C181—C182—H18B109.5C276—C275—H27I109.3
C183—C182—H18B109.5C274—C275—H27J109.3
H18A—C182—H18B108.0C276—C275—H27J109.3
C184—C183—C182110.9 (6)H27I—C275—H27J108.0
C184—C183—H18C109.5C271—C276—C275109.54 (18)
C182—C183—H18C109.5C271—C276—H27C109.8
C184—C183—H18D109.5C275—C276—H27C109.8
C182—C183—H18D109.5C271—C276—H27D109.8
H18C—C183—H18D108.1C275—C276—H27D109.8
C183—C184—C185110.7 (6)H27C—C276—H27D108.2
C183—C184—H18E109.5
C15—N11—N12—C131.39 (18)C183—C184—C185—C18656.7 (12)
C111—N11—N12—C13175.60 (14)C182—C181—C186—C18557.6 (11)
N11—N12—C13—C140.61 (18)C184—C185—C186—C18157.6 (12)
N11—N12—C13—C131178.27 (15)C25—N21—N22—C231.38 (18)
N12—C13—C14—C16173.60 (15)C211—N21—N22—C23174.97 (14)
C131—C13—C14—C165.2 (3)N21—N22—C23—C240.44 (18)
N12—C13—C14—C150.30 (19)N21—N22—C23—C231178.57 (15)
C131—C13—C14—C15179.09 (16)N22—C23—C24—C26173.52 (15)
C111—N11—C15—O155.0 (3)C231—C23—C24—C265.4 (3)
N12—N11—C15—O15178.35 (15)N22—C23—C24—C250.57 (19)
C111—N11—C15—C14175.09 (15)C231—C23—C24—C25179.50 (16)
N12—N11—C15—C141.53 (17)C211—N21—C25—O255.6 (3)
C16—C14—C15—O157.1 (3)N22—N21—C25—O25178.55 (15)
C13—C14—C15—O15178.80 (16)C211—N21—C25—C24174.19 (15)
C16—C14—C15—N11173.03 (15)N22—N21—C25—C241.69 (17)
C13—C14—C15—N111.08 (16)C26—C24—C25—O256.8 (3)
C15—N11—C111—C11231.2 (3)C23—C24—C25—O25178.93 (17)
N12—N11—C111—C112145.22 (16)C26—C24—C25—N21172.92 (15)
C15—N11—C111—C116149.63 (18)C23—C24—C25—N211.32 (16)
N12—N11—C111—C11633.9 (2)C25—N21—C211—C216153.67 (17)
C116—C111—C112—C1131.3 (3)N22—N21—C211—C21630.7 (2)
N11—C111—C112—C113179.59 (16)C25—N21—C211—C21227.8 (3)
C111—C112—C113—C1141.1 (3)N22—N21—C211—C212147.86 (16)
C112—C113—C114—C1150.3 (3)C216—C211—C212—C2131.8 (3)
C113—C114—C115—C1160.4 (4)N21—C211—C212—C213179.70 (16)
C114—C115—C116—C1110.3 (4)C211—C212—C213—C2141.3 (3)
C112—C111—C116—C1150.6 (3)C212—C213—C214—C2150.2 (3)
N11—C111—C116—C115179.74 (19)C213—C214—C215—C2161.3 (4)
C13—C14—C16—N17177.47 (16)C214—C215—C216—C2110.8 (3)
C15—C14—C16—N174.7 (3)C212—C211—C216—C2150.7 (3)
C14—C16—N17—C171173.9 (3)N21—C211—C216—C215179.27 (18)
C16—N17—C171—C1763.9 (6)C23—C24—C26—N27177.69 (16)
C16—N17—C171—C172120.7 (5)C25—C24—C26—N274.7 (3)
N17—C171—C172—C173177.7 (4)C24—C26—N27—C271174.29 (15)
C176—C171—C172—C17356.8 (5)C26—N27—C271—C2765.9 (2)
C171—C172—C173—C17454.8 (5)C26—N27—C271—C272118.84 (19)
C172—C173—C174—C17554.9 (6)N27—C271—C272—C273177.30 (16)
C173—C174—C175—C17656.7 (6)C276—C271—C272—C27356.8 (2)
N17—C171—C176—C175179.8 (5)C271—C272—C273—C27455.4 (2)
C172—C171—C176—C17557.1 (5)C272—C273—C274—C27555.1 (3)
C174—C175—C176—C17157.0 (6)C273—C274—C275—C27655.9 (3)
C186—C181—C182—C18357.5 (11)N27—C271—C276—C275179.97 (17)
C181—C182—C183—C18456.0 (12)C272—C271—C276—C27556.8 (2)
C182—C183—C184—C18555.4 (12)C274—C275—C276—C27156.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N17—H17···O150.862.322.9539 (17)131
N17—H17···O15i0.862.353.0331 (19)136
N27—H27···O250.90 (2)2.361 (18)2.9760 (17)125.6 (16)
N27—H27···O25ii0.90 (2)2.30 (2)3.0526 (19)140.6 (17)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+2, z.

Experimental details

(I)(II)
Crystal data
Chemical formulaC16H20N4OC17H21N3O
Mr284.36283.37
Crystal system, space groupMonoclinic, C2/cTriclinic, P1
Temperature (K)120294
a, b, c (Å)21.369 (2), 20.489 (3), 6.7444 (10)7.3348 (3), 7.3614 (10), 29.2335 (6)
α, β, γ (°)90, 95.978 (10), 9091.243 (3), 92.678 (10), 101.004 (4)
V3)2936.8 (7)1547.0 (2)
Z84
Radiation typeMo KαCu Kα
µ (mm1)0.080.61
Crystal size (mm)0.32 × 0.24 × 0.210.24 × 0.07 × 0.05
Data collection
DiffractometerBruker Nonius KappaCCD area-detector
diffractometer
Agilent SuperNova Dual
diffractometer with Cu at zero and Atlas detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.788, 0.9830.868, 0.970
No. of measured, independent and
observed [I > 2σ(I)] reflections
10192, 3367, 2149 48525, 5553, 4785
Rint0.0510.051
(sin θ/λ)max1)0.6500.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.115, 1.02 0.046, 0.139, 1.10
No. of reflections33675553
No. of parameters194403
No. of restraints017
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.300.17, 0.19

Computer programs: COLLECT (Nonius, 1999), CrysAlis PRO (Agilent, 2012), DIRAX/LSQ (Duisenberg et al., 2000), EVALCCD (Duisenberg et al., 2003), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015) and PLATON (Spek, 2009).

Selected geometric parameters (Å, º) for (I) top
N1—N21.4020 (18)C4—C411.430 (2)
N2—C31.309 (2)C41—O411.230 (2)
C3—C41.435 (2)C5—N51.343 (2)
C4—C51.412 (2)N1—C121.410 (2)
C5—N11.375 (2)
C5—N5—C51125.51 (14)C51—N5—H5120.5 (12)
C5—N5—H5112.4 (12)
N2—N1—C12—N11178.76 (13)C4—C5—N5—C5112.7 (3)
C3—C4—C41—O415.9 (3)C5—N5—C51—C5294.62 (19)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N5—H5···N110.88 (2)1.958 (19)2.696 (2)140.4 (16)
C16—H16···O41i0.952.433.441 (2)168
C51—H51···O41ii1.002.573.477 (2)151
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1/2, y+3/2, z+1.
Selected geometric parameters (Å, º) for (II) top
N11—N121.4091 (18)N21—N221.4080 (18)
N12—C131.302 (2)N22—C231.299 (2)
C13—C141.425 (2)C23—C241.424 (2)
C14—C151.431 (2)C24—C251.431 (2)
C15—N111.3788 (19)C25—N211.3825 (19)
C14—C161.377 (2)C24—C261.376 (2)
C16—N171.305 (2)C26—N271.307 (2)
C15—O151.2419 (19)C25—O251.2431 (19)
C16—N17—C171127.7 (3)C26—N27—C271126.32 (15)
C16—N17—H17116.1C26—N27—H27120.4 (12)
C171—N17—H17116.1C271—N27—H27113.2 (12)
N12—N11—C111—C112145.22 (16)N22—N21—C211—C212147.86 (16)
C14—C16—N17—C171173.9 (3)C24—C26—N27—C271174.29 (15)
C16—N17—C171—C172120.7 (5)C26—N27—C271—C272118.84 (19)
N17—C171—C172—C173177.7 (4)N27—C271—C272—C273177.30 (16)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N17—H17···O150.862.322.9539 (17)131
N17—H17···O15i0.862.353.0331 (19)136
N27—H27···O250.90 (2)2.361 (18)2.9760 (17)125.6 (16)
N27—H27···O25ii0.90 (2)2.30 (2)3.0526 (19)140.6 (17)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+2, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds