Download citation
Download citation
link to html
4-Hy­droxy­pyridine-2,6-dicarb­oxy­lic acid (chelidamic acid, cdaH3) reacts with MnCl2·2H2O in the presence of 2-amino-4-methyl­pyrimidine in water to afford the tetra­nuclear title complex, [Mn4(C8H3NO5)4(H2O)10]·3.34H2O, built through carboxyl­ate bridging. The tetra­nuclear complex sits on a centre of inversion at (1 \over 2, 1 \over 2, 1 \over 2). In the crystal, discrete undeca­­meric (H2O)10.34 water clusters (involving both coordinated and uncoordinated water mol­ecules, with one site of an uncoordinated water molecule not fully occupied) assemble these tetra­nuclear MnII complex units via an intricate array of hydrogen bonding into an overall three-dimensional network. The degree of structuring of the (H2O)10.34 supra­molecular association of water mol­ecules observed in the present compound, imposed by its environment and vice versa, will be discussed in comparison to that observed for the (H2O)14 supra­molecular clusters in the case of the dinuclear complex [Mn2(cdaH)2(H2O)4]·4H2O [Ghosh et al. (2005). Inorg. Chem. 44, 3856-3862].

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270111050293/qs3009sup1.cif
Contains datablocks I, global

mol

MDL mol file https://doi.org/10.1107/S0108270111050293/qs3009Isup3.mol
Supplementary material

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270111050293/qs3009Isup4.hkl
Contains datablock I

CCDC reference: 866740

Comment top

It is widely recognized that fluctuations and the rearrangement dynamics of hydrogen-bonding interactions among water molecules determine the fascinating properties of bulk water. In order to better understand the co-operative nature of hydrogen-bonding interactions among a collection of water molecules, in view of [with the aim of creating?] drawing models that could fully explain the properties of bulk water, water clustering within inorganic or organic crystal hosts has become an active research field within the realm of crystal engineering (Ludwig et al., 2001). In particular, metal–organic frameworks (MOFs) composed of mainly transition metal ions and bridging organic ligands may provide voids suitable to accommodate small water clusters of different shape and dimensionality whose binding properties and degree of structuring depend on their surroundings and vice versa (for some examples, see Duan et al., 2010; Ghosh et al., 2004; Kang et al., 2007; Ma et al. 2005; Song et al. 2007; Wei et al., 2006).

Recently, Ghosh et al. (2005) have reacted MnII acetate and 4-hydroxypyridine-2,6-dicarboxylic acid (chelidamic acid, cdaH3) (1:1 reaction molar ratio) in an aqueous/pyridine solvent mixture (1:1 v/v) to afford the dinuclear complex [Mn2(cdaH)2(H2O)4].4H2O; in this complex one-dimensional stair-like coordination polymers built through carboxylate- and aqua-bridging of metal centres are assembled by (H2O)14 supramolecular clusters of coordinated and uncoordinated water molecules into a three-dimensional MOF via hydrogen bonding. The stitching water cluster takes the shape of a central cyclic hexamer in a chair conformation and two acyclic tetramers protruding from opposite corners of the hexamer. Following our interest in the coordination chemistry of proton-transfer systems obtained from N-, S- and O-donor ligands and polycarboxylic acids (Aghabozorg et al. 2008; Mirzaei et al., 2011), we have reacted manganese(II) chloride dihydrate with cdaH3 and 2-amino-4-methylpyrimidine in a 1:2:4 molar ratio in aqueous solution. Colourless prismatic crystals were obtained upon slow evaporation of the reaction mixture and corresponding to the microanalytical formulation C14H20Mn2N2O17, which is very close to that reported by Ghosh et al. for the complex [Mn2(cdaH)2(H2O)4].4H2O (Ghosh et al., 2005); an X-ray diffraction analysis was undertaken to ascertain their nature.

The structure consists of a discrete linear tetranuclear MnII cluster sitting on an inversion centre in which each metal centre adopts a heptacoordinated pentagonal–bipyramidal geometry (Fig. 1). Each terminal MnII centre in the cluster is axially coordinated to two water molecules and to a tridentate cdaH2- dicarboxylate unit in the equatorial plane. An NO4 coordination in the pentagonal equatorial plane is completed by the O donors of a bidentate carboxylate group from the 2-position of another cdaH2- unit (Fig. 1). Each of the two MnII ions in the middle of the tetranuclear cluster still feature two axially coordinated water molecules. The equatorial plane is occupied by a third coordinated water molecule, by the pyridine N donor and two carboxylate O donors at the 2- and 6-positions of the previous cdaH2- unit connected to a terminal MnII centre in the cluster, and by one carboxylate O donor at the 6-position from the cdaH2- unit symmetry equivalent to the last one. In this way, the two MnII centres in the middle of the tetranuclear cluster feature an NO4 coordination in the equatorial plane as do the terminal ones, and result directly connected to each other by a carboxylate bridge (see Fig. 1 and Table 1 for selected geometric parameters). Interestingly, an identical tetranuclear CdII cluster has been described by Das et al. (2009) in the compound [Cd4(cdaH)4(H2O)10].4H2O obtained from pyridine-2,4,6-tricarboxylic acid (ptcH3) upon conversion of the carboxyl group in the 4-position to a hydroxy group.

In the title compound, [Mn4(cdaH)4(H2O)10].4H2O, (I), the water molecules equatorially coordinated to the middle MnII centres of the tetranuclear cluster and the hydroxy groups from the cdaH2- units bridging these metal ions generate via hydrogen bonds strips of interacting clusters which propagate along the b axis, and for each strip the composing clusters lie on the same plane (see Fig. 2 and Table 2 for the hydrogen-bond geometry). The above strips stack on top of each other along the a axis interacting via hydrogen bonds at the axially coordinated water molecules to give two-dimensional extended sheets whose thickness roughly corresponds to the length of the linear tetranuclear MnII cluster (see Fig. 3 and Table 2 for the hydrogen-bond geometry). Parallel offset two-dimensional extended sheets of hydrogen-bonded [Mn4(cdaH)4(H2O)10] linear clusters interact with each other via hydrogen bonds involving both axially metal coordinated and cocrystallized water molecules (see Fig. 4 and Table 2 for the hydrogen-bond geometry) to give a three-dimensional network. Undecameric (H2O)10.34 stitching clusters can be envisaged (Fig. 4) between each pair of interacting two-dimensional sheets. Analogously to what was observed for the stitching (H2O)14 supramolecular clusters in the compound [Mn2(cdaH)2(H2O)4].4H2O (Ghosh et al., 2005), also in the present case the (H2O)10.34 clusters can be described as a central cyclic assembly of water molecules (a smaller square tetramer in this case) buttressed by acyclic water assemblies (two trimers and a monomer in this case). The hydrogen-bonding stitching pattern determined by the (H2O)10.34 clusters features a linear sequence of seven fused R(8) cyclic motifs ending at each extremity with an R(11) cycle (Fig. 4) [for graph-set notation see ref?]. Interestingly, in the compound [Cd4(cdaH)4(H2O)10].4H2O (Das et al., 2009), which features the same stoichiometry as the title compound and a very similar tetranuclear CdII cluster in its structure, only acyclic branched (H2O)5 clusters determine the packing in the crystal lattice. This may be due to the fact that the [Cd4(cdaH)4(H2O)10] tetranuclear CdII cluster is not perfectly flat as [Mn4(cdaH)4(H2O)10], but a small twisting along the Cd—Cd—Cd—Cd axis brings the axially coordinated water molecules to assume a reciprocal disposition in which the H2O—Cd—H2O vectors are not parallel.

Related literature top

For related literature, see: Aghabozorg et al. (2008); Das et al. (2009); Duan et al. (2010); Ghosh & Bharadwaj (2004); Ghosh et al. (2005); Kang et al. (2007); Ludwig (2001); Ma et al. (2005); Mirzaei et al. (2011); Song & Ma (2007); Wei et al. (2006).

Experimental top

The reaction of MnCl2.2H2O (12 mg, 0.075 mmol), 2-amino-4-methylpyrimidine (30 mg, 0.30 mmol) and cdaH3 (33 mg, 0.15 mmol) in deionized water (10 ml) afforded colourless prismatic crystals of the title compound (35% yield) upon slow evaporation of solvent from the reaction mixture at room temperature. Analysis found (calculated for C14H20Mn2N2O17): C 28.10 (28.11), H 3.35 (3.37), N 4.63% (4.68%).

Refinement top

The H atoms of the OH groups and water molecules were localized in the difference Fourier syntheses and refined with a riding model with fixed isotropic displacement parameters [Uiso(H) = 1.5Ueq(O)]. The H(C) atoms were placed in calculated positions and included in the refinement with a riding model with fixed isotropic displacement parameters [Uiso(H) = 1.2Ueq(C)].

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: enCIFer (Allen et al., 2004), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. View of the discrete tetranuclear MnII unit in the title compound, showing the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level. [Symmetry code: (i) -x+1, -y+1, -z+1.]
[Figure 2] Fig. 2. A partial view of one strip of hydrogen-bonded (see Table 2) tetranuclear MnII clusters in the title compound running along the b axis, showing the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level. Two different bimolecular cyclic hydrogen-bonding motifs, viz. R33(8) and R42(14), are formed. [Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x, y-1, z.]
[Figure 3] Fig. 3. A partial view of the tetranuclear MnII clusters in the title compound stacking along the a axis and interacting via hydrogen bonds at the axially coordinated water molecules. The atom-numbering scheme adopted is shown and displacement ellipsoids are drawn at the 50% probability level. Two very close fused R22(8) hydrogen-bonding motifs can be envisaged in the hydrogen-bonding pattern responsible for the stacking. [Symmetry code: (iii) x-1, y, z.]
[Figure 4] Fig. 4. View of the (H2O)10.34 clusters stitching parallel offset two-dimensional extended sheets (Figs. 2 and 3) of hydrogen-bonded [Mn4(cdaH)4(H2O)10] linear clusters in the title compound, showing the atom-numbering scheme adopted and displacement ellipsoids drawn at the 50% probability level. A linear R32(11)–R33(8)–R33(8)–R43(8)– R44(8)–R43(8)–R33(8)–R33(8)– R32(11) sequence of nine-fused hydrogen-bonding motifs together with two R76(19) and one R66(22) loops can be envisaged in the hydrogen-bonding stitching motif. [Symmetry codes: (iv) -x+1, -y+1, -z; (v) -x+1, -y, -z; (vi) x-1, -y, -z+1.]
decaaquabis(µ3-4-hydroxypyridine-2,6-dicarboxylato)bis(4-hydroxypyridine- 2,6-dicarboxylato)tetramanganese(II) 3.34-hydrate top
Crystal data top
[Mn4(C8H3NO5)4(H2O)10]·3.34H2OZ = 1
Mr = 1184.47F(000) = 601.1
Triclinic, P1Dx = 1.954 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.6765 (3) ÅCell parameters from 4750 reflections
b = 10.9615 (5) Åθ = 2.7–33.2°
c = 14.1513 (7) ŵ = 1.35 mm1
α = 102.309 (1)°T = 100 K
β = 95.097 (1)°Prism, colourless
γ = 91.581 (1)°0.17 × 0.13 × 0.08 mm
V = 1006.69 (8) Å3
Data collection top
Bruker APEXII CCD
diffractometer
5282 independent reflections
Radiation source: sealed tube4390 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ and ω scansθmax = 29.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 99
Tmin = 0.783, Tmax = 0.899k = 1414
11968 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0525P)2 + 0.6533P]
where P = (Fo2 + 2Fc2)/3
5282 reflections(Δ/σ)max = 0.002
317 parametersΔρmax = 1.03 e Å3
0 restraintsΔρmin = 0.73 e Å3
Crystal data top
[Mn4(C8H3NO5)4(H2O)10]·3.34H2Oγ = 91.581 (1)°
Mr = 1184.47V = 1006.69 (8) Å3
Triclinic, P1Z = 1
a = 6.6765 (3) ÅMo Kα radiation
b = 10.9615 (5) ŵ = 1.35 mm1
c = 14.1513 (7) ÅT = 100 K
α = 102.309 (1)°0.17 × 0.13 × 0.08 mm
β = 95.097 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
5282 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
4390 reflections with I > 2σ(I)
Tmin = 0.783, Tmax = 0.899Rint = 0.023
11968 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 1.02Δρmax = 1.03 e Å3
5282 reflectionsΔρmin = 0.73 e Å3
317 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mn10.75808 (4)0.33058 (3)0.04576 (2)0.00867 (8)
Mn20.55933 (6)0.45116 (3)0.36541 (3)0.02347 (10)
O10.8028 (2)0.39346 (13)0.09680 (10)0.0121 (3)
O20.8685 (2)0.33552 (14)0.25170 (10)0.0154 (3)
O30.7218 (2)0.15589 (13)0.10414 (10)0.0115 (3)
O40.6941 (2)0.05248 (13)0.07109 (10)0.0122 (3)
O50.8982 (2)0.14370 (14)0.27966 (11)0.0186 (3)
H5O0.93230.12490.32540.028*
O60.6879 (2)0.43900 (13)0.20899 (10)0.0143 (3)
O70.7149 (2)0.53798 (13)0.08997 (10)0.0121 (3)
O80.5035 (3)0.62213 (14)0.50331 (12)0.0243 (4)
O90.4441 (3)0.82619 (15)0.54829 (12)0.0290 (4)
O100.6426 (2)0.99140 (13)0.26106 (11)0.0147 (3)
H10O0.66540.98160.20350.022*
O1W1.0719 (2)0.37689 (13)0.10272 (10)0.0124 (3)
H1WA1.16520.34110.08570.019*
H1WB1.10770.45080.10300.019*
O2W0.4229 (2)0.30131 (13)0.01703 (10)0.0113 (3)
H2WA0.39640.22720.01220.017*
H2WB0.37870.33820.02160.017*
O3W0.8773 (4)0.4327 (3)0.41444 (15)0.0507 (6)
H3WA0.92960.37680.44590.076*
H3WB0.97690.43460.37860.076*
O4W0.2258 (3)0.44970 (16)0.30972 (12)0.0251 (4)
H4WA0.19030.40320.26550.038*
H4WB0.18090.51180.29010.038*
O5W0.5303 (3)0.25497 (15)0.28145 (12)0.0251 (4)
H5WA0.53840.19720.30870.038*
H5WB0.60230.22260.23740.038*
N10.7962 (2)0.16586 (15)0.07148 (12)0.0094 (3)
N20.5918 (3)0.64562 (16)0.33086 (12)0.0127 (3)
C10.8360 (3)0.17896 (18)0.15951 (14)0.0100 (3)
C20.8704 (3)0.07906 (19)0.23332 (14)0.0122 (4)
H2A0.90000.09160.29510.015*
C30.8604 (3)0.04129 (19)0.21447 (14)0.0125 (4)
C40.8092 (3)0.05534 (18)0.12308 (14)0.0116 (4)
H4A0.79500.13600.10910.014*
C50.7801 (3)0.05042 (18)0.05426 (14)0.0095 (3)
C60.8365 (3)0.31311 (18)0.17174 (14)0.0108 (4)
C70.7283 (3)0.05017 (18)0.04808 (14)0.0092 (3)
C80.5523 (3)0.75092 (19)0.39282 (14)0.0138 (4)
C90.5659 (3)0.86844 (18)0.37266 (14)0.0132 (4)
H9A0.53380.94020.41850.016*
C100.6283 (3)0.87912 (18)0.28279 (14)0.0116 (4)
C110.6739 (3)0.77039 (18)0.21894 (14)0.0108 (4)
H11A0.72140.77430.15830.013*
C120.6493 (3)0.65755 (18)0.24470 (14)0.0109 (4)
C130.4941 (4)0.7332 (2)0.48998 (16)0.0200 (5)
C140.6870 (3)0.53677 (18)0.17692 (14)0.0105 (4)
O6W1.0391 (3)0.0944 (2)0.44218 (15)0.0389 (5)
H6WA1.01770.17480.46750.058*
H6WB1.15900.09960.43890.058*
O7W0.9808 (5)0.3098 (3)0.4351 (2)0.0358 (11)0.669 (8)
H7WA0.94900.30210.37160.054*0.669 (8)
H7WB1.09760.37010.42220.054*0.669 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.01178 (14)0.00594 (14)0.00872 (14)0.00037 (10)0.00382 (10)0.00137 (10)
Mn20.0443 (2)0.01111 (17)0.01816 (18)0.00139 (15)0.01693 (15)0.00457 (13)
O10.0182 (7)0.0078 (6)0.0113 (6)0.0007 (5)0.0056 (5)0.0023 (5)
O20.0190 (7)0.0175 (7)0.0114 (7)0.0004 (6)0.0048 (5)0.0059 (6)
O30.0158 (7)0.0087 (6)0.0105 (6)0.0015 (5)0.0031 (5)0.0022 (5)
O40.0159 (7)0.0085 (6)0.0131 (7)0.0005 (5)0.0026 (5)0.0042 (5)
O50.0263 (8)0.0132 (7)0.0149 (7)0.0021 (6)0.0081 (6)0.0027 (6)
O60.0235 (7)0.0082 (6)0.0124 (7)0.0020 (5)0.0070 (6)0.0024 (5)
O70.0167 (7)0.0104 (7)0.0096 (6)0.0021 (5)0.0048 (5)0.0017 (5)
O80.0464 (10)0.0094 (7)0.0204 (8)0.0035 (7)0.0210 (7)0.0032 (6)
O90.0598 (12)0.0102 (7)0.0211 (8)0.0064 (8)0.0263 (8)0.0024 (6)
O100.0252 (8)0.0081 (6)0.0118 (7)0.0008 (6)0.0064 (6)0.0024 (5)
O1W0.0141 (7)0.0084 (6)0.0154 (7)0.0009 (5)0.0050 (5)0.0025 (5)
O2W0.0147 (7)0.0087 (6)0.0111 (6)0.0020 (5)0.0024 (5)0.0027 (5)
O3W0.0595 (14)0.0756 (17)0.0199 (10)0.0188 (13)0.0042 (9)0.0198 (10)
O4W0.0315 (9)0.0204 (8)0.0202 (8)0.0042 (7)0.0079 (7)0.0042 (7)
O5W0.0441 (10)0.0149 (8)0.0199 (8)0.0018 (7)0.0159 (7)0.0070 (6)
N10.0102 (7)0.0092 (7)0.0092 (7)0.0003 (6)0.0027 (6)0.0017 (6)
N20.0172 (8)0.0108 (8)0.0107 (8)0.0015 (6)0.0066 (6)0.0015 (6)
C10.0110 (8)0.0098 (9)0.0097 (8)0.0008 (7)0.0026 (7)0.0026 (7)
C20.0126 (9)0.0134 (9)0.0103 (8)0.0009 (7)0.0042 (7)0.0006 (7)
C30.0121 (9)0.0116 (9)0.0122 (9)0.0008 (7)0.0019 (7)0.0012 (7)
C40.0130 (9)0.0090 (9)0.0127 (9)0.0004 (7)0.0019 (7)0.0020 (7)
C50.0092 (8)0.0103 (9)0.0092 (8)0.0000 (7)0.0020 (6)0.0019 (7)
C60.0101 (8)0.0110 (9)0.0118 (9)0.0005 (7)0.0016 (7)0.0032 (7)
C70.0073 (8)0.0094 (8)0.0113 (8)0.0009 (6)0.0011 (6)0.0026 (7)
C80.0205 (10)0.0102 (9)0.0113 (9)0.0010 (7)0.0073 (7)0.0010 (7)
C90.0182 (10)0.0090 (9)0.0124 (9)0.0007 (7)0.0063 (7)0.0005 (7)
C100.0134 (9)0.0093 (9)0.0123 (9)0.0004 (7)0.0032 (7)0.0021 (7)
C110.0115 (9)0.0113 (9)0.0095 (8)0.0004 (7)0.0025 (7)0.0017 (7)
C120.0122 (9)0.0104 (9)0.0100 (8)0.0004 (7)0.0035 (7)0.0008 (7)
C130.0363 (13)0.0093 (9)0.0167 (10)0.0009 (9)0.0155 (9)0.0026 (8)
C140.0108 (8)0.0097 (9)0.0110 (9)0.0004 (7)0.0034 (7)0.0015 (7)
O6W0.0406 (11)0.0487 (13)0.0328 (11)0.0138 (10)0.0193 (9)0.0133 (9)
O7W0.0378 (18)0.045 (2)0.0219 (15)0.0027 (14)0.0025 (12)0.0017 (12)
Geometric parameters (Å, º) top
Mn1—O1W2.1825 (14)O3W—H3WA0.8920
Mn1—N12.2138 (16)O3W—H3WB0.8736
Mn1—O2W2.2403 (14)O4W—H4WA0.7333
Mn1—O32.2566 (14)O4W—H4WB0.8409
Mn1—O72.2594 (14)O5W—H5WA0.8091
Mn1—O12.3070 (14)O5W—H5WB0.8449
Mn1—O62.4538 (14)N1—C11.333 (2)
Mn2—O3W2.203 (3)N1—C51.342 (2)
Mn2—O5W2.2183 (17)N2—C81.341 (3)
Mn2—O8i2.2426 (16)N2—C121.341 (2)
Mn2—O4W2.2938 (18)C1—C21.383 (3)
Mn2—N22.2950 (17)C1—C61.517 (3)
Mn2—O62.4232 (15)C2—C31.401 (3)
Mn2—O82.4633 (16)C2—H2A0.9500
O1—C61.267 (2)C3—C41.405 (3)
O2—C61.243 (2)C4—C51.377 (3)
O3—C71.261 (2)C4—H4A0.9500
O4—C71.257 (2)C5—C71.519 (3)
O5—C31.338 (2)C8—C91.380 (3)
O5—H5O0.7711C8—C131.511 (3)
O6—C141.250 (2)C9—C101.400 (3)
O7—C141.264 (2)C9—H9A0.9500
O8—C131.273 (3)C10—C111.393 (3)
O8—Mn2i2.2426 (16)C11—C121.372 (3)
O9—C131.241 (3)C11—H11A0.9500
O10—C101.334 (2)C12—C141.502 (3)
O10—H10O0.8270O6W—H6WA0.8800
O1W—H1WA0.7749O6W—H6WB0.8019
O1W—H1WB0.8379O7W—H7WA0.9618
O2W—H2WA0.8351O7W—H7WB0.9870
O2W—H2WB0.7885
O1W—Mn1—N1100.00 (6)Mn2—O3W—H3WA128.2
O1W—Mn1—O2W168.64 (5)Mn2—O3W—H3WB124.4
N1—Mn1—O2W90.19 (6)H3WA—O3W—H3WB95.5
O1W—Mn1—O396.96 (5)Mn2—O4W—H4WA117.2
N1—Mn1—O371.17 (6)Mn2—O4W—H4WB119.6
O2W—Mn1—O381.50 (5)H4WA—O4W—H4WB96.0
O1W—Mn1—O785.66 (5)Mn2—O5W—H5WA120.9
N1—Mn1—O7148.36 (6)Mn2—O5W—H5WB126.0
O2W—Mn1—O788.27 (5)H5WA—O5W—H5WB94.1
O3—Mn1—O7139.50 (5)C1—N1—C5118.94 (17)
O1W—Mn1—O192.74 (5)C1—N1—Mn1121.15 (13)
N1—Mn1—O170.01 (5)C5—N1—Mn1119.91 (13)
O2W—Mn1—O195.47 (5)C8—N2—C12116.90 (17)
O3—Mn1—O1141.05 (5)C8—N2—Mn2123.02 (13)
O7—Mn1—O178.68 (5)C12—N2—Mn2120.07 (13)
O1W—Mn1—O683.88 (5)N1—C1—C2122.99 (18)
N1—Mn1—O6155.46 (6)N1—C1—C6113.85 (16)
O2W—Mn1—O684.77 (5)C2—C1—C6123.16 (17)
O3—Mn1—O684.33 (5)C1—C2—C3118.13 (18)
O7—Mn1—O655.65 (5)C1—C2—H2A120.9
O1—Mn1—O6134.32 (5)C3—C2—H2A120.9
O3W—Mn2—O5W92.02 (9)O5—C3—C2122.88 (18)
O3W—Mn2—O8i84.42 (7)O5—C3—C4118.39 (18)
O5W—Mn2—O8i87.60 (6)C2—C3—C4118.74 (18)
O3W—Mn2—O4W174.44 (8)C5—C4—C3118.46 (18)
O5W—Mn2—O4W82.59 (7)C5—C4—H4A120.8
O8i—Mn2—O4W93.97 (7)C3—C4—H4A120.8
O3W—Mn2—N297.87 (8)N1—C5—C4122.63 (18)
O5W—Mn2—N2136.46 (6)N1—C5—C7112.91 (16)
O8i—Mn2—N2135.39 (6)C4—C5—C7124.46 (17)
O4W—Mn2—N287.02 (6)O2—C6—O1125.79 (18)
O3W—Mn2—O683.39 (6)O2—C6—C1119.09 (17)
O5W—Mn2—O670.39 (5)O1—C6—C1115.13 (16)
O8i—Mn2—O6154.34 (6)O4—C7—O3124.70 (18)
O4W—Mn2—O695.99 (6)O4—C7—C5119.14 (17)
N2—Mn2—O668.85 (5)O3—C7—C5116.15 (16)
O3W—Mn2—O894.93 (8)N2—C8—C9124.02 (18)
O5W—Mn2—O8154.34 (6)N2—C8—C13114.96 (18)
O8i—Mn2—O868.60 (6)C9—C8—C13121.01 (18)
O4W—Mn2—O889.41 (6)C8—C9—C10118.23 (18)
N2—Mn2—O866.82 (6)C8—C9—H9A120.9
O6—Mn2—O8134.95 (5)C10—C9—H9A120.9
C6—O1—Mn1119.68 (12)O10—C10—C11122.30 (17)
C7—O3—Mn1119.63 (12)O10—C10—C9119.67 (17)
C3—O5—H5O109.8C11—C10—C9118.04 (18)
C14—O6—Mn2116.63 (12)C12—C11—C10119.18 (18)
C14—O6—Mn186.48 (11)C12—C11—H11A120.4
Mn2—O6—Mn1154.03 (7)C10—C11—H11A120.4
C14—O7—Mn195.07 (12)N2—C12—C11123.57 (18)
C13—O8—Mn2i129.09 (14)N2—C12—C14114.91 (17)
C13—O8—Mn2119.11 (13)C11—C12—C14121.52 (17)
Mn2i—O8—Mn2111.40 (6)O9—C13—O8126.7 (2)
C10—O10—H10O108.3O9—C13—C8117.97 (19)
Mn1—O1W—H1WA127.1O8—C13—C8115.30 (18)
Mn1—O1W—H1WB112.8O6—C14—O7122.80 (18)
H1WA—O1W—H1WB101.9O6—C14—C12118.38 (17)
Mn1—O2W—H2WA108.3O7—C14—C12118.83 (17)
Mn1—O2W—H2WB111.7H6WA—O6W—H6WB92.6
H2WA—O2W—H2WB101.7H7WA—O7W—H7WB104.2
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O2Wii0.772.062.799 (2)159
O1W—H1WB···O1iii0.841.822.651 (2)176
O2W—H2WA···O4iv0.831.972.804 (2)173
O2W—H2WB···O7v0.791.982.687 (2)166
O3W—H3WA···O7Wvi0.891.952.800 (4)152
O5—H5O···O6W0.771.952.712 (3)173
O3W—H3WB···O4Wii0.872.022.890 (3)173
O4W—H4WA···O1Wvii0.732.322.949 (2)144
O4W—H4WB···O2v0.841.902.725 (3)169
O5W—H5WA···O10viii0.812.362.966 (3)133
O5W—H5WA···O9i0.812.092.734 (3)137
O5W—H5WB···O30.852.112.932 (2)165
O10—H10O···O4ix0.831.862.683 (2)174
O6W—H6WA···O7Wx0.881.802.608 (4)153
O6W—H6WB···O9xi0.802.102.869 (3)161
O7W—H7WA···O20.961.792.725 (3)163
O7W—H7WB···O3Wiii0.992.142.899 (5)132
O7W—H7WB···N2iii0.992.373.070 (4)127
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z; (iii) x+2, y+1, z; (iv) x+1, y, z; (v) x+1, y+1, z; (vi) x, y, z+1; (vii) x1, y, z; (viii) x, y1, z; (ix) x, y+1, z; (x) x+2, y, z1; (xi) x+1, y1, z1.

Experimental details

Crystal data
Chemical formula[Mn4(C8H3NO5)4(H2O)10]·3.34H2O
Mr1184.47
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)6.6765 (3), 10.9615 (5), 14.1513 (7)
α, β, γ (°)102.309 (1), 95.097 (1), 91.581 (1)
V3)1006.69 (8)
Z1
Radiation typeMo Kα
µ (mm1)1.35
Crystal size (mm)0.17 × 0.13 × 0.08
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.783, 0.899
No. of measured, independent and
observed [I > 2σ(I)] reflections
11968, 5282, 4390
Rint0.023
(sin θ/λ)max1)0.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.096, 1.02
No. of reflections5282
No. of parameters317
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.03, 0.73

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2001), SHELXTL (Sheldrick, 2008), enCIFer (Allen et al., 2004), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Selected geometric parameters (Å, º) top
Mn1—O1W2.1825 (14)Mn2—O3W2.203 (3)
Mn1—N12.2138 (16)Mn2—O5W2.2183 (17)
Mn1—O2W2.2403 (14)Mn2—O8i2.2426 (16)
Mn1—O32.2566 (14)Mn2—O4W2.2938 (18)
Mn1—O72.2594 (14)Mn2—N22.2950 (17)
Mn1—O12.3070 (14)Mn2—O62.4232 (15)
Mn1—O62.4538 (14)Mn2—O82.4633 (16)
O1W—Mn1—N1100.00 (6)O5W—Mn2—N2136.46 (6)
O1W—Mn1—O2W168.64 (5)O8i—Mn2—N2135.39 (6)
N1—Mn1—O2W90.19 (6)O4W—Mn2—N287.02 (6)
O3—Mn1—O1141.05 (5)O8i—Mn2—O6154.34 (6)
O3W—Mn2—O5W92.02 (9)O8i—Mn2—O868.60 (6)
O3W—Mn2—O4W174.44 (8)O6—Mn2—O8134.95 (5)
O5W—Mn2—O4W82.59 (7)Mn2—O6—Mn1154.03 (7)
O3W—Mn2—N297.87 (8)Mn2i—O8—Mn2111.40 (6)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O2Wii0.772.062.799 (2)159
O1W—H1WB···O1iii0.841.822.651 (2)176
O2W—H2WA···O4iv0.831.972.804 (2)173
O2W—H2WB···O7v0.791.982.687 (2)166
O3W—H3WA···O7Wvi0.891.952.800 (4)152
O5—H5O···O6W0.771.952.712 (3)173
O3W—H3WB···O4Wii0.872.022.890 (3)173
O4W—H4WA···O1Wvii0.732.322.949 (2)144
O4W—H4WB···O2v0.841.902.725 (3)169
O5W—H5WA···O10viii0.812.362.966 (3)133
O5W—H5WA···O9i0.812.092.734 (3)137
O5W—H5WB···O30.852.112.932 (2)165
O10—H10O···O4ix0.831.862.683 (2)174
O6W—H6WA···O7Wx0.881.802.608 (4)153
O6W—H6WB···O9xi0.802.102.869 (3)161
O7W—H7WA···O20.961.792.725 (3)163
O7W—H7WB···O3Wiii0.992.142.899 (5)132
O7W—H7WB···N2iii0.992.373.070 (4)127
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z; (iii) x+2, y+1, z; (iv) x+1, y, z; (v) x+1, y+1, z; (vi) x, y, z+1; (vii) x1, y, z; (viii) x, y1, z; (ix) x, y+1, z; (x) x+2, y, z1; (xi) x+1, y1, z1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds