research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Two closely related 2-(benzo­furan-2-yl)-2-oxo­ethyl benzoates: structural differences and C—H⋯O hydrogen-bonded supra­molecular assemblies

CROSSMARK_Color_square_no_text.svg

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Engineering Chemistry, Vidya Vikas Institute of Engineering & Technology, Visvesvaraya Technological University, Alanahally, Mysuru 570 028, Karnataka, India, cSchool of Chemical Sciences, Universiti Sains Malaysia, Penang 11800 USM, Malaysia, dDepartment of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Perak Campus, Jalan Universiti, Bandar Barat, Perak, Malaysia, eSchool of Biosciences, Taylor's University, Lakeside Campus, 47500 Subang Jaya, Selangor, Malaysia, fInstitution of Excellence, University of Mysore, Manasagangotri, Mysuru 570 006, India, and gDepartment of Chemistry, Science College, An-Najah National University, PO Box 7, Nablus, West Bank, Palestinian Territories
*Correspondence e-mail: chidankumar@gmail.com, khalil.i@najah.edu

Edited by P. McArdle, National University of Ireland, Ireland (Received 22 June 2017; accepted 23 June 2017; online 30 June 2017)

The compounds 2-(1-benzo­furan-2-yl)-2-oxoethyl 2-nitro­benzoate, C17H11NO6 (I), and 2-(1-benzo­furan-2-yl)-2-oxoethyl 2-amino­benzoate, C17H13NO4 (II), were synthesized under mild conditions. Their mol­ecular structures were characterized by both spectroscopic and single-crystal X-ray diffraction analysis. The mol­ecular conformations of both title compounds are generally similar. However, different ortho-substituted moieties at the phenyl ring of the two compounds cause deviations in the torsion angles between the carbonyl group and the attached phenyl ring. In compound (I), the ortho-nitro­phenyl ring is twisted away from the adjacent carbonyl group whereas in compound (II), the ortho-amino­phenyl ring is almost co-planar with the carbonyl group. In the crystal of compound (I), two C—H⋯O hydrogen bonds link the mol­ecules into chains propagating along the c-axis direction and the chains are inter­digitated, forming sheets parallel to [20-1]. Conversely, pairs of N—H⋯O hydrogen bonds in compound (II) link inversion-related mol­ecules into dimers, which are further extended by C—H⋯O hydrogen bonds into dimer chains. These chains are inter­connected by ππ inter­actions involving the furan rings, forming sheets parallel to the ac plane.

1. Chemical context

Oxygen-containing heterocycles are the basic cores of many bioactive structures. Among these, benzo­furan and its derivatives occur frequently in nature because of their stability and ease of generation. Those with substitution(s) at their C-2 and/or C-3 positions are important. Important biological activity such as anti­cancer (Swamy et al., 2015[Swamy, P. M. G., Prasad, Y. R., Ashvini, H. M., Giles, D., Shashidhar, B. V. & Agasimundin, Y. S. (2015). Med. Chem. Res. 24, 3437-3452.]), anti-acetyl­cholinesterase (Zhou et al., 2010[Zhou, X., Li, M., Wang, X.-B., Wang, T. & Kong, L.-Y. (2010). Molecules, 15, 8593-8601.]), anti­microbial (Ugale et al., 2012[Ugale, V., Patel, H., Patel, B. & Bari, S. (2012). Arab. J. Chem. 10, S389-A396.]) and anti­oxidant (Naik et al., 2013[Naik, N., Vijay, K., Dias, S. M. & Ranga, S. (2013). Int. J. Pharm. Pharm. Sci. 5, 242-247.]) actions exhibited by this scaffold have attracted the attention of synthetic chemists. Some of the biological and medicinal significance of benzo­furan derivatives (Nevagi et al., 2015[Nevagi, R. J., Dighe, S. N. & Dighe, S. N. (2015). Eur. J. Med. Chem. 97, 561-581.]) have been discussed in review reports. The known potential of benzo­furan derivatives has motivated us to synthesise some new compounds incorporating this core structure and we herein report the synthesis and crystal structures of 2-(1-benzo­furan-2-yl)-2-oxoethyl 2-nitro­benzoate (I)[link] and 2-(1-benzo­furan-2-yl)-2-oxoethyl 2-amino­benzoate (II)[link].

[Scheme 1]

2. Structural commentary

The mol­ecular structures of the title compounds (Fig. 1[link]) contain a benzo­furan ring and an ortho-substituted [nitro- for compound (I)[link] and amino- for compound (II)] phenyl ring, joined by a C—C(=O)—O—C(=O) carbonyl-connecting bridge. Their mol­ecular conformations can be characterized by three degrees of freedom, as indicated by the O1—C8—C9—O3 (τ1), C9—C10—O2—C11 (τ2) and O4—C11—C12—C13 (τ3) torsion angles, respectively (Fig. 2[link]). The torsion angle τ1 for compounds (I)[link] and (II)[link] is close to 0°, showing that the benzo­furan ring is nearly coplanar with the C—C(=O)—O—C(=O) carbonyl bridge. Torsion angle τ2 adopts a syn-clinal conformation, as both carbonyl groups at the connecting bridges are twisted away from each other forming torsion angles of −71.43 (3)° in (I)[link] and −70.85 (18)° in (II)[link]. For compound (I)[link], the substituted ortho-nitro­phenyl moiety is perpendicular to the adjacent carbonyl group with a τ3 torsion angle of −90.2 (4)°; this may arise from a steric repulsion force between the nitro group and carbonyl group. In contrast, the ortho-amino­phenyl ring in compound (II)[link] is almost coplanar with its adjacent carbonyl group due to the intra­molecular hydrogen bond (N1—H1A⋯O4, Table 2[link]) between the amino and carbonyl groups, which generates an S(6) ring.

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O4 0.91 (2) 2.05 (2) 2.700 (3) 127.7 (18)
N1—H1A⋯O4i 0.91 (2) 2.49 (2) 3.246 (2) 141.4 (18)
C10—H10A⋯O3ii 0.97 2.50 3.444 (2) 165
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x-1, y, z.
[Figure 1]
Figure 1
ORTEP diagram of the title compounds, with ellipsoids drawn at the 50% probability level, showing the atomic labelling scheme.
[Figure 2]
Figure 2
General chemical diagram showing torsion angles τ1, τ2 and τ3 in compounds (I)[link] and (II)[link].

3. Supra­molecular features

The crystal packing of compound (I)[link] depends mainly on two weak inter­molecular hydrogen bonds. Mol­ecules are joined into infinite chains propagating along the c-axis by C10—H10A⋯O3 hydrogen bonds (Table 1[link], Fig. 3[link]), meanwhile those chains are inter­digitated into a fishbone sheet extending along the [20[\overline{1}]] direction through C15—H15A⋯O5 hydrogen bonds. The fishbone sheets alternate in an up–down manner along the ab plane as shown in Fig. 4[link].

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10A⋯O3i 0.99 2.59 3.471 (4) 148
C15—H15A⋯O5ii 0.95 2.58 3.380 (3) 142
Symmetry codes: (i) x, y, z-1; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+1].
[Figure 3]
Figure 3
Mol­ecules in compound (I)[link] joined by inter­molecular hydrogen bonds, forming a fishbone chain.
[Figure 4]
Figure 4
Fishbone chains in an up–down manner are shown in different colours.

In compound (II)[link], the mol­ecular inter­actions are more abundant than in (I)[link] because of the ortho-substituted amino group at its phenyl ring. Pairs of N1—H1A⋯O4 hydrogen bonds link mol­ecules into inversion dimers with an R22(12) graph-set motif (Fig. 5[link]). These dimers are further expanded by C10—H10A⋯O3 hydrogen bonds into infinite chains along the [100] direction (Fig. 6[link]). In addition, neighbouring chains are inter­connected by ππ inter­actions involving adjacent furan rings [centroid–centroid distance = 3.7982 (15) Å; symmetry code: −x, −y + 1, −z), forming a sheet parallel to the ac plane (Fig. 7[link]).

[Figure 5]
Figure 5
Intra­molecular and inter­molecular N1—H1A⋯O4 hydrogen bonds.
[Figure 6]
Figure 6
Inter­actions in the crystal structure of compound (II)[link], showing hydrogen bonds (cyan dotted lines) and ππ inter­actions (red dotted lines).
[Figure 7]
Figure 7
The packing of compound (II)[link], showing the hydrogen bonds (cyan dotted lines) and ππ inter­actions (red dotted lines).

4. Database survey

A survey of the Cambridge Structural Database (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed five benzo­furan structures (Kumar et al., 2015[Kumar, C., Then, L., Chia, T., Chandraju, S., Win, Y.-F., Sulaiman, S., Hashim, N., Ooi, K., Quah, C. & Fun, H.-K. (2015). Molecules, 20, 16566-16581.]) similar to the title compounds: ITAXUY, ITAYAF, ITAYEJ, ITAYIN and ITAYOT. The mol­ecular structures of the studied and previous compounds differ only at their substituted phenyl rings. By comparing their torsion angles at the C(=O)—O—C(=O) carbonyl bridges, the title compounds exhibit a syn-clinal conformation similar to ITAXUY, ITAYEJ and ITAYIN with respect to their torsion angles which range from 75 to 80°.

5. Synthesis and crystallization

The synthesis was carried out by reacting 1-(benzo­furan-2-yl)-2-bromo­ethan-1-one (1 mmol) with 2-nitro­benzoic acid (1 mmol) for compound (I)[link] and 2-amino­benzoic acid (1 mmol) for compound (II)[link] in 8 ml of N,N-di­methyl­formamide in the presence of a catalytic amount of anhydrous potassium carbonate at room temperature. The reaction solution was stirred for about two h and monitored by thin-layer chromatography (TLC). After the reaction was complete, the resultant mixture was then added to a beaker of ice-cooled water to form a precipitate. The precipitate was then filtered, rinsed with distilled water and dried. Crystals suitable for X-ray analysis were obtained by slow evaporation using a suitable solvent.

2-(Benzo­furan-2-yl)-2-oxoethyl 2-nitro­benzoate (I)[link]:

Solvents used to grow crystal: acetone + methanol 1:1 v/v); yield: 80%, m.p. 381–383 K; 1H NMR (500MHz, CDCl3) in ppm: δ 8.041–8.025 (d, 1H, J = 7.9Hz, 14CH), 7.995–7.980 (d, 1H, J = 7.9Hz, 17CH), 7.796–7.763 (m, 2H, 2CH, 3CH), 7.726–7.695 (t, 1H, J = 7.9Hz, 15CH), 7.673 (s, 1H, 7CH), 7.644–7.627 (d, 1H, J = 8.4Hz, 5CH), 7.578–7.544 (t, 1H, J = 8.4Hz, 4CH), 7.398–7.366 (t, 1H, J = 7.9Hz, 16CH), 5.609 (s, 2H, 10CH2). 13C NMR (125 MHz, CDCl3) in ppm: 182.94 (C9), 165.67 (C11), 155.80 (C1), 150.25 (C13), 133.31 (C16), 132.04 (C15), 130.39 (C17), 130.10 (C8), 128.97 (C3), 127.23 (C12), 126.70 (C6), 124.34 (C5), 124.11 (C4), 123.60 (C14), 113.75 (C7), 112.57 (C2), 67.10 (C10). FT–IR (ATR (solid) cm−1): 3089 (Ar C—H, ν), 2953 (C—H, ν), 1744, 1686 (C=O, ν), 1612 (C=C, ν), 1554, 1422 (Ar C=C, ν), 1529, 1344 (N=O, ν), 1278, 1123 (C—O, ν).

2-(Benzo­furan-2-yl)-2-oxoethyl 2-amino­benzoate (II):

Solvents used to grow crystal: acetone + aceto­nitrile (1:1 v/v); yield: 83%; m.p. 432–434 K; 1H NMR (500 MHz, DMSO) in ppm: δ 8.083 (s, 1H, 7CH), 7.907–7.891 (d, 1H, J = 8.1Hz, 17CH), 7.848–7.832 (d, 1H, J = 8.1Hz, 14CH), 7.787–7.770 (d, 1H, J = 8.5Hz, 2CH), 7.617–7.583 (t, 1H, J = 8.5Hz, 3CH), 7.437–7.405 (t, 1H, J = 8.1Hz, 15CH), 7.329–7.295 (t, 1H, J = 8.5Hz, 4CH), 6.824–6.807 (d, 1H, J = 8.5Hz, 5CH), 6.669 (brs, 2H, 1NH2), 6.607–6.574 (t, 1H, J = 8.1Hz, 16CH), 5.591 (s, 2H, 10CH2). 13C NMR (125MHz, DMSO) in ppm: 184.08 (C9), 166.60 (C11), 154.96 (C1), 151.62 (C15), 149.63 (C13), 134.49 (C8), 130.78 (C17), 128.88 (C3), 126.49 (C6), 124.28 (C5), 123.84 (C4), 116.63 (C14), 114.84 (C16), 114.66 (C7), 112.31 (C2), 107.87 (C2), 65.63 (C10). FT–IR (ATR (solid) cm−1): 3473, 3360 (N—H, ν), 3078 (Ar C—H, ν), 2942 (C—H, ν), 1697, 1676 (C=O, ν), 1615 (C=C, ν), 1583, 1487 (Ar C=C, ν), 1244, 1112 (C—O, ν).

6. Refinement

Crystal data, data collection and structure refinement details for both compounds are summarized in Table 3[link]. All C-bound H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and refined using a riding model with Uiso(H) = 1.2Ueq(parent atom). The N-bound H atoms of compound (II)[link] were located in a difference-Fourier map and refined freely.

Table 3
Experimental details

  (I) (II)
Crystal data
Chemical formula C17H11NO6 C17H13NO4
Mr 325.27 295.28
Crystal system, space group Orthorhombic, Pna21 Triclinic, P[\overline{1}]
Temperature (K) 100 297
a, b, c (Å) 9.3022 (10), 28.482 (3), 5.5208 (6) 5.1839 (12), 10.853 (3), 12.269 (3)
α, β, γ (°) 90, 90, 90 93.562 (3), 91.167 (3), 98.714 (3)
V3) 1462.7 (3) 680.6 (3)
Z 4 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.11 0.10
Crystal size (mm) 0.27 × 0.16 × 0.13 0.40 × 0.32 × 0.21
 
Data collection
Diffractometer Bruker APEXII DUO CCD area-detector Bruker APEXII DUO CCD area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.933, 0.985 0.871, 0.978
No. of measured, independent and observed [I > 2σ(I)] reflections 15875, 3358, 2915 17052, 3105, 2214
Rint 0.037 0.037
(sin θ/λ)max−1) 0.651 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.085, 1.08 0.046, 0.123, 1.08
No. of reflections 3358 3105
No. of parameters 217 207
No. of restraints 1 0
H-atom treatment H-atom parameters constrained H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.18, −0.17 0.18, −0.18
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2013 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2013 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Computing details top

For both compounds, data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXT2013 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2015b). Molecular graphics: SHELXL2013 (Sheldrick, 2015b) and Mercury (Macrae et al., 2006) for (I); SHELXL2013 (Sheldrick, 2015b) for (II). For both compounds, software used to prepare material for publication: SHELXL2013 (Sheldrick, 2015b) and PLATON (Spek, 2009).

(I) 2-(1H-1-Benzofuran-2-yl)-2-oxoethyl 2-nitrobenzoate top
Crystal data top
C17H11NO6Dx = 1.477 Mg m3
Mr = 325.27Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21Cell parameters from 3687 reflections
a = 9.3022 (10) Åθ = 2.3–25.3°
b = 28.482 (3) ŵ = 0.11 mm1
c = 5.5208 (6) ÅT = 100 K
V = 1462.7 (3) Å3Block, colourless
Z = 40.27 × 0.16 × 0.13 mm
F(000) = 672
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
3358 independent reflections
Radiation source: fine-focus sealed tube2915 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
φ and ω scansθmax = 27.6°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1212
Tmin = 0.933, Tmax = 0.985k = 3637
15875 measured reflectionsl = 77
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.085 w = 1/[σ2(Fo2) + (0.0345P)2 + 0.279P],
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
3358 reflectionsΔρmax = 0.18 e Å3
217 parametersΔρmin = 0.17 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.5075 (2)0.27391 (8)0.1493 (4)0.0290 (5)
O10.72961 (19)0.53112 (6)0.6220 (3)0.0309 (4)
O20.51143 (18)0.39614 (6)0.2506 (3)0.0289 (4)
O30.5376 (2)0.45933 (6)0.6044 (4)0.0328 (4)
O40.6811 (2)0.36342 (6)0.4887 (4)0.0350 (5)
O50.5946 (2)0.30243 (6)0.0721 (4)0.0343 (4)
O60.4877 (2)0.23524 (7)0.0592 (4)0.0460 (6)
C10.8415 (3)0.56187 (8)0.5803 (5)0.0270 (6)
C20.8830 (3)0.59794 (10)0.7294 (6)0.0362 (6)
H2A0.83430.60450.87680.043*
C30.9982 (3)0.62384 (10)0.6543 (6)0.0412 (7)
H3A1.03130.64880.75390.049*
C41.0686 (3)0.61491 (10)0.4372 (6)0.0413 (8)
H4A1.14750.63410.39100.050*
C51.0259 (3)0.57859 (11)0.2866 (6)0.0380 (7)
H5A1.07430.57250.13850.046*
C60.9074 (3)0.55093 (9)0.3613 (5)0.0278 (6)
C70.8303 (3)0.51167 (9)0.2669 (5)0.0284 (6)
H7A0.84890.49580.11870.034*
C80.7272 (3)0.50142 (9)0.4259 (5)0.0312 (6)
C90.6161 (3)0.46488 (9)0.4317 (5)0.0286 (6)
C100.6080 (3)0.43440 (9)0.2082 (5)0.0299 (6)
H10A0.57370.45330.06910.036*
H10B0.70470.42210.16850.036*
C110.5621 (3)0.36359 (9)0.4045 (5)0.0272 (6)
C120.4463 (3)0.32984 (8)0.4742 (5)0.0250 (5)
C130.4219 (3)0.28707 (9)0.3614 (4)0.0247 (5)
C140.3186 (3)0.25567 (9)0.4415 (5)0.0307 (6)
H14A0.30520.22640.36220.037*
C150.2354 (3)0.26790 (10)0.6397 (5)0.0345 (6)
H15A0.16400.24690.69790.041*
C160.2562 (3)0.31066 (10)0.7531 (5)0.0348 (6)
H16A0.19780.31910.88740.042*
C170.3614 (3)0.34129 (10)0.6725 (5)0.0319 (6)
H17A0.37550.37040.75350.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0311 (11)0.0268 (11)0.0292 (12)0.0017 (9)0.0055 (10)0.0006 (10)
O10.0304 (10)0.0307 (9)0.0316 (9)0.0006 (8)0.0030 (8)0.0025 (8)
O20.0337 (10)0.0216 (9)0.0314 (9)0.0024 (7)0.0008 (9)0.0025 (8)
O30.0371 (10)0.0267 (9)0.0346 (10)0.0017 (8)0.0038 (9)0.0001 (8)
O40.0278 (10)0.0305 (10)0.0467 (12)0.0005 (8)0.0025 (9)0.0064 (9)
O50.0374 (10)0.0291 (9)0.0364 (11)0.0010 (8)0.0133 (9)0.0021 (9)
O60.0516 (13)0.0338 (11)0.0527 (13)0.0047 (10)0.0184 (11)0.0161 (10)
C10.0267 (13)0.0262 (12)0.0280 (13)0.0043 (10)0.0017 (11)0.0067 (11)
C20.0419 (16)0.0360 (16)0.0307 (14)0.0065 (13)0.0075 (13)0.0020 (12)
C30.0426 (17)0.0341 (15)0.0470 (18)0.0033 (13)0.0196 (15)0.0017 (14)
C40.0293 (15)0.0395 (17)0.055 (2)0.0040 (13)0.0109 (15)0.0193 (15)
C50.0326 (15)0.0502 (18)0.0312 (15)0.0123 (13)0.0035 (13)0.0142 (13)
C60.0281 (13)0.0299 (14)0.0256 (13)0.0072 (11)0.0027 (11)0.0043 (11)
C70.0316 (14)0.0247 (13)0.0289 (13)0.0081 (11)0.0035 (12)0.0022 (11)
C80.0349 (14)0.0230 (12)0.0357 (15)0.0058 (11)0.0062 (13)0.0002 (11)
C90.0293 (13)0.0222 (12)0.0342 (14)0.0065 (11)0.0007 (12)0.0042 (11)
C100.0343 (14)0.0208 (12)0.0345 (15)0.0017 (11)0.0044 (12)0.0032 (11)
C110.0299 (14)0.0217 (12)0.0299 (14)0.0059 (11)0.0028 (12)0.0010 (11)
C120.0234 (12)0.0244 (12)0.0273 (13)0.0056 (10)0.0004 (11)0.0021 (11)
C130.0233 (12)0.0281 (13)0.0227 (12)0.0052 (10)0.0021 (10)0.0008 (11)
C140.0301 (13)0.0308 (14)0.0313 (13)0.0033 (11)0.0001 (12)0.0007 (12)
C150.0275 (13)0.0436 (16)0.0324 (14)0.0054 (12)0.0042 (12)0.0049 (13)
C160.0289 (14)0.0471 (17)0.0286 (13)0.0011 (13)0.0069 (12)0.0014 (14)
C170.0320 (14)0.0343 (15)0.0295 (14)0.0050 (12)0.0012 (12)0.0051 (12)
Geometric parameters (Å, º) top
N1—O61.223 (3)C6—C71.427 (4)
N1—O51.224 (3)C7—C81.333 (4)
N1—C131.465 (3)C7—H7A0.9500
O1—C81.374 (3)C8—C91.467 (4)
O1—C11.380 (3)C9—C101.511 (4)
O2—C111.343 (3)C10—H10A0.9900
O2—C101.431 (3)C10—H10B0.9900
O3—C91.211 (3)C11—C121.494 (4)
O4—C111.201 (3)C12—C131.387 (3)
C1—C21.372 (4)C12—C171.389 (4)
C1—C61.391 (4)C13—C141.385 (4)
C2—C31.365 (4)C14—C151.385 (4)
C2—H2A0.9500C14—H14A0.9500
C3—C41.389 (5)C15—C161.383 (4)
C3—H3A0.9500C15—H15A0.9500
C4—C51.385 (4)C16—C171.384 (4)
C4—H4A0.9500C16—H16A0.9500
C5—C61.416 (4)C17—H17A0.9500
C5—H5A0.9500
O6—N1—O5123.8 (2)O3—C9—C10122.6 (2)
O6—N1—C13118.3 (2)C8—C9—C10115.1 (2)
O5—N1—C13117.9 (2)O2—C10—C9109.6 (2)
C8—O1—C1105.8 (2)O2—C10—H10A109.8
C11—O2—C10114.1 (2)C9—C10—H10A109.8
C2—C1—O1126.0 (3)O2—C10—H10B109.8
C2—C1—C6124.4 (3)C9—C10—H10B109.8
O1—C1—C6109.6 (2)H10A—C10—H10B108.2
C3—C2—C1116.3 (3)O4—C11—O2124.9 (2)
C3—C2—H2A121.8O4—C11—C12124.2 (2)
C1—C2—H2A121.8O2—C11—C12110.7 (2)
C2—C3—C4122.2 (3)C13—C12—C17117.8 (2)
C2—C3—H3A118.9C13—C12—C11124.6 (2)
C4—C3—H3A118.9C17—C12—C11117.5 (2)
C5—C4—C3121.3 (3)C14—C13—C12122.5 (2)
C5—C4—H4A119.4C14—C13—N1117.8 (2)
C3—C4—H4A119.4C12—C13—N1119.7 (2)
C4—C5—C6117.6 (3)C13—C14—C15118.5 (3)
C4—C5—H5A121.2C13—C14—H14A120.7
C6—C5—H5A121.2C15—C14—H14A120.7
C1—C6—C5118.1 (3)C16—C15—C14120.1 (3)
C1—C6—C7105.7 (2)C16—C15—H15A120.0
C5—C6—C7136.1 (3)C14—C15—H15A120.0
C8—C7—C6107.0 (2)C15—C16—C17120.6 (3)
C8—C7—H7A126.5C15—C16—H16A119.7
C6—C7—H7A126.5C17—C16—H16A119.7
C7—C8—O1111.9 (2)C16—C17—C12120.5 (3)
C7—C8—C9132.6 (3)C16—C17—H17A119.8
O1—C8—C9115.5 (2)C12—C17—H17A119.8
O3—C9—C8122.3 (3)
C8—O1—C1—C2179.6 (2)O3—C9—C10—O27.9 (3)
C8—O1—C1—C60.3 (3)C8—C9—C10—O2171.4 (2)
O1—C1—C2—C3179.2 (2)C10—O2—C11—O45.4 (4)
C6—C1—C2—C30.8 (4)C10—O2—C11—C12169.6 (2)
C1—C2—C3—C41.1 (4)O4—C11—C12—C1390.2 (4)
C2—C3—C4—C50.8 (4)O2—C11—C12—C1394.7 (3)
C3—C4—C5—C60.3 (4)O4—C11—C12—C1786.9 (3)
C2—C1—C6—C50.3 (4)O2—C11—C12—C1788.2 (3)
O1—C1—C6—C5179.7 (2)C17—C12—C13—C141.0 (4)
C2—C1—C6—C7179.7 (2)C11—C12—C13—C14176.1 (2)
O1—C1—C6—C70.3 (3)C17—C12—C13—N1179.1 (2)
C4—C5—C6—C10.0 (4)C11—C12—C13—N13.8 (4)
C4—C5—C6—C7180.0 (3)O6—N1—C13—C142.8 (3)
C1—C6—C7—C80.1 (3)O5—N1—C13—C14177.0 (2)
C5—C6—C7—C8179.9 (3)O6—N1—C13—C12177.1 (2)
C6—C7—C8—O10.1 (3)O5—N1—C13—C123.1 (3)
C6—C7—C8—C9179.1 (3)C12—C13—C14—C151.0 (4)
C1—O1—C8—C70.3 (3)N1—C13—C14—C15179.1 (2)
C1—O1—C8—C9179.4 (2)C13—C14—C15—C160.0 (4)
C7—C8—C9—O3174.5 (3)C14—C15—C16—C171.0 (4)
O1—C8—C9—O34.5 (3)C15—C16—C17—C121.0 (4)
C7—C8—C9—C104.9 (4)C13—C12—C17—C160.1 (4)
O1—C8—C9—C10176.2 (2)C11—C12—C17—C16177.3 (2)
C11—O2—C10—C971.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···O3i0.992.593.471 (4)148
C15—H15A···O5ii0.952.583.380 (3)142
Symmetry codes: (i) x, y, z1; (ii) x1/2, y+1/2, z+1.
(II) 2-(1H-1-Benzofuran-2-yl)-2-oxoethyl 2-aminobenzoate top
Crystal data top
C17H13NO4Z = 2
Mr = 295.28F(000) = 308
Triclinic, P1Dx = 1.441 Mg m3
a = 5.1839 (12) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.853 (3) ÅCell parameters from 5796 reflections
c = 12.269 (3) Åθ = 2.4–27.9°
α = 93.562 (3)°µ = 0.10 mm1
β = 91.167 (3)°T = 297 K
γ = 98.714 (3)°Block, orange
V = 680.6 (3) Å30.40 × 0.32 × 0.21 mm
Data collection top
Bruker APEXII DUO CCD area-detector
diffractometer
3105 independent reflections
Radiation source: fine-focus sealed tube2214 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
φ and ω scansθmax = 27.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 66
Tmin = 0.871, Tmax = 0.978k = 1414
17052 measured reflectionsl = 1515
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.046H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.123 w = 1/[σ2(Fo2) + (0.0462P)2 + 0.1899P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
3105 reflectionsΔρmax = 0.18 e Å3
207 parametersΔρmin = 0.18 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.6563 (4)0.67887 (18)0.63733 (16)0.0583 (4)
H1A0.611 (4)0.617 (2)0.5840 (19)0.069 (7)*
H1B0.797 (5)0.682 (2)0.6702 (19)0.074 (7)*
O10.2314 (2)0.47254 (11)0.10178 (9)0.0478 (3)
O20.0514 (2)0.72867 (11)0.41702 (9)0.0500 (3)
O30.3365 (3)0.67869 (12)0.24247 (11)0.0587 (4)
O40.2949 (3)0.59366 (11)0.47797 (11)0.0579 (4)
C10.1297 (3)0.35882 (16)0.05120 (14)0.0448 (4)
C20.2360 (4)0.3001 (2)0.03521 (16)0.0581 (5)
H2A0.38900.33560.06670.070*
C30.1032 (5)0.1866 (2)0.07204 (17)0.0677 (6)
H3A0.16690.14340.13090.081*
C40.1240 (5)0.1334 (2)0.02449 (18)0.0672 (6)
H4A0.20720.05510.05140.081*
C50.2283 (4)0.19380 (18)0.06135 (17)0.0585 (5)
H5A0.38140.15810.09260.070*
C60.0976 (3)0.31045 (16)0.10033 (14)0.0452 (4)
C70.1376 (3)0.40069 (16)0.18454 (14)0.0453 (4)
H7A0.27620.39570.23180.054*
C80.0625 (3)0.49452 (16)0.18298 (13)0.0429 (4)
C90.1355 (3)0.60838 (16)0.25240 (14)0.0439 (4)
C100.0582 (3)0.63287 (18)0.33799 (14)0.0507 (4)
H10A0.21070.65710.30310.061*
H10B0.11410.55670.37410.061*
C110.2338 (3)0.69697 (16)0.48521 (13)0.0431 (4)
C120.3415 (3)0.79867 (15)0.56403 (13)0.0407 (4)
C130.5539 (3)0.78708 (16)0.63365 (13)0.0441 (4)
C140.6573 (4)0.89064 (19)0.70265 (15)0.0567 (5)
H14A0.79960.88550.74860.068*
C150.5549 (4)0.9990 (2)0.70424 (16)0.0611 (5)
H15A0.62891.06670.75060.073*
C160.3431 (4)1.00947 (18)0.63798 (16)0.0603 (5)
H16A0.27151.08310.64030.072*
C170.2401 (4)0.91065 (17)0.56910 (15)0.0515 (4)
H17A0.09760.91790.52400.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0538 (10)0.0643 (11)0.0604 (11)0.0199 (9)0.0078 (8)0.0097 (9)
O10.0432 (7)0.0505 (7)0.0489 (7)0.0035 (5)0.0037 (5)0.0054 (5)
O20.0511 (7)0.0514 (7)0.0492 (7)0.0158 (6)0.0066 (6)0.0011 (6)
O30.0505 (8)0.0579 (8)0.0635 (8)0.0041 (6)0.0051 (6)0.0002 (6)
O40.0647 (8)0.0426 (7)0.0680 (8)0.0158 (6)0.0080 (7)0.0023 (6)
C10.0456 (9)0.0457 (10)0.0441 (9)0.0097 (8)0.0051 (7)0.0072 (8)
C20.0588 (12)0.0676 (13)0.0508 (11)0.0174 (10)0.0053 (9)0.0058 (9)
C30.0846 (16)0.0697 (14)0.0532 (12)0.0292 (12)0.0042 (11)0.0027 (10)
C40.0846 (16)0.0519 (12)0.0630 (13)0.0095 (11)0.0195 (12)0.0043 (10)
C50.0565 (11)0.0540 (11)0.0622 (12)0.0018 (9)0.0073 (9)0.0083 (10)
C60.0457 (9)0.0462 (10)0.0442 (9)0.0075 (8)0.0060 (7)0.0081 (8)
C70.0399 (9)0.0523 (10)0.0438 (9)0.0047 (8)0.0017 (7)0.0087 (8)
C80.0408 (9)0.0489 (10)0.0409 (9)0.0105 (7)0.0014 (7)0.0093 (7)
C90.0405 (9)0.0458 (10)0.0458 (9)0.0065 (8)0.0051 (7)0.0080 (7)
C100.0432 (10)0.0576 (11)0.0508 (10)0.0083 (8)0.0033 (8)0.0008 (8)
C110.0422 (9)0.0447 (10)0.0444 (9)0.0098 (7)0.0042 (7)0.0093 (7)
C120.0416 (9)0.0414 (9)0.0403 (8)0.0078 (7)0.0058 (7)0.0064 (7)
C130.0417 (9)0.0511 (10)0.0404 (9)0.0064 (8)0.0069 (7)0.0104 (7)
C140.0538 (11)0.0684 (13)0.0461 (10)0.0039 (10)0.0026 (8)0.0032 (9)
C150.0724 (13)0.0573 (12)0.0488 (11)0.0023 (10)0.0052 (9)0.0049 (9)
C160.0776 (14)0.0471 (11)0.0579 (11)0.0156 (10)0.0074 (10)0.0006 (9)
C170.0565 (11)0.0482 (10)0.0520 (10)0.0152 (9)0.0008 (8)0.0034 (8)
Geometric parameters (Å, º) top
N1—C131.363 (2)C6—C71.419 (2)
N1—H1A0.91 (2)C7—C81.340 (2)
N1—H1B0.82 (2)C7—H7A0.9300
O1—C11.371 (2)C8—C91.453 (2)
O1—C81.373 (2)C9—C101.507 (3)
O2—C111.3469 (19)C10—H10A0.9700
O2—C101.420 (2)C10—H10B0.9700
O3—C91.208 (2)C11—C121.457 (2)
O4—C111.209 (2)C12—C171.394 (2)
C1—C21.371 (3)C12—C131.405 (2)
C1—C61.382 (2)C13—C141.396 (3)
C2—C31.363 (3)C14—C151.361 (3)
C2—H2A0.9300C14—H14A0.9300
C3—C41.387 (3)C15—C161.376 (3)
C3—H3A0.9300C15—H15A0.9300
C4—C51.370 (3)C16—C171.358 (3)
C4—H4A0.9300C16—H16A0.9300
C5—C61.393 (3)C17—H17A0.9300
C5—H5A0.9300
C13—N1—H1A119.3 (14)O3—C9—C10122.21 (16)
C13—N1—H1B117.8 (16)C8—C9—C10115.14 (15)
H1A—N1—H1B118 (2)O2—C10—C9111.46 (14)
C1—O1—C8105.72 (13)O2—C10—H10A109.3
C11—O2—C10115.04 (13)C9—C10—H10A109.3
C2—C1—O1125.63 (17)O2—C10—H10B109.3
C2—C1—C6124.29 (18)C9—C10—H10B109.3
O1—C1—C6110.08 (15)H10A—C10—H10B108.0
C3—C2—C1115.8 (2)O4—C11—O2121.09 (16)
C3—C2—H2A122.1O4—C11—C12126.02 (15)
C1—C2—H2A122.1O2—C11—C12112.89 (14)
C2—C3—C4122.1 (2)C17—C12—C13118.93 (16)
C2—C3—H3A119.0C17—C12—C11120.32 (15)
C4—C3—H3A119.0C13—C12—C11120.72 (15)
C5—C4—C3121.3 (2)N1—C13—C14119.72 (17)
C5—C4—H4A119.3N1—C13—C12122.51 (17)
C3—C4—H4A119.3C14—C13—C12117.76 (16)
C4—C5—C6117.9 (2)C15—C14—C13121.56 (18)
C4—C5—H5A121.1C15—C14—H14A119.2
C6—C5—H5A121.1C13—C14—H14A119.2
C1—C6—C5118.65 (17)C14—C15—C16120.74 (19)
C1—C6—C7105.84 (15)C14—C15—H15A119.6
C5—C6—C7135.50 (18)C16—C15—H15A119.6
C8—C7—C6106.96 (16)C17—C16—C15119.00 (18)
C8—C7—H7A126.5C17—C16—H16A120.5
C6—C7—H7A126.5C15—C16—H16A120.5
C7—C8—O1111.38 (15)C16—C17—C12121.99 (18)
C7—C8—C9132.36 (17)C16—C17—H17A119.0
O1—C8—C9116.19 (14)C12—C17—H17A119.0
O3—C9—C8122.65 (17)
C8—O1—C1—C2179.91 (16)O1—C8—C9—C10177.70 (13)
C8—O1—C1—C60.32 (16)C11—O2—C10—C970.85 (18)
O1—C1—C2—C3179.33 (15)O3—C9—C10—O213.3 (2)
C6—C1—C2—C30.4 (3)C8—C9—C10—O2166.80 (13)
C1—C2—C3—C40.5 (3)C10—O2—C11—O40.3 (2)
C2—C3—C4—C51.0 (3)C10—O2—C11—C12179.52 (14)
C3—C4—C5—C60.5 (3)O4—C11—C12—C17175.17 (17)
C2—C1—C6—C50.8 (3)O2—C11—C12—C175.1 (2)
O1—C1—C6—C5178.95 (14)O4—C11—C12—C136.8 (3)
C2—C1—C6—C7179.49 (16)O2—C11—C12—C13172.97 (14)
O1—C1—C6—C70.74 (17)C17—C12—C13—N1176.84 (17)
C4—C5—C6—C10.3 (2)C11—C12—C13—N15.1 (2)
C4—C5—C6—C7179.90 (18)C17—C12—C13—C141.8 (2)
C1—C6—C7—C80.87 (18)C11—C12—C13—C14176.29 (15)
C5—C6—C7—C8178.74 (18)N1—C13—C14—C15177.67 (18)
C6—C7—C8—O10.71 (18)C12—C13—C14—C151.0 (3)
C6—C7—C8—C9176.21 (16)C13—C14—C15—C160.6 (3)
C1—O1—C8—C70.26 (17)C14—C15—C16—C171.3 (3)
C1—O1—C8—C9177.21 (13)C15—C16—C17—C120.4 (3)
C7—C8—C9—O3174.59 (17)C13—C12—C17—C161.1 (3)
O1—C8—C9—O32.2 (2)C11—C12—C17—C16176.94 (17)
C7—C8—C9—C105.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O40.91 (2)2.05 (2)2.700 (3)127.7 (18)
N1—H1A···O4i0.91 (2)2.49 (2)3.246 (2)141.4 (18)
C10—H10A···O3ii0.972.503.444 (2)165
C17—H17A···O20.932.352.687 (2)101
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z.
 

Acknowledgements

LYT thanks Universiti Sains Malaysia for the USM Fellowship Scheme and the Malaysian Government for a MyBrain15 (MyMaster) scholarship. HCK thanks the Malaysian Government for a MyBrain15 (MyPhD) scholarship. The authors extend their appreciation to Vidya Vikas Research & Development Center for the facilities and encouragement.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKumar, C., Then, L., Chia, T., Chandraju, S., Win, Y.-F., Sulaiman, S., Hashim, N., Ooi, K., Quah, C. & Fun, H.-K. (2015). Molecules, 20, 16566–16581.  CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNaik, N., Vijay, K., Dias, S. M. & Ranga, S. (2013). Int. J. Pharm. Pharm. Sci. 5, 242–247.  CAS Google Scholar
First citationNevagi, R. J., Dighe, S. N. & Dighe, S. N. (2015). Eur. J. Med. Chem. 97, 561–581.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSwamy, P. M. G., Prasad, Y. R., Ashvini, H. M., Giles, D., Shashidhar, B. V. & Agasimundin, Y. S. (2015). Med. Chem. Res. 24, 3437–3452.  CrossRef CAS Google Scholar
First citationUgale, V., Patel, H., Patel, B. & Bari, S. (2012). Arab. J. Chem. 10, S389–A396.  CrossRef Google Scholar
First citationZhou, X., Li, M., Wang, X.-B., Wang, T. & Kong, L.-Y. (2010). Molecules, 15, 8593–8601.  CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds