organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,3-Bis{[2,3-di­methyl-6-(phenyl­vin­yl)phen­yl]imino}­butane

aKey Laboratory of Eco-Environment-Related Polymer Materials of the Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
*Correspondence e-mail: jianchaoyuan@nwnu.edu.cn

(Received 3 January 2014; accepted 8 January 2014; online 11 January 2014)

In the title compound, C36H36N2, a product of the condensation reaction of 2,3-dimethyl-6-phenyl­vinyl­benzenamine and 2,3-butane­dione, the complete mol­ecule is generated by the application of an inversion centre. The central C—C bond in the 1,4-di­aza­butadiene fragment is trans-configured and situated about the inversion center. The dihedral angle between the ring attached to N and the 1,4-di­aza­butadiene plane is 78.24 (36)°, while the 1,4-di­aza­butadiene plane makes an angle of 30.71 (26)° with the phenyl ring.

Related literature

The title compound was synthesized as an α-di­imine ligand for transtion metals, see: Johnson et al. (1995[Johnson, L. K., Killian, C. M. & Brookhart, M. (1995). J. Am. Chem. Soc. 117, 6414-6415.]); Gao et al. (2012[Gao, H., Hu, H., Zhu, F. & Wu, Q. (2012). Chem. Commun. 48, 3312-3314.]); Zhang & Ye (2012[Zhang, Z. & Ye, Z. (2012). Chem. Commun. 48, 7940-7942.]); Sun et al. (2012[Sun, G. B., Hentschel, J. & Guan, Z. B. (2012). ACS Macro. Lett. 1, 585-588.]); Popeney et al. (2012[Popeney, C. S., Lukowiak, M. C., Böttcher, C., Schade, B., Welker, P., Mangoldt, D., Gunkel, G., Guan, Z. B. & Haag, R. (2012). ACS Macro. Lett. 1, 564-567.]); Shi et al. (2012[Shi, X., Zhao, Y., Gao, H., Zhang, L., Zhu, F. & Wu, Q. (2012). Macromol. Rapid Commun. 33, 374-379.]). For related structures, see: Helldörfer, Milius & Alt (2003[Helldörfer, M., Milius, W. & Alt, H. G. (2003). J. Mol. Catal. A Chem. 197, 1-13.]); Helldörfer, Backhaus & Alt (2003[Helldörfer, M., Backhaus, J. & Alt, H. G. (2003). Inorg. Chim. Acta, 351, 34-42.]); Popeney & Guan (2005[Popeney, C. & Guan, Z. B. (2005). Organometallics, 24, 1145-1155.]); Kravchenko & Waymouth (1998[Kravchenko, R. & Waymouth, R. M. (1998). Macromolecules, 31, 1-6.]).

[Scheme 1]

Experimental

Crystal data
  • C36H36N2

  • Mr = 496.67

  • Monoclinic, P 21 /c

  • a = 9.613 (8) Å

  • b = 16.285 (14) Å

  • c = 9.639 (8) Å

  • β = 101.679 (9)°

  • V = 1478 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.06 mm−1

  • T = 296 K

  • 0.26 × 0.24 × 0.18 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SAINT, APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.984, Tmax = 0.989

  • 10305 measured reflections

  • 2693 independent reflections

  • 1374 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.103

  • wR(F2) = 0.327

  • S = 1.03

  • 2693 reflections

  • 175 parameters

  • 84 restraints

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.42 e Å−3

Data collection: APEX2 (Bruker, 2008[Bruker (2008). SAINT, APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). SAINT, APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The discovery of Ni(II) and Pd(II) α-olefin polymerization catalysts containing a bulky α-diimine ligand, [MX2(α-diimine)](M=Ni,Pd;X=halide), by Brookhart and co-workers has stimulated renewed interest in the chemistry of 1,4-diazadiene ligands and their complexes (Johnson et al., 1995; Gao et al., 2012; Zhang et al., 2012; Sun et al., 2012; Popeney et al., 2012; Shi et al., 2012). The catalyst activity and properties of the resulting polymers are greatly dependent on the reaction conditions (Helldörfer et al., 2003) and ligand structure (Popeney et al., 2005; Helldörfer et al., 2003; Kravchenko & Waymouth, 1998). In this study, we designed and synthesized the title compound as a abidentate ligand (Fig. 1). The complete molecule is generated by the application of an inversion centre. The central C—C bond in the 1,4-diazabutadiene fragment is trans-configured and situated on an inversion center as shown in Fig. 1. Neither hydrogen bonding nor aromatic stacking are observed in the crystal structure.

Related literature top

The title compound was synthesized as an α-diimine ligand for transtion metals, see: Johnson et al. (1995); Gao et al. (2012); Zhang & Ye (2012); Sun et al. (2012); Popeney et al. (2012); Shi et al. (2012). For related structures, see: Helldörfer, Milius & Alt (2003); Helldörfer, Backhaus & Alt (2003); Popeney & Guan (2005); Kravchenko & Waymouth (1998).

Experimental top

Formic acid (0.5 ml) was added to a stirred solution of 2,3-butanedione (0.09 g, 1.00 mmol) and 2,3-dimethyl-6-phenylvinylbenzenamine (0.49 g, 2.2 mmol) in ethanol (10 ml) (Fig. 2). The mixture was refluxed for 24 h, and then cooled and the precipitate was separated by filtration. The solid was recrystallized from EtOH/CH2Cl2 (v/v= 10:1), washed and dried under vacuum. Yield: 0.38 g (76%). Crystals suitable for X–raystructure determination were grown from a acyclohexane/dichloromethane (v:v= 1:2) solution. Anal. Calc. for C36H36N2: C, 86.35; H, 8.05; N, 5.59.Found: C,88.39; H, 8.09; N, 5.42.

Refinement top

All hydrogen atoms were placed in calculated positions with C—H distances of 0.93 Å and 0.96 Å for aryl and methyl H atoms. They were included in the refinement in a riding model approximation, respectively. The H atoms were assigned Uiso = 1.2Ueq(C) for aryl H and Uiso = 1.5Ueq(C) for methyl H.

Structure description top

The discovery of Ni(II) and Pd(II) α-olefin polymerization catalysts containing a bulky α-diimine ligand, [MX2(α-diimine)](M=Ni,Pd;X=halide), by Brookhart and co-workers has stimulated renewed interest in the chemistry of 1,4-diazadiene ligands and their complexes (Johnson et al., 1995; Gao et al., 2012; Zhang et al., 2012; Sun et al., 2012; Popeney et al., 2012; Shi et al., 2012). The catalyst activity and properties of the resulting polymers are greatly dependent on the reaction conditions (Helldörfer et al., 2003) and ligand structure (Popeney et al., 2005; Helldörfer et al., 2003; Kravchenko & Waymouth, 1998). In this study, we designed and synthesized the title compound as a abidentate ligand (Fig. 1). The complete molecule is generated by the application of an inversion centre. The central C—C bond in the 1,4-diazabutadiene fragment is trans-configured and situated on an inversion center as shown in Fig. 1. Neither hydrogen bonding nor aromatic stacking are observed in the crystal structure.

The title compound was synthesized as an α-diimine ligand for transtion metals, see: Johnson et al. (1995); Gao et al. (2012); Zhang & Ye (2012); Sun et al. (2012); Popeney et al. (2012); Shi et al. (2012). For related structures, see: Helldörfer, Milius & Alt (2003); Helldörfer, Backhaus & Alt (2003); Popeney & Guan (2005); Kravchenko & Waymouth (1998).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title molecule with displacement ellipsoids plotted at 30% probability level. Primed atoms are related by the symmetry code (-x + 1, -y + 2, -z + 1).
[Figure 2] Fig. 2. A condensation reaction of 2,3-butanedione and 2,3-dimethyl-6-phenylvinylbenzenamine.
2,3-Bis{[2,3-dimethyl-6-(phenylvinyl)phenyl]imino}butane top
Crystal data top
C36H36N2F(000) = 532
Mr = 496.67Dx = 1.116 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.613 (8) ÅCell parameters from 1803 reflections
b = 16.285 (14) Åθ = 2.5–22.5°
c = 9.639 (8) ŵ = 0.06 mm1
β = 101.679 (9)°T = 296 K
V = 1478 (2) Å3Block, yellow
Z = 20.26 × 0.24 × 0.18 mm
Data collection top
Bruker APEXII CCD
diffractometer
2693 independent reflections
Radiation source: fine-focus sealed tube1374 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
φ and ω scansθmax = 25.3°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1111
Tmin = 0.984, Tmax = 0.989k = 1919
10305 measured reflectionsl = 1110
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.103Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.327H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.1098P)2 + 2.2955P]
where P = (Fo2 + 2Fc2)/3
2693 reflections(Δ/σ)max < 0.001
175 parametersΔρmax = 0.46 e Å3
84 restraintsΔρmin = 0.42 e Å3
Crystal data top
C36H36N2V = 1478 (2) Å3
Mr = 496.67Z = 2
Monoclinic, P21/cMo Kα radiation
a = 9.613 (8) ŵ = 0.06 mm1
b = 16.285 (14) ÅT = 296 K
c = 9.639 (8) Å0.26 × 0.24 × 0.18 mm
β = 101.679 (9)°
Data collection top
Bruker APEXII CCD
diffractometer
2693 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
1374 reflections with I > 2σ(I)
Tmin = 0.984, Tmax = 0.989Rint = 0.041
10305 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.10384 restraints
wR(F2) = 0.327H-atom parameters constrained
S = 1.03Δρmax = 0.46 e Å3
2693 reflectionsΔρmin = 0.42 e Å3
175 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7542 (5)0.9715 (4)0.3661 (7)0.0873 (16)
C20.8434 (5)1.0392 (4)0.3706 (5)0.0738 (15)
C30.9406 (5)1.0398 (4)0.2810 (6)0.0795 (16)
C40.9452 (6)0.9752 (5)0.1928 (7)0.0954 (19)
H41.00720.97700.13030.114*
C50.8604 (7)0.9073 (5)0.1938 (8)0.107 (2)
H50.86820.86330.13440.128*
C60.7627 (6)0.9037 (4)0.2827 (9)0.112 (2)
C70.6752 (7)0.8283 (4)0.2878 (10)0.135 (2)
C80.7248 (9)0.7605 (5)0.3422 (13)0.175 (3)
H8A0.82110.75580.38190.210*
H8B0.66490.71570.34210.210*
C90.5196 (6)0.8376 (4)0.2159 (9)0.116 (2)
C100.4124 (7)0.8072 (4)0.2744 (8)0.108 (2)
H100.43400.78100.36190.130*
C110.2722 (7)0.8147 (5)0.2058 (9)0.110 (2)
H110.20040.79440.24810.132*
C120.2387 (7)0.8512 (4)0.0777 (8)0.101 (2)
H120.14420.85550.03130.121*
C130.3433 (7)0.8816 (5)0.0169 (7)0.109 (2)
H130.32070.90690.07130.131*
C140.4836 (7)0.8750 (4)0.0858 (8)0.107 (2)
H140.55470.89610.04360.128*
C150.8381 (7)1.1086 (4)0.4719 (7)0.107 (2)
H15A0.77561.15060.42540.160*
H15B0.93171.13090.50260.160*
H15C0.80381.08860.55240.160*
C161.0396 (6)1.1122 (4)0.2799 (7)0.109 (2)
H16A1.09441.10400.20810.163*
H16B1.10231.11680.37070.163*
H16C0.98481.16170.26010.163*
C170.5439 (5)1.0046 (4)0.4443 (6)0.0981 (17)
C180.4816 (6)1.0561 (5)0.3171 (7)0.114 (2)
H18A0.53901.05080.24680.171*
H18B0.47941.11260.34500.171*
H18C0.38681.03780.27830.171*
N10.6610 (4)0.9671 (3)0.4649 (5)0.0950 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.049 (2)0.109 (4)0.104 (4)0.019 (3)0.016 (2)0.067 (3)
C20.052 (3)0.095 (4)0.072 (3)0.016 (3)0.008 (2)0.035 (3)
C30.051 (3)0.109 (4)0.077 (4)0.006 (3)0.010 (3)0.040 (3)
C40.070 (4)0.131 (6)0.089 (4)0.020 (4)0.023 (3)0.024 (4)
C50.077 (4)0.118 (6)0.120 (5)0.021 (4)0.005 (4)0.006 (4)
C60.058 (3)0.089 (4)0.177 (5)0.011 (3)0.004 (3)0.057 (4)
C70.081 (3)0.098 (3)0.207 (5)0.002 (3)0.021 (3)0.063 (3)
C80.105 (5)0.098 (5)0.294 (9)0.008 (4)0.026 (6)0.051 (6)
C90.070 (3)0.085 (4)0.180 (5)0.001 (3)0.007 (4)0.047 (4)
C100.103 (5)0.104 (5)0.107 (5)0.026 (4)0.005 (4)0.017 (4)
C110.092 (5)0.123 (6)0.115 (6)0.036 (4)0.022 (4)0.024 (5)
C120.081 (4)0.129 (6)0.089 (5)0.007 (4)0.007 (4)0.030 (4)
C130.088 (4)0.150 (6)0.085 (4)0.021 (4)0.011 (4)0.004 (4)
C140.080 (4)0.119 (5)0.122 (5)0.017 (4)0.021 (4)0.030 (4)
C150.100 (5)0.119 (5)0.103 (5)0.017 (4)0.023 (4)0.025 (4)
C160.067 (3)0.142 (6)0.115 (5)0.011 (4)0.010 (3)0.050 (4)
C170.058 (2)0.133 (4)0.107 (3)0.022 (3)0.026 (2)0.076 (3)
C180.081 (4)0.159 (5)0.108 (4)0.036 (4)0.030 (3)0.082 (4)
N10.054 (2)0.127 (3)0.107 (3)0.020 (2)0.024 (2)0.073 (2)
Geometric parameters (Å, º) top
C1—C61.379 (10)C11—C121.350 (9)
C1—C21.392 (8)C11—H110.9300
C1—N11.435 (7)C12—C131.356 (9)
C2—C31.395 (7)C12—H120.9300
C2—C151.500 (8)C13—C141.381 (9)
C3—C41.359 (9)C13—H130.9300
C3—C161.516 (8)C14—H140.9300
C4—C51.375 (9)C15—H15A0.9600
C4—H40.9300C15—H15B0.9600
C5—C61.395 (9)C15—H15C0.9600
C5—H50.9300C16—H16A0.9600
C6—C71.495 (9)C16—H16B0.9600
C7—C81.273 (9)C16—H16C0.9600
C7—C91.523 (9)C17—N11.261 (6)
C8—H8A0.9300C17—C17i1.502 (10)
C8—H8B0.9300C17—C181.506 (7)
C9—C101.364 (9)C18—H18A0.9600
C9—C141.373 (9)C18—H18B0.9600
C10—C111.381 (9)C18—H18C0.9600
C10—H100.9300
C6—C1—C2123.0 (5)C10—C11—H11119.8
C6—C1—N1117.7 (6)C11—C12—C13119.7 (6)
C2—C1—N1118.8 (7)C11—C12—H12120.1
C1—C2—C3118.2 (6)C13—C12—H12120.1
C1—C2—C15121.0 (5)C12—C13—C14120.0 (7)
C3—C2—C15120.8 (6)C12—C13—H13120.0
C4—C3—C2119.5 (6)C14—C13—H13120.0
C4—C3—C16119.8 (6)C9—C14—C13121.0 (6)
C2—C3—C16120.7 (6)C9—C14—H14119.5
C3—C4—C5121.6 (6)C13—C14—H14119.5
C3—C4—H4119.2C2—C15—H15A109.5
C5—C4—H4119.2C2—C15—H15B109.5
C4—C5—C6120.8 (7)H15A—C15—H15B109.5
C4—C5—H5119.6C2—C15—H15C109.5
C6—C5—H5119.6H15A—C15—H15C109.5
C1—C6—C5116.8 (6)H15B—C15—H15C109.5
C1—C6—C7122.6 (8)C3—C16—H16A109.5
C5—C6—C7120.5 (9)C3—C16—H16B109.5
C8—C7—C6124.0 (6)H16A—C16—H16B109.5
C8—C7—C9121.7 (7)C3—C16—H16C109.5
C6—C7—C9114.3 (5)H16A—C16—H16C109.5
C7—C8—H8A120.0H16B—C16—H16C109.5
C7—C8—H8B120.0N1—C17—C17i116.8 (5)
H8A—C8—H8B120.0N1—C17—C18126.4 (5)
C10—C9—C14117.8 (6)C17i—C17—C18116.7 (5)
C10—C9—C7122.0 (7)C17—C18—H18A109.5
C14—C9—C7120.1 (7)C17—C18—H18B109.5
C9—C10—C11121.0 (7)H18A—C18—H18B109.5
C9—C10—H10119.5C17—C18—H18C109.5
C11—C10—H10119.5H18A—C18—H18C109.5
C12—C11—C10120.4 (7)H18B—C18—H18C109.5
C12—C11—H11119.8C17—N1—C1121.8 (4)
C6—C1—C2—C33.4 (7)C1—C6—C7—C974.5 (10)
N1—C1—C2—C3175.4 (4)C5—C6—C7—C9106.9 (8)
C6—C1—C2—C15174.9 (5)C8—C7—C9—C1044.8 (14)
N1—C1—C2—C152.9 (7)C6—C7—C9—C10137.7 (8)
C1—C2—C3—C40.1 (7)C8—C7—C9—C14132.8 (10)
C15—C2—C3—C4178.4 (5)C6—C7—C9—C1444.7 (12)
C1—C2—C3—C16179.4 (5)C14—C9—C10—C110.8 (11)
C15—C2—C3—C162.4 (7)C7—C9—C10—C11178.5 (7)
C2—C3—C4—C52.9 (8)C9—C10—C11—C121.1 (11)
C16—C3—C4—C5177.9 (5)C10—C11—C12—C130.8 (11)
C3—C4—C5—C62.2 (9)C11—C12—C13—C140.1 (11)
C2—C1—C6—C54.1 (8)C10—C9—C14—C130.1 (11)
N1—C1—C6—C5176.1 (5)C7—C9—C14—C13177.9 (7)
C2—C1—C6—C7174.6 (5)C12—C13—C14—C90.2 (11)
N1—C1—C6—C72.5 (8)C17i—C17—N1—C1179.8 (7)
C4—C5—C6—C11.3 (9)C18—C17—N1—C11.9 (12)
C4—C5—C6—C7177.4 (6)C6—C1—N1—C17106.0 (7)
C1—C6—C7—C8108.0 (11)C2—C1—N1—C1781.6 (8)
C5—C6—C7—C870.6 (13)
Symmetry code: (i) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC36H36N2
Mr496.67
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)9.613 (8), 16.285 (14), 9.639 (8)
β (°) 101.679 (9)
V3)1478 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.06
Crystal size (mm)0.26 × 0.24 × 0.18
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.984, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
10305, 2693, 1374
Rint0.041
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.103, 0.327, 1.03
No. of reflections2693
No. of parameters175
No. of restraints84
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.46, 0.42

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

We thank the National Natural Science Foundation of China (20964003) and the National Natural Science Foundation of China (21364011) for funding. We also thank the Key Laboratory of Eco Environment-Related Polymer Materials of the Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province (Northwest Normal University), for financial support.

References

First citationBruker (2008). SAINT, APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGao, H., Hu, H., Zhu, F. & Wu, Q. (2012). Chem. Commun. 48, 3312–3314.  Web of Science CSD CrossRef CAS Google Scholar
First citationHelldörfer, M., Backhaus, J. & Alt, H. G. (2003). Inorg. Chim. Acta, 351, 34–42.  Web of Science CrossRef CAS Google Scholar
First citationHelldörfer, M., Milius, W. & Alt, H. G. (2003). J. Mol. Catal. A Chem. 197, 1–13.  Google Scholar
First citationJohnson, L. K., Killian, C. M. & Brookhart, M. (1995). J. Am. Chem. Soc. 117, 6414–6415.  CrossRef CAS Web of Science Google Scholar
First citationKravchenko, R. & Waymouth, R. M. (1998). Macromolecules, 31, 1–6.  Web of Science CrossRef CAS Google Scholar
First citationPopeney, C. & Guan, Z. B. (2005). Organometallics, 24, 1145–1155.  Web of Science CrossRef CAS Google Scholar
First citationPopeney, C. S., Lukowiak, M. C., Böttcher, C., Schade, B., Welker, P., Mangoldt, D., Gunkel, G., Guan, Z. B. & Haag, R. (2012). ACS Macro. Lett. 1, 564–567.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, X., Zhao, Y., Gao, H., Zhang, L., Zhu, F. & Wu, Q. (2012). Macromol. Rapid Commun. 33, 374–379.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSun, G. B., Hentschel, J. & Guan, Z. B. (2012). ACS Macro. Lett. 1, 585–588.  Web of Science CrossRef CAS Google Scholar
First citationZhang, Z. & Ye, Z. (2012). Chem. Commun. 48, 7940–7942.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds