metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,5-Di­phenyl-1,2,4-di­thia­zolium tetra­bromidoferrate(III)

aDepartment of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta, Canada T1K 3M4
*Correspondence e-mail: boere@uleth.ca

(Received 30 December 2012; accepted 3 January 2013; online 12 January 2013)

The cation of the title salt, (C14H10NS2)[FeBr4], contains a flat central NC2S2 ring (r.m.s. deviation = 0.005 Å), with two attached phenyl rings that are almost coplanar [the dihedral angles between the mean planes are 2.4 (1) and 7.7 (1)° for the two phenyl rings]. The [FeBr4] anion makes short Br⋯S contacts [Br⋯S = 3.4819 (8), 3.6327 (9) and 3.5925 (9) Å] and also bridges by way of short contacts to ring H atoms of a second cation held parallel to the first by π-stacking, with a separation between the mean 1,2,4-dithia­zolium rings of 3.409 Å. The closest contacts are between a phenyl ring centroid of one cation and the ipso C atom of the phenyl ring of another cation, for which the distance is 3.489 Å. The discrete dimers are linked laterally by further Br⋯H short contacts, resulting in double sheets located parallel to the b axis and to the bis­ector of a and c.

Related literature

For synthesis details, see: Corsaro et al. (1984[Corsaro, A., Compagnini, A., Perrini, G. & Purrello, G. (1984). J. Chem. Soc. Perkin Trans. 1, pp. 897-900.]); Liebscher & Hartmann (1977[Liebscher, J. & Hartmann, H. (1977). Liebigs Ann. Chem. pp. 1005-1012.]). For related structures, see: Clegg et al. (1996[Clegg, W., Elsegood, M. R. J., Banister, A. J. & Hibbert, T. G. (1996). Acta Cryst. C52, 2148-2150.]); Neels et al. (1986[Neels, J., Ziemer, B., Meisel, M. & Leibnitz, P. (1986). Z. Anorg. Allg. Chem. 542, 123-130.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For bond lengths in tetrabromidoferrate complexes, see: Maithufi & Otto (2011[Maithufi, N. & Otto, S. (2011). Acta Cryst. C67, m279-m283.]); Bhattacharya & Sarkar (2010[Bhattacharya, D. & Sarkar, S. (2010). Eur. J. Inorg. Chem. pp. 3429-3435.]). For short-contact distances between stacked aryl rings, see: Martinez & Iverson (2012[Martinez, C. R. & Iverson, B. L. (2012). Chem. Sci. 3, 2191-2201.]); McGaughey et al. (1998[McGaughey, G. B., Gagné, M. & Rappé, A. M. (1998). J. Biol. Chem. 273, 15458-15463.]).

[Scheme 1]

Experimental

Crystal data
  • (C14H10NS2)[FeBr4]

  • Mr = 631.84

  • Monoclinic, P 21 /c

  • a = 10.6492 (5) Å

  • b = 11.4005 (6) Å

  • c = 15.8046 (8) Å

  • β = 96.482 (1)°

  • V = 1906.51 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 9.39 mm−1

  • T = 173 K

  • 0.22 × 0.13 × 0.07 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.556, Tmax = 0.746

  • 27655 measured reflections

  • 4426 independent reflections

  • 3497 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.050

  • S = 1.02

  • 4426 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.45 e Å−3

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2008[Bruker (2008). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The structure of a cation–anion pair in (I) as found in the crystal lattice is shown in Fig. 1, wherein the short contacts from the anion Br atoms to the S atoms of the cation are highlighted. An extended diagram showing the dimerization of two rings through short inter-ring interactions and their lateral extensions into planes via short contacts between ring S and H atoms with the [FeBr4]- anions is shown in Fig. 2. The separation between the approximately planar dimer components of 3.409 Å corresponds to typical minimum distances for off-center parallel stacking of electron-rich aromatic rings (Martinez & Iverson, 2012; McGaughey et al., 1998).

Only two previous structures (II) and (III) are reported in the literature for 3,5-diaryl-1,2,4-dithiazolium ring compounds. For (II), the same 3,5-diphenyl-1,2,4-dithiazolium cation crystallizes with a large azathiophosphine cage anion, 1,3,5,7-tetrathioxo-10-aza-2,4,6,8,9-pentathia-1λ5,3λ5,5λ5,7λ5-tetraphosphatricyclo(3.3.1.13,7)decanide [Cambridge Structural Database (Allen, 2002) refcode FARXIF (Neels et al., 1986)]. For (III), the anion is the more conventional AsF6-, but the substituents are 2-methylbenzene rings [refcode TEHRED (Clegg et al., 1996)]. The S—S bond in (I) at 2.019 (1) Å is significantly longer than that in (III) at 2.004 (1) Å, but is within the e.s.d. range of that found in (II) at 2.008 (5) Å. A possible reason for the longer bond in (I) is the presence of stronger sulfur-halogen non-bonded contact interactions than occur for AsF6-. The packing arrangements in (II) and (III) do not involve cation ring dimerization as observed in (I).

The bond distances in the [FeBr4]- anion are entirely normal for high spin FeIII (Fe—Br (av) = 2.332 (3) Å). For example, in a recent structure by Bhattacharya & Sarkar (2010) [refcode AKAZOC], Fe—Br (av) = 2.332 (7) Å. Distances in FeBr42- (i.e. an FeII anion) are as much as 6% longer (Maithufi & Otto, 2011).

Related literature top

For synthesis details, see: Corsaro et al. (1984); Liebscher & Hartmann (1977). For related structures, see: Clegg et al. (1996); Neels et al. (1986). For a description of the Cambridge Structural Database, see: Allen (2002). For bond distances in tetrabromoiron complexes, see: Maithufi & Otto (2011); Bhattacharya & Sarkar (2010). For short-contact distances between stacked aryl rings, see: Martinez & Iverson (2012); McGaughey et al. (1998).

Experimental top

Crystals of (I) were obtained as a minor component during the synthesis of 3,5-diphenyl-1,2,4-dithiazolium perchlorate from N,N-dimorpholino-thiobenzamide bromine adduct and unsubstituted thiobenzamide in chloroform using the method of Corsaro et al. (1984). The intermediates are taken up in 6 N HClO4 which is supposed to afford the perchlorate salt of the dithiazolium (Liebscher & Hartmann, 1977). The source of the iron is presumed to be rust that was digested by the perchloric acid, because the ferric aqua ion would be ripe for ligation by strongly nucleophilic bromide ions present as a byproduct from the previous step. Crystals of (I) form as well shaped red–orange prisms amongst the thin yellow plates of perchlorate salt, m.p. 169.3–171.1°C.

Refinement top

All H atoms were located on a difference map, but for purposes of refinement are treated as riding on their attached aromatic C atoms with C—H = 0.95 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT-Plus (Bruker, 2008); data reduction: SAINT-Plus (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A view of (I) plotted with displacement ellipsoids drawn at the 40% probability level. H atoms are shown as spheres of arbitrary radius. Dotted lines indicate the short cation–anion contacts Br2···S1 = 3.4819 (8), Br2···S2 = 3.6327 (9) and Br4···S1 = 3.5925 (9) Å.
[Figure 2] Fig. 2. Short off-center parallel stacking of electron-rich aromatic rings leads to sheets of double layers parallel to b and bisecting the a and c axes; [FeBr4]- anions bridge between the upper and lower double-layer components.
3,5-Diphenyl-1,2,4-dithiazolium tetrabromidoferrate(III) top
Crystal data top
(C14H10NS2)[FeBr4]Standard setting
Mr = 631.84Dx = 2.201 Mg m3
Monoclinic, P21/cMelting point: 442.5 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 10.6492 (5) ÅCell parameters from 9924 reflections
b = 11.4005 (6) Åθ = 2.2–27.5°
c = 15.8046 (8) ŵ = 9.39 mm1
β = 96.482 (1)°T = 173 K
V = 1906.51 (17) Å3Prism, red
Z = 40.22 × 0.13 × 0.07 mm
F(000) = 1196
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4426 independent reflections
Radiation source: fine-focus sealed tube, Bruker D83497 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
Detector resolution: 66.06 pixels mm-1θmax = 27.7°, θmin = 1.9°
ϕ and ω scansh = 1313
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
k = 1414
Tmin = 0.556, Tmax = 0.746l = 2020
27655 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: difference Fourier map
wR(F2) = 0.050H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0202P)2 + 0.6153P]
where P = (Fo2 + 2Fc2)/3
4426 reflections(Δ/σ)max = 0.001
199 parametersΔρmax = 0.63 e Å3
0 restraintsΔρmin = 0.45 e Å3
Crystal data top
(C14H10NS2)[FeBr4]V = 1906.51 (17) Å3
Mr = 631.84Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.6492 (5) ŵ = 9.39 mm1
b = 11.4005 (6) ÅT = 173 K
c = 15.8046 (8) Å0.22 × 0.13 × 0.07 mm
β = 96.482 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4426 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3497 reflections with I > 2σ(I)
Tmin = 0.556, Tmax = 0.746Rint = 0.042
27655 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.050H-atom parameters constrained
S = 1.02Δρmax = 0.63 e Å3
4426 reflectionsΔρmin = 0.45 e Å3
199 parameters
Special details top

Experimental. A crystal coated in Paratone (TM) oil was mounted on the end of a thin glass capillary and cooled in the gas stream of the diffractometer Kryoflex device.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br20.52392 (3)0.78560 (3)0.368206 (19)0.03449 (8)
S20.66283 (7)0.51567 (7)0.45795 (5)0.03375 (18)
S10.76220 (7)0.65596 (7)0.50609 (5)0.03592 (18)
N10.8648 (2)0.4568 (2)0.56025 (14)0.0258 (5)
C10.8760 (2)0.5727 (2)0.56450 (16)0.0264 (6)
C20.7649 (3)0.4159 (3)0.51171 (16)0.0273 (6)
C30.9797 (3)0.6304 (2)0.61626 (17)0.0266 (6)
C40.9917 (3)0.7527 (3)0.61675 (19)0.0342 (7)
H40.93230.79910.58210.041*
C51.0893 (3)0.8059 (3)0.6672 (2)0.0412 (8)
H51.09650.88890.66810.049*
C61.1764 (3)0.7384 (3)0.71628 (19)0.0399 (8)
H61.24390.77510.75090.048*
C71.1665 (3)0.6175 (3)0.71570 (18)0.0371 (7)
H71.22740.57170.74970.045*
C81.0687 (3)0.5628 (3)0.66606 (17)0.0315 (7)
H81.06210.47970.66580.038*
C90.7397 (3)0.2903 (2)0.50317 (17)0.0276 (6)
C100.6429 (3)0.2465 (3)0.44497 (18)0.0347 (7)
H100.59100.29850.40940.042*
C110.6230 (3)0.1269 (3)0.4395 (2)0.0416 (8)
H110.55740.09660.39980.050*
C120.6980 (3)0.0510 (3)0.49137 (18)0.0369 (7)
H120.68390.03120.48710.044*
C130.7932 (3)0.0946 (3)0.5493 (2)0.0379 (7)
H130.84410.04230.58530.045*
C140.8147 (3)0.2137 (2)0.55519 (18)0.0311 (7)
H140.88080.24340.59480.037*
Fe10.67510 (4)0.82072 (3)0.27504 (2)0.02488 (10)
Br10.61558 (3)0.98672 (3)0.194423 (18)0.03480 (8)
Br30.68944 (3)0.65879 (3)0.18652 (2)0.04436 (9)
Br40.87224 (3)0.85136 (3)0.35206 (2)0.04081 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br20.02809 (16)0.03810 (18)0.03845 (17)0.00452 (13)0.00891 (13)0.00027 (13)
S20.0321 (4)0.0389 (4)0.0287 (4)0.0031 (3)0.0038 (3)0.0027 (3)
S10.0400 (4)0.0333 (4)0.0329 (4)0.0022 (3)0.0029 (3)0.0078 (3)
N10.0239 (12)0.0289 (13)0.0247 (12)0.0012 (10)0.0031 (10)0.0007 (10)
C10.0246 (15)0.0331 (17)0.0227 (14)0.0011 (12)0.0078 (12)0.0033 (12)
C20.0241 (15)0.0370 (17)0.0214 (14)0.0034 (12)0.0046 (12)0.0039 (12)
C30.0276 (15)0.0306 (16)0.0228 (14)0.0027 (12)0.0089 (12)0.0015 (12)
C40.0327 (17)0.0301 (17)0.0413 (18)0.0011 (13)0.0104 (14)0.0039 (14)
C50.0426 (19)0.0318 (18)0.051 (2)0.0102 (15)0.0146 (16)0.0056 (15)
C60.0397 (19)0.046 (2)0.0337 (17)0.0143 (15)0.0019 (14)0.0044 (15)
C70.0392 (18)0.0401 (19)0.0307 (17)0.0056 (14)0.0019 (14)0.0038 (14)
C80.0362 (17)0.0290 (16)0.0294 (16)0.0023 (13)0.0044 (13)0.0021 (13)
C90.0258 (15)0.0332 (16)0.0246 (14)0.0017 (12)0.0065 (12)0.0014 (12)
C100.0273 (16)0.045 (2)0.0303 (16)0.0031 (14)0.0017 (13)0.0023 (14)
C110.0351 (18)0.053 (2)0.0358 (18)0.0111 (16)0.0003 (14)0.0103 (16)
C120.0405 (19)0.0312 (17)0.0397 (18)0.0052 (14)0.0078 (15)0.0068 (14)
C130.0378 (18)0.0344 (18)0.0409 (18)0.0014 (14)0.0019 (14)0.0007 (14)
C140.0286 (16)0.0334 (17)0.0303 (15)0.0026 (13)0.0010 (12)0.0026 (13)
Fe10.0231 (2)0.0242 (2)0.0271 (2)0.00182 (16)0.00160 (16)0.00272 (16)
Br10.04259 (18)0.02889 (16)0.03186 (16)0.00849 (13)0.00040 (13)0.00606 (12)
Br30.0519 (2)0.02974 (18)0.0529 (2)0.00340 (15)0.01216 (16)0.00932 (15)
Br40.02328 (15)0.0481 (2)0.0491 (2)0.00342 (14)0.00431 (13)0.01204 (15)
Geometric parameters (Å, º) top
Br2—Fe12.3357 (5)C7—H70.9500
S2—C21.729 (3)C8—H80.9500
S2—S12.0186 (11)C9—C141.389 (4)
S1—C11.723 (3)C9—C101.394 (4)
N1—C21.324 (3)C10—C111.381 (4)
N1—C11.329 (3)C10—H100.9500
C1—C31.455 (4)C11—C121.382 (4)
C2—C91.460 (4)C11—H110.9500
C3—C81.394 (4)C12—C131.379 (4)
C3—C41.399 (4)C12—H120.9500
C4—C51.377 (4)C13—C141.379 (4)
C4—H40.9500C13—H130.9500
C5—C61.375 (4)C14—H140.9500
C5—H50.9500Fe1—Br12.3291 (5)
C6—C71.382 (4)Fe1—Br42.3311 (5)
C6—H60.9500Fe1—Br32.3317 (5)
C7—C81.380 (4)
C2—S2—S193.58 (10)C3—C8—H8120.2
C1—S1—S294.17 (10)C14—C9—C10119.9 (3)
C2—N1—C1116.2 (2)C14—C9—C2118.3 (2)
N1—C1—C3122.4 (2)C10—C9—C2121.8 (3)
N1—C1—S1117.9 (2)C11—C10—C9119.4 (3)
C3—C1—S1119.7 (2)C11—C10—H10120.3
N1—C2—C9121.8 (2)C9—C10—H10120.3
N1—C2—S2118.2 (2)C10—C11—C12120.5 (3)
C9—C2—S2120.1 (2)C10—C11—H11119.8
C8—C3—C4119.5 (3)C12—C11—H11119.8
C8—C3—C1119.5 (3)C13—C12—C11120.0 (3)
C4—C3—C1121.1 (3)C13—C12—H12120.0
C5—C4—C3120.3 (3)C11—C12—H12120.0
C5—C4—H4119.9C14—C13—C12120.3 (3)
C3—C4—H4119.9C14—C13—H13119.9
C6—C5—C4119.8 (3)C12—C13—H13119.9
C6—C5—H5120.1C13—C14—C9119.9 (3)
C4—C5—H5120.1C13—C14—H14120.0
C5—C6—C7120.5 (3)C9—C14—H14120.0
C5—C6—H6119.7Br1—Fe1—Br4109.714 (19)
C7—C6—H6119.7Br1—Fe1—Br3110.324 (19)
C8—C7—C6120.4 (3)Br4—Fe1—Br3108.411 (19)
C8—C7—H7119.8Br1—Fe1—Br2108.648 (19)
C6—C7—H7119.8Br4—Fe1—Br2109.921 (19)
C7—C8—C3119.5 (3)Br3—Fe1—Br2109.817 (19)
C7—C8—H8120.2

Experimental details

Crystal data
Chemical formula(C14H10NS2)[FeBr4]
Mr631.84
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)10.6492 (5), 11.4005 (6), 15.8046 (8)
β (°) 96.482 (1)
V3)1906.51 (17)
Z4
Radiation typeMo Kα
µ (mm1)9.39
Crystal size (mm)0.22 × 0.13 × 0.07
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.556, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
27655, 4426, 3497
Rint0.042
(sin θ/λ)max1)0.653
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.050, 1.02
No. of reflections4426
No. of parameters199
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.63, 0.45

Computer programs: APEX2 (Bruker, 2008), SAINT-Plus (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), Mercury (Macrae et al., 2008), publCIF (Westrip, 2010).

 

Acknowledgements

The Natural Sciences and Engineering Research Council of Canada (NSERC) is gratefully acknowledged for a Discovery Grant. The diffractometer was purchased with the help of NSERC and the University of Lethbridge.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBhattacharya, D. & Sarkar, S. (2010). Eur. J. Inorg. Chem. pp. 3429–3435.  Web of Science CrossRef Google Scholar
First citationBruker (2008). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationClegg, W., Elsegood, M. R. J., Banister, A. J. & Hibbert, T. G. (1996). Acta Cryst. C52, 2148–2150.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCorsaro, A., Compagnini, A., Perrini, G. & Purrello, G. (1984). J. Chem. Soc. Perkin Trans. 1, pp. 897–900.  CrossRef Web of Science Google Scholar
First citationLiebscher, J. & Hartmann, H. (1977). Liebigs Ann. Chem. pp. 1005–1012.  CrossRef Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMaithufi, N. & Otto, S. (2011). Acta Cryst. C67, m279–m283.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMartinez, C. R. & Iverson, B. L. (2012). Chem. Sci. 3, 2191–2201.  Web of Science CrossRef CAS Google Scholar
First citationMcGaughey, G. B., Gagné, M. & Rappé, A. M. (1998). J. Biol. Chem. 273, 15458–15463.  Web of Science CrossRef CAS PubMed Google Scholar
First citationNeels, J., Ziemer, B., Meisel, M. & Leibnitz, P. (1986). Z. Anorg. Allg. Chem. 542, 123–130.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds