metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages m97-m98

Poly[(μ4-3-carb­­oxy­benzoato-κ5O1:O1,O1′:O1′:O3)(quinolin-8-olato-κ2N,O)lead(II)]

aDepartment of Chemistry, Saveh Branch, Islamic Azad University, Saveh, Iran, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of, Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 19 December 2011; accepted 21 December 2011; online 7 January 2012)

The asymmetric unit of the title complex, [Pb(C8H5O4)(C9H6NO)]n, comprises a PbII cation, a quinolin-8-olate anion and a 3-carb­oxy­benzoate anion. The coordination geometry of the PbII atom is defined by one N and six O atoms, as well as a stereochemically active lone pair of electrons, and is based on a Ψ-dodeca­hedron. The quinolin-8-olate is chelating and the 3-carb­oxy­benzoate anion forms bonds to four different PbII atoms. The benzoate end of the 3-carb­oxy­benzoate ligand chelates one PbII atom and simultaneously bridges two PbII atoms on either side, forming a chain along the b axis. The carboxyl end of the 3-carb­oxy­benzoate connects to a neighbouring chain by employing its carbonyl atom to form a bond to a PbII atom and the hydroxyl group to form a hydrogen bond to a quinolin-8-olate O atom. Thereby, a layer is formed in the bc plane.

Related literature

For background to PbII mixed quinolate carboxyl­ate structures, see: Shahverdizadeh et al. (2008[Shahverdizadeh, G. H., Soudi, A. A., Morsali, A. & Retailleau, P. (2008). Inorg. Chim. Acta, 361, 1875-1884.]).

[Scheme 1]

Experimental

Crystal data
  • [Pb(C8H5O4)(C9H6NO)]

  • Mr = 516.46

  • Monoclinic, P 21 /c

  • a = 9.0746 (2) Å

  • b = 7.0262 (2) Å

  • c = 22.6919 (6) Å

  • β = 93.185 (3)°

  • V = 1444.60 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 11.71 mm−1

  • T = 100 K

  • 0.25 × 0.20 × 0.15 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.158, Tmax = 0.273

  • 9690 measured reflections

  • 3325 independent reflections

  • 3035 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.049

  • S = 1.01

  • 3325 reflections

  • 221 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.92 e Å−3

  • Δρmin = −1.27 e Å−3

Table 1
Selected bond lengths (Å)

Pb—O1 2.608 (2)
Pb—O1i 2.746 (2)
Pb—O2ii 2.578 (2)
Pb—O2i 2.809 (2)
Pb—O3iii 2.840 (3)
Pb—O5 2.318 (2)
Pb—N1 2.468 (3)
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x, y-1, z; (iii) -x+1, -y+1, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H1⋯O5iii 0.84 (1) 1.74 (3) 2.539 (4) 158 (6)
Symmetry code: (iii) -x+1, -y+1, -z+1.

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Mixed lead(II) complexes of quinolin-8-olate and monofunctional carboxylates have displayed a variety of structural motifs (Shahverdizadeh et al., 2008). In the present report, a 1:1 structure containing quinolin-8-olate and 3-carboxybenzoate is described, (I).

The asymmetric unit of (I) comprises a PbII cation, a quinolin-8-olate anion and a 3-carboxybenzoate anion, Fig. 1. The coordination geometry of the PbII atom is defined by a N and six O atoms as well as a stereochemically active lone pair of electrons, and is based on a Ψ-dodecahedron. The quinolin-8-olate anion is chelating, whereas the 3-carboxybenzoate anion is pentadentate, forming bonds to four different PbII atoms, Table 1. The benzoate group chelates one PbII atom and each of these O atoms forms a bond to a neighbouring PbII to form a chain along the b axis. Adjacent chains, along the c axis, are connected by Pb—O(carbonyl) bonds. The hydroxyl group forms a hydrogen bond to the quinolin-8-olate-O atom, Table 2. The result is a layer in the bc plane. Layers stack along the a axis, Fig. 3, with no specific intermolecular interactions between them.

Related literature top

For background to PbII mixed quinolate carboxylate structures, see: Shahverdizadeh et al. (2008).

Experimental top

The title complex was obtained by the following method. A methanol solution (10 ml) of 8-hydroxyquinoline (0.145 g, 1 mmol) was added to an aqueous solution (2 ml) of Pb(NO3)2 (0.331 g, 1 mmol). The mixture was stirred for 10 min. To this solution, was added a DMF solution (5 ml) of isophthalic acid (0.084 g, 0.5 mmol) slowly at room temperature. This mixture was filtered. After keeping the filtrate in air, crystals were formed at the bottom of the vessel upon slow evaporation of the solvents at room temperature. M.pt. 558 K (dec.). Yield: 65%.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H 0.95 Å, Uiso(H) 1.2Ueq(C)] and were included in the refinement in the riding model approximation. The acid H-atom was located in a difference Fourier map, and was refined with a distance restraint of O—H 0.84±0.01 Å; its Uiso value was refined. The final difference Fourier map had a peak at 0.81 Å from Pb and a hole at 0.90 Å from the same atom.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view of the layer in the bc plane in (I).
[Figure 3] Fig. 3. A view in projection down the c axis of the unit-cell contents of (I) highlighting the stacking of layers.
Poly[(µ4-3-carboxybenzoato- κ5O1:O1,O1':O1':O3)(quinolin- 8-olato-κ2N,O)lead(II)] top
Crystal data top
[Pb(C8H5O4)(C9H6NO)]F(000) = 968
Mr = 516.46Dx = 2.375 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6118 reflections
a = 9.0746 (2) Åθ = 2.2–27.5°
b = 7.0262 (2) ŵ = 11.71 mm1
c = 22.6919 (6) ÅT = 100 K
β = 93.185 (3)°Block, yellow
V = 1444.60 (6) Å30.25 × 0.20 × 0.15 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
3325 independent reflections
Radiation source: SuperNova (Mo) X-ray Source3035 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.029
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 2.8°
ω scanh = 1111
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 98
Tmin = 0.158, Tmax = 0.273l = 2927
9690 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.049H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0237P)2 + 0.5749P]
where P = (Fo2 + 2Fc2)/3
3325 reflections(Δ/σ)max = 0.001
221 parametersΔρmax = 0.92 e Å3
1 restraintΔρmin = 1.27 e Å3
Crystal data top
[Pb(C8H5O4)(C9H6NO)]V = 1444.60 (6) Å3
Mr = 516.46Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.0746 (2) ŵ = 11.71 mm1
b = 7.0262 (2) ÅT = 100 K
c = 22.6919 (6) Å0.25 × 0.20 × 0.15 mm
β = 93.185 (3)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
3325 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
3035 reflections with I > 2σ(I)
Tmin = 0.158, Tmax = 0.273Rint = 0.029
9690 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0211 restraint
wR(F2) = 0.049H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.92 e Å3
3325 reflectionsΔρmin = 1.27 e Å3
221 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pb0.513121 (14)0.057458 (17)0.305356 (5)0.00777 (5)
O10.5980 (3)0.4114 (3)0.30020 (11)0.0123 (5)
O20.4886 (3)0.6925 (3)0.31117 (10)0.0107 (5)
O30.6052 (3)0.7915 (4)0.59124 (11)0.0160 (6)
O40.4185 (3)0.8397 (4)0.52393 (12)0.0141 (5)
H10.365 (6)0.890 (8)0.549 (2)0.08 (2)*
O50.6896 (3)0.0346 (3)0.38285 (11)0.0111 (5)
N10.7528 (4)0.0485 (4)0.27073 (13)0.0104 (6)
C10.5716 (4)0.5570 (5)0.33079 (16)0.0099 (7)
C20.6368 (4)0.5693 (4)0.39260 (16)0.0084 (7)
C30.7672 (4)0.4692 (5)0.40797 (16)0.0112 (7)
H30.81410.39660.37910.013*
C40.8270 (4)0.4767 (5)0.46522 (17)0.0136 (8)
H40.91600.41040.47540.016*
C50.7586 (4)0.5801 (5)0.50806 (17)0.0140 (8)
H50.80060.58480.54730.017*
C60.6275 (4)0.6774 (5)0.49317 (15)0.0111 (7)
C70.5672 (4)0.6744 (5)0.43551 (15)0.0100 (7)
H70.47940.74320.42530.012*
C80.5498 (4)0.7761 (5)0.54049 (16)0.0109 (7)
C90.7848 (4)0.0880 (5)0.21594 (16)0.0116 (8)
H90.70810.07990.18580.014*
C100.9255 (4)0.1409 (5)0.19995 (17)0.0149 (8)
H100.94320.16700.15990.018*
C111.0383 (4)0.1548 (5)0.24300 (16)0.0140 (8)
H111.13520.18700.23270.017*
C121.0090 (4)0.1206 (5)0.30261 (16)0.0117 (8)
C131.1178 (4)0.1327 (5)0.34965 (17)0.0148 (8)
H131.21550.17070.34220.018*
C141.0821 (4)0.0899 (5)0.40557 (18)0.0156 (8)
H141.15580.09830.43690.019*
C150.9372 (4)0.0329 (5)0.41800 (18)0.0144 (8)
H150.91550.00370.45750.017*
C160.8271 (4)0.0193 (5)0.37373 (17)0.0106 (7)
C170.8635 (4)0.0657 (4)0.31489 (16)0.0098 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pb0.00854 (8)0.00841 (7)0.00647 (8)0.00005 (5)0.00123 (5)0.00047 (5)
O10.0151 (14)0.0122 (12)0.0097 (13)0.0020 (11)0.0002 (11)0.0010 (10)
O20.0123 (13)0.0092 (12)0.0107 (13)0.0024 (10)0.0018 (10)0.0005 (10)
O30.0171 (14)0.0249 (14)0.0061 (13)0.0028 (12)0.0007 (11)0.0049 (11)
O40.0134 (14)0.0197 (13)0.0093 (13)0.0005 (12)0.0022 (11)0.0020 (11)
O50.0098 (13)0.0145 (13)0.0089 (13)0.0005 (10)0.0005 (10)0.0008 (10)
N10.0118 (16)0.0112 (15)0.0080 (16)0.0034 (12)0.0002 (13)0.0007 (11)
C10.0112 (18)0.0116 (17)0.0072 (18)0.0050 (14)0.0035 (14)0.0023 (13)
C20.0123 (18)0.0057 (15)0.0074 (17)0.0025 (14)0.0017 (14)0.0017 (12)
C30.0126 (19)0.0089 (16)0.0123 (19)0.0005 (15)0.0036 (15)0.0008 (14)
C40.0088 (18)0.0169 (18)0.015 (2)0.0027 (15)0.0003 (15)0.0001 (15)
C50.013 (2)0.0189 (18)0.0094 (19)0.0046 (16)0.0021 (15)0.0007 (15)
C60.0154 (19)0.0104 (16)0.0080 (18)0.0011 (15)0.0045 (14)0.0004 (14)
C70.0110 (18)0.0084 (16)0.0103 (18)0.0000 (14)0.0031 (14)0.0012 (13)
C80.0120 (18)0.0099 (16)0.0108 (18)0.0054 (15)0.0015 (14)0.0001 (14)
C90.0149 (19)0.0112 (16)0.0087 (18)0.0008 (15)0.0008 (15)0.0019 (14)
C100.020 (2)0.0126 (18)0.0129 (19)0.0008 (16)0.0050 (15)0.0023 (14)
C110.0153 (19)0.0098 (16)0.017 (2)0.0002 (15)0.0062 (15)0.0008 (14)
C120.0111 (19)0.0068 (16)0.017 (2)0.0019 (14)0.0016 (15)0.0027 (14)
C130.0078 (18)0.0150 (17)0.021 (2)0.0017 (15)0.0003 (15)0.0032 (15)
C140.012 (2)0.0176 (18)0.017 (2)0.0007 (16)0.0034 (16)0.0005 (15)
C150.014 (2)0.0127 (18)0.017 (2)0.0015 (15)0.0002 (16)0.0009 (15)
C160.0125 (19)0.0031 (15)0.016 (2)0.0012 (14)0.0022 (15)0.0027 (13)
C170.0106 (18)0.0071 (16)0.0116 (19)0.0027 (14)0.0006 (15)0.0003 (13)
Geometric parameters (Å, º) top
Pb—O12.608 (2)C4—C51.388 (5)
Pb—O1i2.746 (2)C4—H40.9500
Pb—O2ii2.578 (2)C5—C61.397 (5)
Pb—O2i2.809 (2)C5—H50.9500
Pb—O3iii2.840 (3)C6—C71.390 (5)
Pb—O52.318 (2)C6—C81.489 (5)
Pb—N12.468 (3)C7—H70.9500
O1—C11.267 (4)C9—C101.397 (5)
O1—Pbiv2.746 (2)C9—H90.9500
O2—C11.278 (4)C10—C111.379 (5)
O2—Pbv2.578 (2)C10—H100.9500
O3—C81.235 (4)C11—C121.414 (5)
O4—C81.308 (4)C11—H110.9500
O4—H10.840 (10)C12—C131.416 (5)
O5—C161.331 (4)C12—C171.418 (5)
N1—C91.322 (5)C13—C141.360 (5)
N1—C171.385 (4)C13—H130.9500
C1—C21.494 (5)C14—C151.418 (6)
C2—C31.403 (5)C14—H140.9500
C2—C71.400 (5)C15—C161.380 (5)
C3—C41.381 (5)C15—H150.9500
C3—H30.9500C16—C171.431 (5)
O5—Pb—N168.69 (10)C6—C5—H5120.2
O5—Pb—O2ii87.14 (7)C7—C6—C5120.4 (3)
N1—Pb—O2ii78.24 (8)C7—C6—C8120.6 (3)
O5—Pb—O184.66 (8)C5—C6—C8119.0 (3)
N1—Pb—O190.33 (9)C6—C7—C2119.6 (3)
O2ii—Pb—O1167.78 (8)C6—C7—H7120.2
O5—Pb—O1i147.23 (8)C2—C7—H7120.2
N1—Pb—O1i84.08 (9)O3—C8—O4123.7 (3)
O2ii—Pb—O1i69.16 (7)O3—C8—C6121.9 (3)
O1—Pb—O1i114.35 (6)O4—C8—C6114.4 (3)
O5—Pb—O3iii71.10 (8)N1—C9—C10123.5 (3)
N1—Pb—O3iii139.12 (8)N1—C9—H9118.2
O2ii—Pb—O3iii106.98 (8)C10—C9—H9118.2
O1—Pb—O3iii78.86 (8)C11—C10—C9119.2 (4)
O1i—Pb—O3iii136.32 (8)C11—C10—H10120.4
C1—O1—Pb132.9 (2)C9—C10—H10120.4
C1—O1—Pbiv96.0 (2)C10—C11—C12119.6 (4)
Pb—O1—Pbiv107.49 (8)C10—C11—H11120.2
C1—O2—Pbv135.0 (2)C12—C11—H11120.2
C8—O4—H1120 (4)C11—C12—C13123.4 (4)
C16—O5—Pb121.1 (2)C11—C12—C17117.5 (3)
C9—N1—C17118.3 (3)C13—C12—C17119.1 (3)
C9—N1—Pb127.4 (2)C14—C13—C12119.9 (4)
C17—N1—Pb114.4 (2)C14—C13—H13120.1
O1—C1—O2122.4 (3)C12—C13—H13120.1
O1—C1—C2118.9 (3)C13—C14—C15121.3 (4)
O2—C1—C2118.6 (3)C13—C14—H14119.4
C3—C2—C7119.9 (3)C15—C14—H14119.4
C3—C2—C1119.3 (3)C16—C15—C14121.1 (4)
C7—C2—C1120.9 (3)C16—C15—H15119.5
C4—C3—C2119.8 (4)C14—C15—H15119.5
C4—C3—H3120.1O5—C16—C15123.6 (4)
C2—C3—H3120.1O5—C16—C17118.5 (3)
C3—C4—C5120.7 (4)C15—C16—C17117.9 (3)
C3—C4—H4119.6N1—C17—C12121.9 (3)
C5—C4—H4119.6N1—C17—C16117.4 (3)
C4—C5—C6119.7 (3)C12—C17—C16120.7 (3)
C4—C5—H5120.2
O5—Pb—O1—C177.9 (3)C3—C4—C5—C60.2 (6)
N1—Pb—O1—C1146.5 (3)C4—C5—C6—C71.4 (5)
O2ii—Pb—O1—C1125.9 (4)C4—C5—C6—C8175.7 (3)
O1i—Pb—O1—C1129.9 (3)C5—C6—C7—C21.5 (5)
O3iii—Pb—O1—C16.2 (3)C8—C6—C7—C2175.5 (3)
O5—Pb—O1—Pbiv165.82 (11)C3—C2—C7—C60.5 (5)
N1—Pb—O1—Pbiv97.27 (11)C1—C2—C7—C6177.6 (3)
O2ii—Pb—O1—Pbiv117.8 (3)C7—C6—C8—O3175.3 (3)
O1i—Pb—O1—Pbiv13.62 (6)C5—C6—C8—O37.6 (5)
O3iii—Pb—O1—Pbiv122.43 (10)C7—C6—C8—O46.3 (5)
N1—Pb—O5—C160.4 (2)C5—C6—C8—O4170.8 (3)
O2ii—Pb—O5—C1678.9 (2)C17—N1—C9—C101.9 (5)
O1—Pb—O5—C1692.1 (2)Pb—N1—C9—C10177.7 (3)
O1i—Pb—O5—C1636.2 (3)N1—C9—C10—C110.4 (5)
O3iii—Pb—O5—C16172.1 (2)C9—C10—C11—C121.8 (5)
O5—Pb—N1—C9179.4 (3)C10—C11—C12—C13179.6 (3)
O2ii—Pb—N1—C989.1 (3)C10—C11—C12—C172.4 (5)
O1—Pb—N1—C995.3 (3)C11—C12—C13—C14177.2 (3)
O1i—Pb—N1—C919.2 (3)C17—C12—C13—C140.7 (5)
O3iii—Pb—N1—C9168.5 (2)C12—C13—C14—C150.0 (6)
O5—Pb—N1—C170.1 (2)C13—C14—C15—C160.1 (6)
O2ii—Pb—N1—C1791.4 (2)Pb—O5—C16—C15179.1 (3)
O1—Pb—N1—C1784.3 (2)Pb—O5—C16—C170.9 (4)
O1i—Pb—N1—C17161.3 (2)C14—C15—C16—O5179.5 (3)
O3iii—Pb—N1—C1711.0 (3)C14—C15—C16—C170.4 (5)
Pb—O1—C1—O2108.0 (4)C9—N1—C17—C121.1 (5)
Pbiv—O1—C1—O212.7 (4)Pb—N1—C17—C12178.5 (3)
Pb—O1—C1—C270.5 (4)C9—N1—C17—C16179.0 (3)
Pbiv—O1—C1—C2168.8 (3)Pb—N1—C17—C160.6 (4)
Pbv—O2—C1—O1129.2 (3)C11—C12—C17—N11.0 (5)
Pbv—O2—C1—C252.3 (5)C13—C12—C17—N1179.0 (3)
O1—C1—C2—C325.8 (5)C11—C12—C17—C16176.8 (3)
O2—C1—C2—C3155.6 (3)C13—C12—C17—C161.2 (5)
O1—C1—C2—C7152.3 (3)O5—C16—C17—N11.0 (5)
O2—C1—C2—C726.2 (5)C15—C16—C17—N1179.0 (3)
C7—C2—C3—C40.7 (5)O5—C16—C17—C12178.9 (3)
C1—C2—C3—C4178.9 (3)C15—C16—C17—C121.1 (5)
C2—C3—C4—C50.9 (6)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y1, z; (iii) x+1, y+1, z+1; (iv) x+1, y+1/2, z+1/2; (v) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H1···O5iii0.84 (1)1.74 (3)2.539 (4)158 (6)
Symmetry code: (iii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Pb(C8H5O4)(C9H6NO)]
Mr516.46
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)9.0746 (2), 7.0262 (2), 22.6919 (6)
β (°) 93.185 (3)
V3)1444.60 (6)
Z4
Radiation typeMo Kα
µ (mm1)11.71
Crystal size (mm)0.25 × 0.20 × 0.15
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.158, 0.273
No. of measured, independent and
observed [I > 2σ(I)] reflections
9690, 3325, 3035
Rint0.029
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.049, 1.01
No. of reflections3325
No. of parameters221
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.92, 1.27

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Pb—O12.608 (2)Pb—O3iii2.840 (3)
Pb—O1i2.746 (2)Pb—O52.318 (2)
Pb—O2ii2.578 (2)Pb—N12.468 (3)
Pb—O2i2.809 (2)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x, y1, z; (iii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H1···O5iii0.84 (1)1.74 (3)2.539 (4)158 (6)
Symmetry code: (iii) x+1, y+1, z+1.
 

Footnotes

Additional correspondence author, e-mail: akbarghaemi@yahoo.com.

Acknowledgements

We gratefully acknowledge practical support of this study by the Islamic Azad University (Saveh Branch), and thank the University of Malaya for supporting the crystallographic facility.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationShahverdizadeh, G. H., Soudi, A. A., Morsali, A. & Retailleau, P. (2008). Inorg. Chim. Acta, 361, 1875–1884.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 2| February 2012| Pages m97-m98
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds