metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages m541-m542

Poly[[tri-μ3-hydroxido-tris­­(μ4-pyridine-2,5-di­carboxyl­ato)trineodymium(III)] monohydrate]

aSchool of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China
*Correspondence e-mail: guangbocheujs@yahoo.com.cn

(Received 1 January 2012; accepted 24 March 2012; online 4 April 2012)

In the title compound, {[Nd3(C7H3NO4)3(OH)3]·H2O}n, the NdIII atom is eight-coordinated by the three O atoms of three asymmetrically μ3-bridging hydroxide groups, by four carboxyl­ate O atoms of four different pyridine-2,5-dicarboxyl­ate (2,5-pydc) ligands, and by the N atom of a 2,5-pydc ligand. Six Nd atoms are connected by six hydroxide groups, forming an [Nd6(μ3-OH)6] cluster unit of symmetry -3 and a slightly compressed octa­hedral geometry. Adjacent [Nd6(μ3-OH)6] clusters are connected by the 2,5-pydc ligands, via O and N atoms, forming chains along the c axis. The remaining O atoms of the 2,5-pydc ligands link these chains into a three-dimensional framework. A disordered water molecule, located on a threefold rotation axis at the opposite side of the [Nd6(μ3-OH)6] cluster and exposed to each of the three Nd atoms, completes the structure.

Related literature

For the importance of the 2,5-pyridine dicarboxylate ligand, see: Qin et al. (2005[Qin, C., Wang, X. L., Wang, E. B. & Su, Z. M. (2005). Inorg. Chem. 44, 7122-7129.]); Song et al. (2005[Song, Y. S., Yan, B. & Chen, Z. X. (2005). J. Mol. Struct. 750, 101-108.]); Huang, Jiang et al. (2008[Huang, Y. G., Jiang, F. L., Yuan, D. Q., Wu, M. Y., Gao, Q., Wei, W. & Hong, M. C. (2008). Cryst. Growth Des. 8, 166-168.]); Huang et al. (2007[Huang, Y. G., Wu, B. L., Yuan, D. Q., Xu, Y. Q., Jiang, F. L. & Hong, M. C. (2007). Inorg. Chem. 46, 1171-1176.]). For related coordination polymers involving 2,5-pyridine dicarboxylate ligands, see: Aghabozorg et al. (2008[Aghabozorg, H., Derikvand, Z., Nemati, A., Bahrami, Z. & Attar Gharamaleki, J. (2008). Acta Cryst. E64, m111.]); Xu et al. (2008[Xu, H.-Y., Ma, H.-L., Xu, M.-T., Zhao, W.-X. & Guo, B.-G. (2008). Acta Cryst. E64, m413.]); Colak et al. (2010[Colak, A. T., Yesilel, O. Z. & Büyükgüngör, O. (2010). J. Inorg. Organomet. Polym. 20, 26-31.]). For the use of compounds with M—O—M frameworks, see: Huang et al. (2007[Huang, Y. G., Wu, B. L., Yuan, D. Q., Xu, Y. Q., Jiang, F. L. & Hong, M. C. (2007). Inorg. Chem. 46, 1171-1176.]); Price et al. (2001[Price, D. J., Tripp, S., Powell, A. K. & Wood, P. T. (2001). Chem. Eur. J. 7, 200-208.]); Huang, Song et al. (2008[Huang, Y., Song, Y. S., Yan, B. & Shao, M. (2008). J. Solid State Chem. 181, 1731-1737.]); Zhang et al. (2009[Zhang, L., Li, Z. J., Lin, Q. P., Qin, Y. Y., Zhang, J., Yin, P. X., Cheng, J. K. & Yao, Y. G. (2009). Inorg. Chem. 48, 6517-6525.]).

[Scheme 1]

Experimental

Crystal data
  • [Nd3(C7H3NO4)3(OH)3]·H2O

  • Mr = 997.07

  • Hexagonal, [R \overline 3]

  • a = 23.081 (3) Å

  • c = 8.9690 (18) Å

  • V = 4138.0 (12) Å3

  • Z = 6

  • Mo Kα radiation

  • μ = 5.65 mm−1

  • T = 297 K

  • 0.16 × 0.15 × 0.11 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.421, Tmax = 0.538

  • 3454 measured reflections

  • 1679 independent reflections

  • 1558 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.019

  • wR(F2) = 0.043

  • S = 1.10

  • 1679 reflections

  • 133 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.77 e Å−3

  • Δρmin = −0.65 e Å−3

Table 1
Selected bond lengths (Å)

Nd1—O2i 2.395 (2)
Nd1—O3ii 2.426 (2)
Nd1—O1iii 2.452 (2)
Nd1—O4 2.480 (2)
Nd1—O5 2.482 (2)
Nd1—O5iv 2.485 (2)
Nd1—O5v 2.501 (2)
Nd1—N1 2.747 (3)
Symmetry codes: (i) [-x+y-{\script{1\over 3}}, -x+{\script{1\over 3}}, z+{\script{1\over 3}}]; (ii) y, -x+y, -z; (iii) [-x+{\script{1\over 3}}, -y+{\script{2\over 3}}, -z+{\script{2\over 3}}]; (iv) x-y, x, -z+1; (v) y, -x+y, -z+1.

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, much attention has been paid to the research on the coordination chemistry of 2,5-pyridinedicarboxylic acid (2,5-pydc), including complexes of lanthanide (Qin et al. 2005; Song et al. 2005; Huang et al. 2007; Huang, Jiang et al. 2008). The 2,5-pydc ligand acts as a good O donor as well as a N donor, owing to the two carboxylate groups and the pyridine ring, which may help to increase the dimensionality of the assembled covalent network (Aghabozorg et al. 2008; Xu et al. 2008; Colak et al. 2010). In addition, the construction of multidimensional M–O–M frameworks has been shown to produce materials with effective cooperation and has also lead to improvements in thermal stabilities (Huang et al. 2007; Price et al. 2001; Huang, Song et al. 2008; Zhang et al. 2009)

The title compound crystallizes in a trigonal lattice of space group symmetry R3. The neodymium atom is trivalent and is eight-coordinated by three oxygen atoms (O5, O5iv and O5v) of three µ3-bridging hydroxyls, four carboxylate oxygen atoms (O1iii, O2i, O3ii and O4) of four different 2,5-pydc ligands, and a nitrogen atom (N1) of a 2,5-pydc ligand as shown in Fig. 1. Each six Nd atoms are connected by six hydroxide groups to form a cluster unit [Nd63-OH)6] of symmetry 3 and with the shape of an octahedron slightly compressed along the threefold crystallographic axis (Fig. 2). The Nd-O bond lengths in this cluster vary from 2.482 (3) to 2.502 (3) Å, and the internal Nd···Nd distances are 4.018 (inclinded to the threefold axis) and 4.530 Å (perpendicular to the threefold axis). Such cluster units are linked by 2,5-pydc ligands via their O3, O4, and N1 atoms to form an extended single-chain structure as shown in Fig. 3. Neighbouring single chains are then connected by the O1 and O2 atoms of the 2,5-pydc ligands to form a three-dimensional network (Fig. 4). Each 2,5-pydc ligand acts as a µ4-bridge to link four Nd atoms, in which the nitrogen N1 and the oxygen O4 of the 2-carboxylate group chelate one Nd, while its other oxygen O3 ligates another Nd atom in monodentate mode. The 5-carboxylate group ligates two Nd atoms in dimonodentate fashion. The crystal structure is completed by a water molecule O1w, which is located on a threefold axis and has a pyramidal environment by three Nd at a distance of 2.984 (3) Å, which is about 0.5 Å longer than that of the coordination partners of Nd. The relatively large anisotropic displacement parameters of O1w indicate, that this molecule is disordered and that it probably deviates somewhat from the average position on the threefold axis.

Related literature top

For the importance of the 2,5-pyridine dicarboxylic acid ligand, see: Qin et al. (2005); Song et al. (2005); Huang, Jiang et al. (2008); Huang et al. (2007). For related coordination polymers involving 2,5-pyridine dicarboxylic acid ligands, see: Aghabozorg et al. (2008); Xu et al. (2008); Colak et al. (2010). For the use of M—O—M frameworks, see: Huang et al. (2007); Price et al. (2001); Huang, Song et al. (2008); Zhang et al. (2009).

Experimental top

All reagents were commercially available and used without any further purification. A mixture of 2,5-pyridine dicarboxylic acid (0.0167 g, 0.1 mmol), Nd(NO3)3.6H2O (0.0661 g, 0.2 mmol), 13 drops of 1 mol/L NaOH and distilled water (10 mL) was placed in a 25 mL Teflon-lined stainless steel autoclave, and heated at 453 K for 3 days. Cooling slowly to room temperature, the pink prism crystals of title complex were obtained.

Refinement top

All H atoms on C atoms were positioned geometrically (C—H = 0.93Å) and refined as riding, with Uiso(H)= 1.2Ueq(C). The H atom of the bridging hydroxy ligand O5 was located in a difference Fourier map and refined independently with Uiso(H) = 1.5Ueq(O). The hydrogen atoms of the water molecule O1w, which is located on a threefold axis, could not be located. According to an extra refinement, O1w is fully occupied but may deviate slightly from the threefold axis, as indicated by the relatively large displacement parameters of this atom.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of tittle compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level (arbitrary spheres for the H atoms). (Symmetry codes: #1 -x+y-1/3,-x+1/3,z+1/3; #2 y,-x+y,-z; #3 -x+1/3,-y+2/3,-z+2/3; #4 x-y,x,-z+1; #5 y,-x+y,-z+1)
[Figure 2] Fig. 2. View of the hexanuclear [Nd63-OH)6] cluster unit in the title compound.
[Figure 3] Fig. 3. 1-D chain structure of the [Nd63-OH)6] clusters linked by 2,5-pydc ligands along the c-axis. H atoms have been omitted.
[Figure 4] Fig. 4. View of the three-dimensional structure of title compound linked by 2,5-pydc ligands. H atoms and O1w have been omitted.
Poly[[tri-µ3-hydroxido-tris(µ4-pyridine-2,5- dicarboxylato)trineodymium(III)] monohydrate] top
Crystal data top
[Nd3(C7H3NO4)3(OH)3]·H2ODx = 2.401 Mg m3
Mr = 997.07Mo Kα radiation, λ = 0.71073 Å
Hexagonal, R3Cell parameters from 3338 reflections
Hall symbol: -R 3θ = 3.1–29.0°
a = 23.081 (3) ŵ = 5.65 mm1
c = 8.9690 (18) ÅT = 297 K
V = 4138.0 (12) Å3Prism, pink
Z = 60.16 × 0.15 × 0.11 mm
F(000) = 2814
Data collection top
Bruker SMART CCD area-detector
diffractometer
1679 independent reflections
Radiation source: fine-focus sealed tube1558 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ω scansθmax = 25.3°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1726
Tmin = 0.421, Tmax = 0.538k = 2723
3454 measured reflectionsl = 107
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.043H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.021P)2]
where P = (Fo2 + 2Fc2)/3
1679 reflections(Δ/σ)max = 0.001
133 parametersΔρmax = 0.77 e Å3
0 restraintsΔρmin = 0.65 e Å3
Crystal data top
[Nd3(C7H3NO4)3(OH)3]·H2OZ = 6
Mr = 997.07Mo Kα radiation
Hexagonal, R3µ = 5.65 mm1
a = 23.081 (3) ÅT = 297 K
c = 8.9690 (18) Å0.16 × 0.15 × 0.11 mm
V = 4138.0 (12) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
1679 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
1558 reflections with I > 2σ(I)
Tmin = 0.421, Tmax = 0.538Rint = 0.018
3454 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0190 restraints
wR(F2) = 0.043H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.77 e Å3
1679 reflectionsΔρmin = 0.65 e Å3
133 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Nd10.041666 (9)0.128240 (9)0.329953 (18)0.00891 (7)
C10.03699 (16)0.21892 (16)0.0150 (4)0.0131 (7)
C20.0445 (2)0.26676 (18)0.0868 (4)0.0253 (9)
H20.02440.25440.18010.030*
C30.0822 (2)0.33329 (18)0.0484 (4)0.0290 (10)
H30.08730.36640.11500.035*
C40.11239 (17)0.35025 (16)0.0903 (4)0.0157 (7)
C50.10166 (17)0.29858 (16)0.1863 (4)0.0137 (7)
H50.12110.30950.28040.016*
C60.00545 (16)0.14569 (16)0.0166 (4)0.0121 (7)
C70.15650 (17)0.42256 (17)0.1364 (4)0.0150 (8)
N10.06494 (13)0.23415 (13)0.1504 (3)0.0113 (6)
O10.19772 (12)0.43481 (11)0.2386 (3)0.0186 (6)
O20.14805 (13)0.46471 (12)0.0684 (3)0.0261 (6)
O30.02355 (11)0.12927 (11)0.1493 (2)0.0147 (5)
O40.02057 (12)0.10561 (11)0.0918 (3)0.0167 (5)
O1w0.00000.00000.1697 (6)0.0634 (18)
O50.03467 (11)0.10550 (12)0.6017 (3)0.0118 (5)
H10.0397 (19)0.1334 (18)0.650 (5)0.018*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Nd10.00801 (11)0.01015 (11)0.00950 (11)0.00524 (8)0.00187 (7)0.00291 (7)
C10.0133 (17)0.0111 (17)0.0147 (17)0.0060 (15)0.0010 (14)0.0013 (14)
C20.037 (2)0.019 (2)0.0163 (18)0.0109 (18)0.0151 (17)0.0036 (17)
C30.043 (3)0.0125 (19)0.024 (2)0.0085 (19)0.0149 (19)0.0048 (16)
C40.0184 (19)0.0104 (17)0.0162 (18)0.0057 (15)0.0035 (15)0.0027 (15)
C50.0146 (17)0.0117 (17)0.0134 (17)0.0056 (15)0.0029 (14)0.0012 (14)
C60.0075 (16)0.0135 (17)0.0136 (17)0.0039 (14)0.0005 (14)0.0043 (14)
C70.0141 (17)0.0104 (17)0.0154 (18)0.0023 (15)0.0022 (15)0.0008 (15)
N10.0113 (14)0.0098 (14)0.0115 (14)0.0044 (12)0.0018 (12)0.0018 (11)
O10.0217 (14)0.0120 (12)0.0182 (13)0.0055 (11)0.0091 (11)0.0003 (10)
O20.0294 (15)0.0104 (13)0.0324 (15)0.0054 (12)0.0165 (13)0.0040 (12)
O30.0144 (12)0.0151 (13)0.0132 (12)0.0063 (10)0.0013 (10)0.0043 (10)
O40.0180 (13)0.0114 (12)0.0120 (12)0.0008 (11)0.0006 (10)0.0003 (10)
O1w0.085 (3)0.085 (3)0.020 (3)0.0425 (15)0.0000.000
O50.0129 (12)0.0141 (12)0.0106 (12)0.0085 (11)0.0015 (10)0.0039 (10)
Geometric parameters (Å, º) top
Nd1—O2i2.395 (2)C4—C51.389 (5)
Nd1—O3ii2.426 (2)C4—C71.515 (5)
Nd1—O1iii2.452 (2)C5—N11.331 (4)
Nd1—O42.480 (2)C5—H50.9300
Nd1—O52.482 (2)C6—O31.256 (4)
Nd1—O5iv2.485 (2)C6—O41.264 (4)
Nd1—O5v2.501 (2)C7—O21.244 (4)
Nd1—N12.747 (3)C7—O11.247 (4)
C1—N11.337 (4)O1—Nd1iii2.452 (2)
C1—C21.375 (5)O2—Nd1vi2.395 (2)
C1—C61.497 (4)O3—Nd1vii2.426 (2)
C2—C31.377 (5)O5—Nd1v2.485 (2)
C2—H20.9300O5—Nd1iv2.501 (2)
C3—C41.384 (5)O5—H10.73 (4)
C3—H30.9300
O2i—Nd1—O3ii133.07 (8)O5—Nd1—Nd1v36.03 (5)
O2i—Nd1—O1iii80.41 (9)O5iv—Nd1—Nd1v91.91 (6)
O3ii—Nd1—O1iii77.55 (8)O5v—Nd1—Nd1v36.09 (5)
O2i—Nd1—O485.50 (9)N1—Nd1—Nd1v139.35 (5)
O3ii—Nd1—O478.54 (8)Nd1iv—Nd1—Nd1v68.623 (13)
O1iii—Nd1—O4130.65 (8)N1—C1—C2122.8 (3)
O2i—Nd1—O581.79 (8)N1—C1—C6115.2 (3)
O3ii—Nd1—O5131.58 (7)C2—C1—C6122.0 (3)
O1iii—Nd1—O577.64 (8)C1—C2—C3119.0 (3)
O4—Nd1—O5146.31 (7)C1—C2—H2120.5
O2i—Nd1—O5iv77.35 (8)C3—C2—H2120.5
O3ii—Nd1—O5iv138.97 (8)C2—C3—C4119.2 (3)
O1iii—Nd1—O5iv142.14 (8)C2—C3—H3120.4
O4—Nd1—O5iv77.63 (8)C4—C3—H3120.4
O5—Nd1—O5iv69.19 (8)C3—C4—C5117.8 (3)
O2i—Nd1—O5v150.20 (8)C3—C4—C7121.6 (3)
O3ii—Nd1—O5v69.18 (8)C5—C4—C7120.7 (3)
O1iii—Nd1—O5v87.76 (8)N1—C5—C4123.4 (3)
O4—Nd1—O5v122.15 (8)N1—C5—H5118.3
O5—Nd1—O5v68.94 (8)C4—C5—H5118.3
O5iv—Nd1—O5v96.63 (11)O3—C6—O4125.4 (3)
O2i—Nd1—N165.27 (8)O3—C6—C1116.8 (3)
O3ii—Nd1—N168.36 (8)O4—C6—C1117.8 (3)
O1iii—Nd1—N170.02 (8)O2—C7—O1125.7 (3)
O4—Nd1—N161.14 (8)O2—C7—C4116.5 (3)
O5—Nd1—N1136.65 (8)O1—C7—C4117.8 (3)
O5iv—Nd1—N1124.92 (8)C5—N1—C1117.8 (3)
O5v—Nd1—N1135.26 (8)C5—N1—Nd1125.8 (2)
O2i—Nd1—Nd1iv65.95 (6)C1—N1—Nd1116.4 (2)
O3ii—Nd1—Nd1iv160.68 (5)C7—O1—Nd1iii133.4 (2)
O1iii—Nd1—Nd1iv106.55 (6)C7—O2—Nd1vi142.0 (2)
O4—Nd1—Nd1iv110.13 (5)C6—O3—Nd1vii148.7 (2)
O5—Nd1—Nd1iv36.42 (5)C6—O4—Nd1126.1 (2)
O5iv—Nd1—Nd1iv35.97 (5)Nd1—O5—Nd1v108.00 (8)
O5v—Nd1—Nd1iv91.90 (6)Nd1—O5—Nd1iv107.49 (8)
N1—Nd1—Nd1iv130.94 (6)Nd1v—O5—Nd1iv130.61 (10)
O2i—Nd1—Nd1v114.28 (7)Nd1—O5—H1115 (3)
O3ii—Nd1—Nd1v96.13 (6)Nd1v—O5—H1104 (3)
O1iii—Nd1—Nd1v69.98 (5)Nd1iv—O5—H191 (3)
O4—Nd1—Nd1v155.32 (5)
Symmetry codes: (i) x+y1/3, x+1/3, z+1/3; (ii) y, x+y, z; (iii) x+1/3, y+2/3, z+2/3; (iv) xy, x, z+1; (v) y, x+y, z+1; (vi) y+1/3, xy+2/3, z1/3; (vii) xy, x, z.

Experimental details

Crystal data
Chemical formula[Nd3(C7H3NO4)3(OH)3]·H2O
Mr997.07
Crystal system, space groupHexagonal, R3
Temperature (K)297
a, c (Å)23.081 (3), 8.9690 (18)
V3)4138.0 (12)
Z6
Radiation typeMo Kα
µ (mm1)5.65
Crystal size (mm)0.16 × 0.15 × 0.11
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.421, 0.538
No. of measured, independent and
observed [I > 2σ(I)] reflections
3454, 1679, 1558
Rint0.018
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.043, 1.10
No. of reflections1679
No. of parameters133
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.77, 0.65

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Nd1—O2i2.395 (2)Nd1—O52.482 (2)
Nd1—O3ii2.426 (2)Nd1—O5iv2.485 (2)
Nd1—O1iii2.452 (2)Nd1—O5v2.501 (2)
Nd1—O42.480 (2)Nd1—N12.747 (3)
Symmetry codes: (i) x+y1/3, x+1/3, z+1/3; (ii) y, x+y, z; (iii) x+1/3, y+2/3, z+2/3; (iv) xy, x, z+1; (v) y, x+y, z+1.
 

Acknowledgements

The authors thank Jiangsu University for supporting this work.

References

First citationAghabozorg, H., Derikvand, Z., Nemati, A., Bahrami, Z. & Attar Gharamaleki, J. (2008). Acta Cryst. E64, m111.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationColak, A. T., Yesilel, O. Z. & Büyükgüngör, O. (2010). J. Inorg. Organomet. Polym. 20, 26–31.  CAS Google Scholar
First citationHuang, Y. G., Jiang, F. L., Yuan, D. Q., Wu, M. Y., Gao, Q., Wei, W. & Hong, M. C. (2008). Cryst. Growth Des. 8, 166–168.  Web of Science CSD CrossRef CAS Google Scholar
First citationHuang, Y., Song, Y. S., Yan, B. & Shao, M. (2008). J. Solid State Chem. 181, 1731–1737.  Web of Science CSD CrossRef CAS Google Scholar
First citationHuang, Y. G., Wu, B. L., Yuan, D. Q., Xu, Y. Q., Jiang, F. L. & Hong, M. C. (2007). Inorg. Chem. 46, 1171–1176.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPrice, D. J., Tripp, S., Powell, A. K. & Wood, P. T. (2001). Chem. Eur. J. 7, 200–208.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationQin, C., Wang, X. L., Wang, E. B. & Su, Z. M. (2005). Inorg. Chem. 44, 7122–7129.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, Y. S., Yan, B. & Chen, Z. X. (2005). J. Mol. Struct. 750, 101–108.  Web of Science CSD CrossRef CAS Google Scholar
First citationXu, H.-Y., Ma, H.-L., Xu, M.-T., Zhao, W.-X. & Guo, B.-G. (2008). Acta Cryst. E64, m413.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, L., Li, Z. J., Lin, Q. P., Qin, Y. Y., Zhang, J., Yin, P. X., Cheng, J. K. & Yao, Y. G. (2009). Inorg. Chem. 48, 6517–6525.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages m541-m542
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds