Download citation
Download citation
link to html
Derivatives of pyrido[3,4-d]pyridazine, namely, 1-hy­droxy-5-methyl-7-phenyl­pyrido[3,4-d]pyridazin-4(3H)-one di­methyl­formamide monosolvate, C14H11N3O2·C3H7NO (2), ethyl [1-(2-eth­oxy-2-oxoeth­oxy)-5-methyl-4-oxo-7-phenyl-3,4-dihydropyrido[3,4-d]pyridazin-3-yl]acetate, C18H17N3O4 (3), and ethyl [(5-methyl-4-oxo-7-phenyl-3,4-di­hydro­pyrido[3,4-d]pyridazin-1-yl)­oxy]acetate, C22H23N3O6 (4), were synthesized with the aim of discovering new potential biologically active agents. The properties of all three derivatives were characterized by 1H NMR, 13C NMR and FT–IR spectroscopic analysis. All the crystals were obtained by a solvent diffusion method from di­methyl­formamide (DMF) or dimethyl sulfoxide (DMSO) and characterized by single-crystal X-ray diffraction. The collected X-ray data revealed that the crystals of 2 and 4 belong to the triclinic space group P\overline{1}, whereas the crystal of 3 belongs to the monoclinic space group P21/c. The presented derivatives crystallized with one mol­ecule in the asymmetric unit, but only com­pound 2 crystallized as a solvate with DMF. Structure analysis showed that the mol­ecule of 2 exists as its amide–imidic acid tautomer and that O-alkyl­ation occurred before N-alkyl­ation during the synthesis of the mono- and disubstituted derivatives, i.e. 3 and 4, respectively. The mol­ecular geometries of the 5-methyl-7-phenyl­pyrido[3,4-d]pyridazine core within the studied derivatives differ in the mutual orientation of the rings. The inter­planar angles between the heterocyclic ring and the bound aromatic ring are 1.71 (7), 18.16 (3) and 3.1 (1)° for 2, 3 and 4, respectively. The potential cytotoxicity of these com­pounds was evaluated against one normal (HaCat) and four human cancer cell lines (A549, DU145, MDA-MB-231 and SKOV-3).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229622009202/qf3056sup1.cif
Contains datablocks 2, 3, 4, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229622009202/qf30562sup2.hkl
Contains datablock 2

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229622009202/qf30562sup5.cml
Supplementary material

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229622009202/qf30563sup3.hkl
Contains datablock 3

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229622009202/qf30563sup6.cml
Supplementary material

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229622009202/qf30564sup4.hkl
Contains datablock 4

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229622009202/qf30564sup7.cml
Supplementary material

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229622009202/qf3056sup8.pdf
Additional figures

CCDC references: 2207705; 2207704; 2207703

Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2020) for (2), (3); CrysAlis PRO (Rigaku OD, 2015) for (4). Cell refinement: CrysAlis PRO (Rigaku OD, 2020) for (2), (3); CrysAlis PRO (Rigaku OD, 2015) for (4). Data reduction: CrysAlis PRO (Rigaku OD, 2020) for (2), (3); CrysAlis PRO (Rigaku OD, 2015) for (4). For all structures, program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg & Putz, 2014); software used to prepare material for publication: PLATON (Spek, 2020).

1-Hydroxy-5-methyl-7-phenylpyrido[3,4-d]pyridazin-4(3H)-one dimethylformamide monosolvate (2) top
Crystal data top
C14H11N3O2·C3H7NOZ = 2
Mr = 326.35F(000) = 344
Triclinic, P1Dx = 1.400 Mg m3
a = 6.8722 (2) ÅCu Kα radiation, λ = 1.54184 Å
b = 11.0502 (3) ÅCell parameters from 7662 reflections
c = 11.2090 (3) Åθ = 4.3–75.4°
α = 65.618 (3)°µ = 0.81 mm1
β = 89.798 (2)°T = 100 K
γ = 87.085 (2)°Needle, colourless
V = 774.14 (4) Å30.18 × 0.15 × 0.09 mm
Data collection top
Rigaku XtaLAB Synergy DW system with a HyPix-Arc 150 detector
diffractometer
3149 independent reflections
Radiation source: Rotating-anode X-ray tube, Rigaku (Cu) X-ray Source2827 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.018
Detector resolution: 10.0000 pixels mm-1θmax = 75.8°, θmin = 4.3°
ω scansh = 88
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2020)
k = 1313
Tmin = 0.644, Tmax = 1.000l = 1113
10869 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.044H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.125 w = 1/[σ2(Fo2) + (0.068P)2 + 0.2445P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
3149 reflectionsΔρmax = 0.26 e Å3
237 parametersΔρmin = 0.53 e Å3
0 restraintsExtinction correction: SHELXL2018 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0035 (8)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.56251 (15)0.57479 (10)0.64199 (9)0.0336 (3)
H10.6239800.5374000.7136970.050*
C10.6242 (2)0.69751 (14)0.57667 (12)0.0270 (3)
N20.78400 (17)0.73073 (12)0.61302 (11)0.0290 (3)
N30.83698 (16)0.85878 (11)0.54111 (10)0.0267 (3)
H30.9437530.8815840.5678440.032*
O40.81259 (13)1.06599 (9)0.38091 (9)0.0291 (2)
C40.74557 (18)0.95407 (13)0.43446 (12)0.0239 (3)
C50.45536 (18)0.99695 (12)0.27933 (12)0.0227 (3)
C510.51416 (19)1.13221 (13)0.18729 (13)0.0279 (3)
H510.4308991.1651430.1082870.042*
H520.6504401.1265370.1631660.042*
H530.4995901.1933830.2302550.042*
N60.29158 (15)0.95746 (10)0.24670 (10)0.0232 (2)
C70.22803 (18)0.83520 (12)0.32149 (12)0.0219 (3)
C710.04117 (18)0.80255 (12)0.27739 (12)0.0222 (3)
C720.05964 (19)0.89735 (13)0.16785 (12)0.0238 (3)
H720.0079410.9820980.1220020.029*
C730.23431 (19)0.86939 (13)0.12510 (12)0.0258 (3)
H730.3006660.9348030.0502690.031*
C740.31231 (19)0.74614 (14)0.19136 (13)0.0266 (3)
H740.4317820.7269160.1622540.032*
C750.2141 (2)0.65153 (14)0.30034 (13)0.0298 (3)
H750.2669480.5672040.3462950.036*
C760.0388 (2)0.67903 (13)0.34298 (13)0.0282 (3)
H760.0273680.6130640.4175450.034*
C80.33272 (19)0.74615 (13)0.43018 (12)0.0246 (3)
H80.2885640.6597360.4796330.030*
C90.50491 (18)0.78613 (13)0.46566 (12)0.0236 (3)
C100.56726 (18)0.91398 (12)0.39235 (12)0.0222 (3)
O1N0.6684 (3)0.4638 (2)0.88789 (17)0.0376 (7)0.611 (5)
C1N0.8086 (4)0.3886 (2)0.9393 (2)0.0291 (7)0.611 (5)
H1N0.890 (4)0.338 (3)0.891 (3)0.035*0.611 (5)
O1N'0.7370 (4)0.4178 (3)0.8593 (3)0.0302 (9)*0.389 (5)
C1N'0.7224 (5)0.4373 (3)0.9639 (4)0.0230 (10)*0.389 (5)
H1N'0.630 (6)0.495 (4)0.978 (4)0.028*0.389 (5)
N1N0.86445 (19)0.36515 (12)1.06150 (11)0.0355 (3)
C2N1.0296 (3)0.27128 (17)1.0960 (2)0.0557 (5)
H21N1.0609410.2486211.0220550.083*
H22N0.9987950.1905471.1723050.083*
H23N1.1418040.3106771.1171310.083*
C3N0.8029 (2)0.40981 (16)1.15938 (19)0.0472 (4)
H31N0.6990260.4798581.1230190.071*
H32N0.9135470.4451161.1872690.071*
H33N0.7540600.3350431.2348740.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0351 (5)0.0328 (5)0.0236 (5)0.0133 (4)0.0083 (4)0.0009 (4)
C10.0288 (6)0.0305 (7)0.0202 (6)0.0082 (5)0.0013 (5)0.0082 (5)
N20.0305 (6)0.0308 (6)0.0226 (5)0.0089 (5)0.0041 (4)0.0071 (5)
N30.0261 (5)0.0294 (6)0.0244 (5)0.0088 (4)0.0043 (4)0.0102 (4)
O40.0282 (5)0.0268 (5)0.0324 (5)0.0079 (4)0.0054 (4)0.0115 (4)
C40.0239 (6)0.0273 (6)0.0237 (6)0.0046 (5)0.0002 (5)0.0132 (5)
C50.0226 (6)0.0224 (6)0.0258 (6)0.0030 (5)0.0002 (5)0.0123 (5)
C510.0272 (6)0.0218 (6)0.0330 (7)0.0047 (5)0.0051 (5)0.0090 (5)
N60.0223 (5)0.0214 (5)0.0262 (5)0.0036 (4)0.0014 (4)0.0100 (4)
C70.0221 (6)0.0232 (6)0.0224 (6)0.0044 (5)0.0011 (5)0.0110 (5)
C710.0225 (6)0.0239 (6)0.0224 (6)0.0047 (5)0.0008 (5)0.0114 (5)
C720.0265 (6)0.0228 (6)0.0235 (6)0.0051 (5)0.0009 (5)0.0105 (5)
C730.0258 (6)0.0285 (7)0.0244 (6)0.0021 (5)0.0030 (5)0.0121 (5)
C740.0230 (6)0.0337 (7)0.0283 (6)0.0075 (5)0.0008 (5)0.0173 (6)
C750.0304 (7)0.0282 (7)0.0297 (7)0.0117 (5)0.0007 (5)0.0098 (5)
C760.0278 (7)0.0262 (7)0.0270 (6)0.0067 (5)0.0039 (5)0.0070 (5)
C80.0261 (6)0.0251 (6)0.0218 (6)0.0082 (5)0.0000 (5)0.0083 (5)
C90.0244 (6)0.0275 (6)0.0204 (6)0.0049 (5)0.0001 (5)0.0110 (5)
C100.0219 (6)0.0253 (6)0.0228 (6)0.0040 (5)0.0005 (5)0.0129 (5)
O1N0.0315 (10)0.0425 (11)0.0261 (10)0.0040 (8)0.0073 (7)0.0011 (8)
C1N0.0314 (13)0.0293 (12)0.0226 (12)0.0112 (10)0.0027 (9)0.0055 (9)
N1N0.0434 (7)0.0327 (6)0.0237 (6)0.0175 (5)0.0084 (5)0.0031 (5)
C2N0.0631 (11)0.0355 (8)0.0799 (13)0.0145 (8)0.0387 (10)0.0345 (9)
C3N0.0382 (8)0.0305 (8)0.0738 (12)0.0038 (6)0.0176 (8)0.0223 (8)
Geometric parameters (Å, º) top
O1—C11.3383 (16)C73—H730.9500
O1—H10.8400C74—C751.3859 (19)
C1—N21.2942 (17)C74—H740.9500
C1—C91.4485 (18)C75—C761.3905 (18)
N2—N31.3759 (15)C75—H750.9500
N3—C41.3532 (17)C76—H760.9500
N3—H30.8800C8—C91.3982 (17)
O4—C41.2430 (15)C8—H80.9500
C4—C101.4671 (16)C9—C101.3984 (17)
C5—N61.3325 (16)O1N—C1N1.215 (4)
C5—C101.4188 (17)C1N—N1N1.339 (2)
C5—C511.4990 (17)C1N—H1N1.06 (3)
C51—H510.9800O1N'—C1N'1.279 (6)
C51—H520.9800C1N'—N1N1.412 (4)
C51—H530.9800C1N'—H1N'0.94 (4)
N6—C71.3569 (16)N1N—C3N1.431 (2)
C7—C81.3837 (18)N1N—C2N1.437 (2)
C7—C711.4908 (17)C2N—H21N0.9800
C71—C761.3965 (17)C2N—H22N0.9800
C71—C721.3983 (18)C2N—H23N0.9800
C72—C731.3892 (18)C3N—H31N0.9800
C72—H720.9500C3N—H32N0.9800
C73—C741.3893 (18)C3N—H33N0.9800
C1—O1—H1109.5C74—C75—H75119.7
N2—C1—O1119.90 (12)C76—C75—H75119.7
N2—C1—C9123.63 (12)C75—C76—C71120.73 (12)
O1—C1—C9116.47 (11)C75—C76—H76119.6
C1—N2—N3116.34 (11)C71—C76—H76119.6
C4—N3—N2128.17 (10)C7—C8—C9118.56 (12)
C4—N3—H3115.9C7—C8—H8120.7
N2—N3—H3115.9C9—C8—H8120.7
O4—C4—N3120.11 (11)C8—C9—C10120.02 (12)
O4—C4—C10124.99 (11)C8—C9—C1121.69 (12)
N3—C4—C10114.89 (11)C10—C9—C1118.28 (11)
N6—C5—C10121.55 (11)C9—C10—C5117.69 (11)
N6—C5—C51115.52 (11)C9—C10—C4118.63 (11)
C10—C5—C51122.91 (11)C5—C10—C4123.67 (11)
C5—C51—H51109.5O1N—C1N—N1N120.2 (2)
C5—C51—H52109.5O1N—C1N—H1N122.6 (15)
H51—C51—H52109.5N1N—C1N—H1N117.2 (15)
C5—C51—H53109.5O1N'—C1N'—N1N114.3 (3)
H51—C51—H53109.5O1N'—C1N'—H1N'126 (3)
H52—C51—H53109.5N1N—C1N'—H1N'120 (2)
C5—N6—C7120.28 (11)C1N—N1N—C3N136.48 (18)
N6—C7—C8121.79 (11)C1N'—N1N—C3N98.5 (2)
N6—C7—C71115.72 (11)C1N—N1N—C2N107.44 (18)
C8—C7—C71122.48 (11)C1N'—N1N—C2N145.4 (2)
C76—C71—C72118.20 (11)C3N—N1N—C2N116.07 (14)
C76—C71—C7121.91 (11)N1N—C2N—H21N109.5
C72—C71—C7119.89 (11)N1N—C2N—H22N109.5
C73—C72—C71120.95 (12)H21N—C2N—H22N109.5
C73—C72—H72119.5N1N—C2N—H23N109.5
C71—C72—H72119.5H21N—C2N—H23N109.5
C72—C73—C74120.25 (12)H22N—C2N—H23N109.5
C72—C73—H73119.9N1N—C3N—H31N109.5
C74—C73—H73119.9N1N—C3N—H32N109.5
C75—C74—C73119.33 (12)H31N—C3N—H32N109.5
C75—C74—H74120.3N1N—C3N—H33N109.5
C73—C74—H74120.3H31N—C3N—H33N109.5
C74—C75—C76120.54 (12)H32N—C3N—H33N109.5
O1—C1—N2—N3179.77 (11)C7—C8—C9—C100.42 (19)
C9—C1—N2—N31.1 (2)C7—C8—C9—C1178.78 (11)
C1—N2—N3—C41.9 (2)N2—C1—C9—C8179.75 (12)
N2—N3—C4—O4179.58 (12)O1—C1—C9—C81.09 (19)
N2—N3—C4—C100.41 (19)N2—C1—C9—C101.0 (2)
C10—C5—N6—C70.34 (19)O1—C1—C9—C10178.11 (11)
C51—C5—N6—C7178.26 (11)C8—C9—C10—C52.92 (18)
C5—N6—C7—C82.37 (19)C1—C9—C10—C5176.30 (11)
C5—N6—C7—C71178.79 (10)C8—C9—C10—C4178.26 (11)
N6—C7—C71—C76178.28 (11)C1—C9—C10—C42.52 (18)
C8—C7—C71—C760.6 (2)N6—C5—C10—C92.95 (18)
N6—C7—C71—C722.10 (17)C51—C5—C10—C9175.54 (11)
C8—C7—C71—C72179.06 (12)N6—C5—C10—C4178.30 (11)
C76—C71—C72—C730.19 (19)C51—C5—C10—C43.21 (19)
C7—C71—C72—C73179.82 (11)O4—C4—C10—C9177.28 (12)
C71—C72—C73—C740.3 (2)N3—C4—C10—C91.84 (17)
C72—C73—C74—C750.0 (2)O4—C4—C10—C54.0 (2)
C73—C74—C75—C760.3 (2)N3—C4—C10—C5176.90 (11)
C74—C75—C76—C710.3 (2)O1N—C1N—N1N—C3N1.8 (3)
C72—C71—C76—C750.1 (2)O1N—C1N—N1N—C2N178.81 (19)
C7—C71—C76—C75179.50 (12)O1N'—C1N'—N1N—C3N179.6 (2)
N6—C7—C8—C92.31 (19)O1N'—C1N'—N1N—C2N0.9 (5)
C71—C7—C8—C9178.93 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O1N0.841.802.6006 (19)159
O1—H1···O1N0.841.772.588 (3)164
N3—H3···O4i0.881.962.8413 (14)177
C75—H75···O1ii0.952.603.4161 (16)144
C2N—H22N···O4iii0.982.553.450 (2)153
C3N—H31N···O1Niv0.982.563.415 (3)146
Symmetry codes: (i) x+2, y+2, z+1; (ii) x, y+1, z+1; (iii) x, y1, z+1; (iv) x+1, y+1, z+2.
Ethyl [1-(2-ethoxy-2-oxoethoxy)-5-methyl-4-oxo-7-phenyl-3,4-dihydropyrido[3,4-d]pyridazin-3-yl]acetate (3) top
Crystal data top
C18H17N3O4F(000) = 712
Mr = 339.34Dx = 1.409 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 17.4344 (3) ÅCell parameters from 1548 reflections
b = 13.0800 (3) Åθ = 2.5–69.8°
c = 7.0192 (1) ŵ = 0.84 mm1
β = 92.315 (1)°T = 100 K
V = 1599.37 (5) Å3Plate, colourless
Z = 40.17 × 0.03 × 0.03 mm
Data collection top
Rigaku XtaLAB Synergy DW system with a HyPix-Arc 150 detector
diffractometer
3274 independent reflections
Radiation source: Rotating-anode X-ray tube, Rigaku (Cu) X-ray Source2878 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.035
Detector resolution: 10.0000 pixels mm-1θmax = 75.7°, θmin = 2.5°
φ scansh = 2121
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2020)
k = 1516
Tmin = 0.736, Tmax = 1.000l = 88
15272 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0533P)2 + 0.7835P]
where P = (Fo2 + 2Fc2)/3
3274 reflections(Δ/σ)max < 0.001
228 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.20 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.20407 (9)0.60829 (14)0.3354 (2)0.0230 (4)
O10.27974 (7)0.59919 (9)0.30055 (17)0.0251 (3)
C110.30819 (10)0.49653 (14)0.3152 (2)0.0242 (4)
H1110.2800790.4518750.2223340.029*
H1120.3010250.4694410.4449300.029*
C120.39222 (10)0.49888 (13)0.2738 (2)0.0239 (4)
O120.42679 (7)0.56808 (10)0.20456 (18)0.0296 (3)
O130.42359 (7)0.40925 (9)0.32548 (18)0.0279 (3)
C130.50480 (10)0.39724 (15)0.2903 (3)0.0289 (4)
H1310.5343760.4559130.3437990.035*
H1320.5127330.3936500.1516150.035*
C140.53061 (12)0.29977 (16)0.3857 (3)0.0378 (5)
H1410.5001060.2425940.3335660.057*
H1420.5235980.3049730.5231920.057*
H1430.5849790.2880960.3626580.057*
N20.16413 (8)0.52742 (11)0.3611 (2)0.0243 (3)
N30.08860 (8)0.54126 (11)0.4001 (2)0.0247 (3)
H30.0614430.4854150.4159740.030*
C40.05078 (10)0.63117 (13)0.4170 (2)0.0229 (4)
O40.01768 (7)0.63137 (10)0.46053 (18)0.0272 (3)
C50.06606 (9)0.82347 (13)0.3958 (2)0.0219 (4)
C510.01659 (9)0.84556 (14)0.4338 (3)0.0261 (4)
H5110.0291010.8168880.5577650.039*
H5120.0496900.8145260.3335480.039*
H5130.0248320.9196710.4349670.039*
N60.11052 (8)0.90527 (11)0.37439 (19)0.0231 (3)
C70.18631 (9)0.89387 (13)0.3400 (2)0.0215 (3)
C710.23023 (10)0.99101 (14)0.3237 (2)0.0233 (4)
C720.19108 (11)1.08301 (14)0.2915 (3)0.0304 (4)
H720.1366231.0830140.2790270.036*
C730.23094 (11)1.17437 (16)0.2777 (3)0.0368 (5)
H730.2037891.2363860.2544040.044*
C740.31059 (11)1.17518 (15)0.2979 (3)0.0326 (4)
H740.3378331.2378410.2900860.039*
C750.35012 (10)1.08475 (14)0.3293 (3)0.0278 (4)
H750.4045701.0853440.3421540.033*
C760.31046 (10)0.99282 (14)0.3420 (2)0.0250 (4)
H760.3380090.9309300.3633380.030*
C80.21977 (10)0.79844 (13)0.3214 (2)0.0230 (4)
H80.2724200.7922020.2933890.028*
C90.17444 (9)0.71166 (13)0.3448 (2)0.0217 (3)
C100.09629 (9)0.72315 (13)0.3834 (2)0.0213 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0225 (9)0.0251 (9)0.0215 (8)0.0003 (7)0.0032 (6)0.0002 (7)
O10.0230 (6)0.0202 (6)0.0326 (7)0.0016 (5)0.0061 (5)0.0010 (5)
C110.0275 (9)0.0201 (9)0.0253 (8)0.0020 (7)0.0050 (6)0.0017 (7)
C120.0276 (9)0.0209 (8)0.0235 (8)0.0005 (7)0.0036 (6)0.0029 (7)
O120.0272 (7)0.0242 (7)0.0380 (7)0.0034 (5)0.0065 (5)0.0023 (5)
O130.0260 (7)0.0225 (7)0.0359 (7)0.0023 (5)0.0080 (5)0.0033 (5)
C130.0238 (9)0.0273 (10)0.0358 (10)0.0027 (7)0.0062 (7)0.0001 (8)
C140.0372 (11)0.0323 (11)0.0442 (11)0.0073 (9)0.0057 (8)0.0005 (9)
N20.0241 (7)0.0234 (8)0.0257 (7)0.0004 (6)0.0045 (5)0.0003 (6)
N30.0237 (8)0.0202 (7)0.0308 (8)0.0035 (6)0.0067 (6)0.0005 (6)
C40.0252 (9)0.0221 (9)0.0214 (8)0.0003 (7)0.0018 (6)0.0001 (6)
O40.0235 (6)0.0242 (6)0.0343 (7)0.0015 (5)0.0066 (5)0.0017 (5)
C50.0224 (8)0.0232 (9)0.0203 (8)0.0021 (7)0.0025 (6)0.0012 (6)
C510.0238 (9)0.0233 (9)0.0315 (9)0.0005 (7)0.0054 (7)0.0006 (7)
N60.0246 (7)0.0215 (7)0.0236 (7)0.0007 (6)0.0037 (5)0.0008 (6)
C70.0232 (8)0.0226 (9)0.0187 (8)0.0022 (7)0.0016 (6)0.0002 (6)
C710.0256 (9)0.0240 (9)0.0206 (8)0.0022 (7)0.0038 (6)0.0012 (7)
C720.0256 (9)0.0257 (10)0.0402 (10)0.0009 (7)0.0052 (7)0.0001 (8)
C730.0329 (11)0.0230 (10)0.0546 (13)0.0006 (8)0.0042 (9)0.0016 (9)
C740.0326 (10)0.0239 (10)0.0415 (11)0.0085 (7)0.0049 (8)0.0012 (8)
C750.0242 (9)0.0305 (10)0.0289 (9)0.0038 (7)0.0042 (7)0.0009 (7)
C760.0254 (9)0.0254 (9)0.0244 (8)0.0010 (7)0.0025 (6)0.0011 (7)
C80.0204 (8)0.0252 (9)0.0235 (8)0.0007 (7)0.0034 (6)0.0000 (7)
C90.0241 (8)0.0215 (9)0.0197 (7)0.0002 (7)0.0018 (6)0.0007 (6)
C100.0236 (8)0.0219 (9)0.0186 (7)0.0017 (7)0.0017 (6)0.0003 (6)
Geometric parameters (Å, º) top
C1—N21.283 (2)C5—C101.418 (2)
C1—O11.3565 (19)C5—C511.504 (2)
C1—C91.450 (2)C51—H5110.9800
O1—C111.434 (2)C51—H5120.9800
C11—C121.505 (2)C51—H5130.9800
C11—H1110.9900N6—C71.361 (2)
C11—H1120.9900C7—C81.386 (2)
C12—O121.201 (2)C7—C711.490 (2)
C12—O131.338 (2)C71—C721.397 (2)
O13—C131.456 (2)C71—C761.400 (2)
C13—C141.501 (3)C72—C731.388 (3)
C13—H1310.9900C72—H720.9500
C13—H1320.9900C73—C741.390 (3)
C14—H1410.9800C73—H730.9500
C14—H1420.9800C74—C751.382 (3)
C14—H1430.9800C74—H740.9500
N2—N31.368 (2)C75—C761.392 (2)
N3—C41.356 (2)C75—H750.9500
N3—H30.8800C76—H760.9500
C4—O41.244 (2)C8—C91.397 (2)
C4—C101.465 (2)C8—H80.9500
C5—N61.333 (2)C9—C101.408 (2)
N2—C1—O1119.35 (16)C5—C51—H512109.5
N2—C1—C9124.47 (15)H511—C51—H512109.5
O1—C1—C9116.16 (15)C5—C51—H513109.5
C1—O1—C11113.92 (13)H511—C51—H513109.5
O1—C11—C12107.68 (14)H512—C51—H513109.5
O1—C11—H111110.2C5—N6—C7120.34 (15)
C12—C11—H111110.2N6—C7—C8122.05 (15)
O1—C11—H112110.2N6—C7—C71115.20 (15)
C12—C11—H112110.2C8—C7—C71122.75 (15)
H111—C11—H112108.5C72—C71—C76118.69 (16)
O12—C12—O13124.33 (16)C72—C71—C7119.84 (15)
O12—C12—C11126.99 (16)C76—C71—C7121.47 (16)
O13—C12—C11108.68 (14)C73—C72—C71120.68 (17)
C12—O13—C13116.01 (13)C73—C72—H72119.7
O13—C13—C14106.99 (15)C71—C72—H72119.7
O13—C13—H131110.3C72—C73—C74120.02 (18)
C14—C13—H131110.3C72—C73—H73120.0
O13—C13—H132110.3C74—C73—H73120.0
C14—C13—H132110.3C75—C74—C73119.96 (17)
H131—C13—H132108.6C75—C74—H74120.0
C13—C14—H141109.5C73—C74—H74120.0
C13—C14—H142109.5C74—C75—C76120.26 (17)
H141—C14—H142109.5C74—C75—H75119.9
C13—C14—H143109.5C76—C75—H75119.9
H141—C14—H143109.5C75—C76—C71120.39 (17)
H142—C14—H143109.5C75—C76—H76119.8
C1—N2—N3116.83 (15)C71—C76—H76119.8
C4—N3—N2127.43 (14)C7—C8—C9118.59 (15)
C4—N3—H3116.3C7—C8—H8120.7
N2—N3—H3116.3C9—C8—H8120.7
O4—C4—N3119.87 (16)C8—C9—C10119.50 (16)
O4—C4—C10124.68 (16)C8—C9—C1123.25 (15)
N3—C4—C10115.45 (15)C10—C9—C1117.24 (15)
N6—C5—C10121.09 (15)C9—C10—C5118.40 (15)
N6—C5—C51115.55 (15)C9—C10—C4118.54 (15)
C10—C5—C51123.36 (15)C5—C10—C4123.01 (15)
C5—C51—H511109.5
N2—C1—O1—C115.8 (2)C73—C74—C75—C760.4 (3)
C9—C1—O1—C11172.95 (14)C74—C75—C76—C710.2 (3)
C1—O1—C11—C12179.80 (13)C72—C71—C76—C750.3 (2)
O1—C11—C12—O1213.6 (2)C7—C71—C76—C75178.98 (15)
O1—C11—C12—O13167.01 (13)N6—C7—C8—C92.0 (2)
O12—C12—O13—C131.0 (2)C71—C7—C8—C9178.07 (15)
C11—C12—O13—C13178.39 (13)C7—C8—C9—C101.0 (2)
C12—O13—C13—C14171.25 (15)C7—C8—C9—C1177.68 (15)
O1—C1—N2—N3178.51 (13)N2—C1—C9—C8178.16 (16)
C9—C1—N2—N30.1 (2)O1—C1—C9—C80.5 (2)
C1—N2—N3—C40.8 (2)N2—C1—C9—C100.5 (2)
N2—N3—C4—O4177.17 (15)O1—C1—C9—C10179.14 (13)
N2—N3—C4—C102.1 (2)C8—C9—C10—C50.5 (2)
C10—C5—N6—C70.0 (2)C1—C9—C10—C5179.22 (14)
C51—C5—N6—C7179.79 (14)C8—C9—C10—C4176.93 (14)
C5—N6—C7—C81.6 (2)C1—C9—C10—C41.8 (2)
C5—N6—C7—C71178.54 (14)N6—C5—C10—C91.0 (2)
N6—C7—C71—C7217.4 (2)C51—C5—C10—C9179.22 (14)
C8—C7—C71—C72162.49 (16)N6—C5—C10—C4176.29 (15)
N6—C7—C71—C76161.87 (15)C51—C5—C10—C43.5 (2)
C8—C7—C71—C7618.2 (2)O4—C4—C10—C9176.72 (15)
C76—C71—C72—C730.1 (3)N3—C4—C10—C92.5 (2)
C7—C71—C72—C73179.41 (17)O4—C4—C10—C50.6 (3)
C71—C72—C73—C740.7 (3)N3—C4—C10—C5179.77 (15)
C72—C73—C74—C750.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O4i0.881.932.7717 (19)160
C14—H141···O12ii0.982.633.190 (2)116
C14—H142···O12iii0.982.653.411 (3)135
C13—H132···O12iv0.992.803.746 (2)161
C51—H512···O4v0.982.793.335 (2)116
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y1/2, z+1/2; (iii) x+1, y+1, z+1; (iv) x+1, y+1, z; (v) x, y+3/2, z1/2.
Ethyl [(5-methyl-4-oxo-7-phenyl-3,4-dihydropyrido[3,4-d]pyridazin-1-yl)oxy]acetate (4) top
Crystal data top
C22H23N3O6Z = 2
Mr = 425.43F(000) = 448
Triclinic, P1Dx = 1.371 Mg m3
a = 8.679 (2) ÅCu Kα radiation, λ = 1.54184 Å
b = 8.751 (2) ÅCell parameters from 1514 reflections
c = 15.137 (4) Åθ = 3.1–72.4°
α = 92.24 (2)°µ = 0.84 mm1
β = 106.06 (3)°T = 100 K
γ = 109.46 (3)°Needle, colourless
V = 1030.7 (5) Å30.09 × 0.03 × 0.02 mm
Data collection top
Rigaku Xcalibur Onyx
diffractometer
4142 independent reflections
Radiation source: fine-focus sealed X-ray tube, Enhance (Cu) X-ray Source2089 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.068
Detector resolution: 8.1956 pixels mm-1θmax = 77.3°, θmin = 3.1°
ω scansh = 1010
Absorption correction: multi-scan
(CrysAlis PRO; Rigaku OD, 2015)
k = 810
Tmin = 0.840, Tmax = 1.000l = 1719
7128 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.063H-atom parameters constrained
wR(F2) = 0.165 w = 1/[σ2(Fo2) + (0.063P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max < 0.001
4142 reflectionsΔρmax = 0.35 e Å3
284 parametersΔρmin = 0.38 e Å3
0 restraintsExtinction correction: SHELXL2018 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0037 (6)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2620 (4)0.4605 (4)0.3410 (2)0.0254 (7)
O10.1154 (3)0.4540 (3)0.35841 (16)0.0280 (5)
C110.0362 (4)0.3256 (4)0.3014 (2)0.0278 (7)
H1110.1314550.3129600.3277150.033*
H1120.0152120.2210760.3011290.033*
C120.0874 (4)0.3619 (4)0.2024 (2)0.0271 (7)
O120.0317 (3)0.4891 (3)0.17669 (17)0.0319 (6)
C130.2667 (5)0.2383 (5)0.0501 (3)0.0419 (10)
H1310.2840060.3438180.0424310.050*
H1320.3778430.1487090.0195920.050*
O130.2094 (3)0.2259 (3)0.14844 (17)0.0335 (6)
C140.1360 (6)0.2276 (6)0.0046 (3)0.0553 (12)
H1410.0254700.3152510.0355440.083*
H1420.1746500.2394850.0611250.083*
H1430.1226560.1211110.0098480.083*
N20.2563 (3)0.3601 (3)0.27490 (19)0.0255 (6)
N30.4096 (3)0.3724 (3)0.26150 (19)0.0250 (6)
C310.3876 (5)0.2649 (4)0.1803 (2)0.0291 (7)
H3110.2946190.1589060.1752970.035*
H3120.4949120.2436300.1863110.035*
C320.3434 (4)0.3423 (4)0.0937 (2)0.0259 (7)
O320.3488 (3)0.4824 (3)0.09355 (17)0.0342 (6)
C330.2566 (5)0.2991 (4)0.0702 (2)0.0340 (8)
H3310.3559360.3942370.0726880.041*
H3320.1576050.3346950.0764610.041*
O330.2984 (3)0.2349 (3)0.01799 (16)0.0303 (6)
C340.2136 (7)0.1640 (6)0.1464 (3)0.0586 (13)
H3410.1904240.2041470.2064200.088*
H3420.1116860.0727790.1451000.088*
H3430.3105420.1263040.1377170.088*
C40.5693 (4)0.4836 (4)0.3110 (2)0.0267 (7)
O40.6969 (3)0.4861 (3)0.28866 (18)0.0376 (6)
C50.7260 (4)0.7091 (4)0.4497 (2)0.0294 (8)
C510.9019 (4)0.7287 (5)0.4444 (3)0.0377 (9)
H5110.9090360.7543760.3829280.057*
H5120.9228990.6265580.4547860.057*
H5130.9883880.8179050.4921790.057*
N60.7226 (3)0.8078 (3)0.51761 (19)0.0277 (6)
C70.5707 (4)0.8014 (4)0.5292 (2)0.0257 (7)
C710.5809 (4)0.9194 (4)0.6049 (2)0.0248 (7)
C720.7405 (4)1.0315 (4)0.6607 (2)0.0289 (8)
H720.8430741.0286270.6509650.035*
C730.7501 (5)1.1461 (4)0.7300 (2)0.0345 (8)
H730.8589051.2218820.7665240.041*
C740.6019 (5)1.1506 (4)0.7460 (2)0.0338 (8)
H740.6088361.2294950.7933240.041*
C750.4441 (5)1.0397 (4)0.6929 (2)0.0337 (8)
H750.3425691.0410590.7046920.040*
C760.4330 (5)0.9267 (4)0.6228 (2)0.0302 (8)
H760.3233250.8526740.5861500.036*
C80.4162 (4)0.6887 (4)0.4729 (2)0.0257 (7)
H80.3108060.6830710.4823750.031*
C90.4185 (4)0.5840 (4)0.4022 (2)0.0232 (7)
C100.5727 (4)0.5921 (4)0.3879 (2)0.0261 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0263 (17)0.0302 (18)0.0248 (17)0.0126 (14)0.0118 (14)0.0075 (14)
O10.0188 (11)0.0366 (13)0.0285 (13)0.0093 (10)0.0085 (10)0.0013 (10)
C110.0184 (16)0.0282 (17)0.0296 (18)0.0040 (13)0.0024 (14)0.0013 (14)
C120.0145 (15)0.0309 (18)0.0331 (19)0.0079 (13)0.0044 (14)0.0007 (15)
O120.0307 (13)0.0221 (12)0.0394 (15)0.0068 (10)0.0083 (11)0.0056 (10)
C130.035 (2)0.047 (2)0.035 (2)0.0129 (18)0.0019 (17)0.0007 (18)
O130.0305 (13)0.0299 (13)0.0324 (14)0.0041 (10)0.0071 (11)0.0015 (11)
C140.052 (3)0.073 (3)0.036 (2)0.020 (2)0.011 (2)0.002 (2)
N20.0244 (14)0.0324 (15)0.0254 (14)0.0150 (12)0.0104 (12)0.0070 (12)
N30.0229 (14)0.0295 (15)0.0250 (15)0.0111 (11)0.0091 (12)0.0034 (12)
C310.0325 (18)0.0296 (17)0.0302 (19)0.0150 (14)0.0125 (16)0.0064 (15)
C320.0257 (17)0.0241 (16)0.0266 (18)0.0072 (13)0.0084 (14)0.0021 (14)
O320.0399 (15)0.0307 (13)0.0326 (14)0.0139 (11)0.0104 (11)0.0057 (11)
C330.039 (2)0.037 (2)0.0289 (19)0.0167 (16)0.0106 (16)0.0064 (16)
O330.0381 (14)0.0281 (12)0.0272 (13)0.0155 (10)0.0094 (11)0.0022 (10)
C340.089 (4)0.067 (3)0.030 (2)0.048 (3)0.010 (2)0.007 (2)
C40.0220 (16)0.0311 (17)0.0247 (17)0.0099 (13)0.0027 (14)0.0058 (14)
O40.0255 (13)0.0459 (15)0.0457 (16)0.0141 (11)0.0167 (12)0.0000 (12)
C50.0295 (18)0.0333 (18)0.0277 (18)0.0122 (15)0.0108 (15)0.0102 (15)
C510.0249 (19)0.049 (2)0.038 (2)0.0105 (16)0.0107 (16)0.0020 (18)
N60.0233 (14)0.0339 (15)0.0252 (15)0.0096 (12)0.0070 (12)0.0050 (12)
C70.0256 (17)0.0289 (17)0.0241 (17)0.0108 (14)0.0082 (14)0.0094 (14)
C710.0256 (16)0.0275 (16)0.0210 (16)0.0095 (13)0.0063 (14)0.0076 (13)
C720.0231 (17)0.0320 (18)0.0270 (18)0.0089 (14)0.0017 (14)0.0044 (15)
C730.036 (2)0.0266 (18)0.0299 (19)0.0030 (15)0.0042 (16)0.0026 (15)
C740.053 (2)0.0227 (17)0.0270 (19)0.0155 (16)0.0112 (18)0.0040 (14)
C750.046 (2)0.0274 (18)0.0304 (19)0.0134 (16)0.0156 (17)0.0039 (15)
C760.0330 (19)0.0269 (17)0.0320 (19)0.0107 (14)0.0116 (16)0.0069 (15)
C80.0231 (16)0.0293 (17)0.0250 (17)0.0099 (13)0.0071 (14)0.0065 (14)
C90.0192 (15)0.0253 (16)0.0197 (16)0.0040 (12)0.0021 (13)0.0045 (13)
C100.0248 (17)0.0274 (17)0.0254 (17)0.0094 (14)0.0067 (14)0.0045 (14)
Geometric parameters (Å, º) top
C1—N21.285 (4)C34—H3410.9800
C1—O11.353 (4)C34—H3420.9800
C1—C91.456 (4)C34—H3430.9800
O1—C111.432 (4)C4—O41.238 (4)
C11—C121.519 (5)C4—C101.461 (5)
C11—H1110.9900C5—N61.329 (4)
C11—H1120.9900C5—C101.422 (5)
C12—O121.185 (4)C5—C511.504 (5)
C12—O131.345 (4)C51—H5110.9800
C13—O131.454 (4)C51—H5120.9800
C13—C141.506 (6)C51—H5130.9800
C13—H1310.9900N6—C71.361 (4)
C13—H1320.9900C7—C81.385 (5)
C14—H1410.9800C7—C711.475 (5)
C14—H1420.9800C71—C761.405 (5)
C14—H1430.9800C71—C721.406 (5)
N2—N31.371 (4)C72—C731.387 (5)
N3—C41.378 (4)C72—H720.9500
N3—C311.447 (4)C73—C741.387 (5)
C31—C321.512 (5)C73—H730.9500
C31—H3110.9900C74—C751.381 (5)
C31—H3120.9900C74—H740.9500
C32—O321.211 (4)C75—C761.382 (5)
C32—O331.331 (4)C75—H750.9500
C33—O331.468 (4)C76—H760.9500
C33—C341.493 (5)C8—C91.390 (4)
C33—H3310.9900C8—H80.9500
C33—H3320.9900C9—C101.393 (4)
N2—C1—O1119.9 (3)H341—C34—H342109.5
N2—C1—C9124.7 (3)C33—C34—H343109.5
O1—C1—C9115.4 (3)H341—C34—H343109.5
C1—O1—C11114.7 (2)H342—C34—H343109.5
O1—C11—C12111.2 (3)O4—C4—N3119.8 (3)
O1—C11—H111109.4O4—C4—C10124.8 (3)
C12—C11—H111109.4N3—C4—C10115.4 (3)
O1—C11—H112109.4N6—C5—C10121.6 (3)
C12—C11—H112109.4N6—C5—C51115.3 (3)
H111—C11—H112108.0C10—C5—C51123.0 (3)
O12—C12—O13125.3 (3)C5—C51—H511109.5
O12—C12—C11126.0 (3)C5—C51—H512109.5
O13—C12—C11108.6 (3)H511—C51—H512109.5
O13—C13—C14110.4 (3)C5—C51—H513109.5
O13—C13—H131109.6H511—C51—H513109.5
C14—C13—H131109.6H512—C51—H513109.5
O13—C13—H132109.6C5—N6—C7120.7 (3)
C14—C13—H132109.6N6—C7—C8121.1 (3)
H131—C13—H132108.1N6—C7—C71116.3 (3)
C12—O13—C13115.4 (3)C8—C7—C71122.6 (3)
C13—C14—H141109.5C76—C71—C72117.5 (3)
C13—C14—H142109.5C76—C71—C7121.7 (3)
H141—C14—H142109.5C72—C71—C7120.8 (3)
C13—C14—H143109.5C73—C72—C71120.9 (3)
H141—C14—H143109.5C73—C72—H72119.6
H142—C14—H143109.5C71—C72—H72119.6
C1—N2—N3116.9 (3)C74—C73—C72120.4 (3)
N2—N3—C4126.5 (3)C74—C73—H73119.8
N2—N3—C31112.5 (3)C72—C73—H73119.8
C4—N3—C31120.7 (3)C75—C74—C73119.6 (3)
N3—C31—C32110.2 (3)C75—C74—H74120.2
N3—C31—H311109.6C73—C74—H74120.2
C32—C31—H311109.6C74—C75—C76120.5 (4)
N3—C31—H312109.6C74—C75—H75119.8
C32—C31—H312109.6C76—C75—H75119.8
H311—C31—H312108.1C75—C76—C71121.2 (3)
O32—C32—O33125.0 (3)C75—C76—H76119.4
O32—C32—C31124.6 (3)C71—C76—H76119.4
O33—C32—C31110.4 (3)C7—C8—C9118.6 (3)
O33—C33—C34107.2 (3)C7—C8—H8120.7
O33—C33—H331110.3C9—C8—H8120.7
C34—C33—H331110.3C8—C9—C10120.9 (3)
O33—C33—H332110.3C8—C9—C1122.0 (3)
C34—C33—H332110.3C10—C9—C1117.1 (3)
H331—C33—H332108.5C9—C10—C5117.1 (3)
C32—O33—C33114.8 (3)C9—C10—C4119.2 (3)
C33—C34—H341109.5C5—C10—C4123.7 (3)
C33—C34—H342109.5
N2—C1—O1—C112.7 (4)C8—C7—C71—C72179.7 (3)
C9—C1—O1—C11176.4 (3)C76—C71—C72—C730.9 (5)
C1—O1—C11—C1272.1 (3)C7—C71—C72—C73177.9 (3)
O1—C11—C12—O1212.4 (5)C71—C72—C73—C740.9 (5)
O1—C11—C12—O13168.7 (3)C72—C73—C74—C750.3 (5)
O12—C12—O13—C133.9 (5)C73—C74—C75—C761.3 (5)
C11—C12—O13—C13177.2 (3)C74—C75—C76—C711.2 (5)
C14—C13—O13—C1276.7 (4)C72—C71—C76—C750.1 (5)
O1—C1—N2—N3179.5 (3)C7—C71—C76—C75178.9 (3)
C9—C1—N2—N30.5 (5)N6—C7—C8—C91.6 (5)
C1—N2—N3—C41.1 (5)C71—C7—C8—C9178.9 (3)
C1—N2—N3—C31174.5 (3)C7—C8—C9—C100.1 (5)
N2—N3—C31—C3281.7 (3)C7—C8—C9—C1179.0 (3)
C4—N3—C31—C3292.2 (4)N2—C1—C9—C8179.7 (3)
N3—C31—C32—O329.4 (5)O1—C1—C9—C80.6 (5)
N3—C31—C32—O33170.9 (3)N2—C1—C9—C100.5 (5)
O32—C32—O33—C331.1 (5)O1—C1—C9—C10178.5 (3)
C31—C32—O33—C33178.6 (3)C8—C9—C10—C51.2 (5)
C34—C33—O33—C32178.7 (3)C1—C9—C10—C5178.0 (3)
N2—N3—C4—O4176.6 (3)C8—C9—C10—C4178.0 (3)
C31—N3—C4—O43.7 (5)C1—C9—C10—C42.8 (4)
N2—N3—C4—C103.3 (5)N6—C5—C10—C90.6 (5)
C31—N3—C4—C10176.2 (3)C51—C5—C10—C9178.3 (3)
C10—C5—N6—C71.0 (5)N6—C5—C10—C4178.5 (3)
C51—C5—N6—C7179.9 (3)C51—C5—C10—C42.5 (6)
C5—N6—C7—C82.2 (5)O4—C4—C10—C9175.9 (3)
C5—N6—C7—C71178.2 (3)N3—C4—C10—C94.1 (5)
N6—C7—C71—C76179.0 (3)O4—C4—C10—C53.3 (6)
C8—C7—C71—C761.5 (5)N3—C4—C10—C5176.8 (3)
N6—C7—C71—C720.2 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H111···O4i0.992.443.053 (4)120
C13—H131···O32ii0.992.653.454 (5)138
C14—H141···O120.982.603.113 (5)113
C33—H331···O32iii0.992.543.445 (5)152
C33—H332···O12ii0.992.503.278 (4)135
C73—H73···O12iv0.952.443.271 (4)145
Symmetry codes: (i) x1, y, z; (ii) x, y+1, z; (iii) x+1, y+1, z; (iv) x+1, y+2, z+1.
Conditions included in Lipinski's rule and Veber's rule calculated with Molinspiration for compounds 24 top
CompoundMWLogPHydrogen-bond donorsHydrogen-bond acceptorsRotBPSA
2253.261.6525178.62
3425.442.920910109.63
4339.352.6217694.19
Comparison of selected geometrical parameters (Å, °) of compounds 24 top
234
Bond distances
C1—O11.3383 (16)1.3565 (19)1.353 (4)
C1—N21.2942 (17)1.283 (2)1.285 (4)
N2—N31.3759 (15)1.368 (2)1.371 (4)
C4—N31.3532 (17)1.356 (2)1.378 (4)
C4—O41.2430 (15)1.244 (2)1.238 (4)
C4—C101.4671 (16)1.465 (2)1.461 (5)
C5—C101.4671 (16)1.418 (2)1.422 (5)
C5—C511.4990 (17)1.504 (2)1.504 (5)
C5—N61.3325 (16)1.333 (2)1.329 (4)
C7—N61.3569 (16)1.361 (2)1.361 (4)
C7—C711.4908 (17)1.490 (2)1.475 (5)
C7—C81.3837 (18)1.386 (2)1.385 (5)
C8—C91.3982 (17)1.397 (2)1.390 (4)
C9—C101.3984 (17)1.408 (2)1.393 (4)
Bond angles
O1—C1—N2119.90 (12)119.35 (16)119.9 (3)
O1—C1—C9116.47 (11)116.16 (15)115.4 (3)
C1—N2—N3116.34 (11)116.83 (15)116.9 (3)
N2—N3—C4128.17 (10)127.43 (14)126.5 (3)
N2—C1—C9123.63 (12)124.47 (15)124.7 (3)
N3—C4—O4120.11 (11)119.87 (16)119.8 (3)
O4—C4—C10124.99 (11)124.68 (16)124.8 (3)
N3—C4—C10114.89 (11)115.45 (15)115.4 (3)
C5—N6—C7120.28 (11)120.34 (15)120.7 (3)
N6—C5—C10121.55 (11)121.09 (15)121.6 (3)
N6—C5—C51115.52 (11)115.55 (15)115.3 (3)
Torsion angles
O1—C1—N2—N3-179.77 (11)178.51 (13)-179.5 (3)
O1—C1—C9—C81.09 (19)-0.5 (2)-0.6 (5)
C1—N2—N3—C4-1.9 (2)-0.8 (2)-1.1 (5)
N2—N3—C4—O4179.58 (12)-177.17 (15)-176.6 (3)
O4—C4—C10—C54.0 (2)-0.6 (3)-3.3 (6)
C4—C10—C5—C513.21 (19)-3.5 (2)-2.5 (6)
C4—C10—C5—N6-178.30 (11)176.29 (15)178.5 (3)
C51—C5—N6—C7178.26 (11)179.79 (14)179.9 (3)
C5—N6—C7—C71178.79 (10)-178.54 (14)-178.2 (3)
N6—C7—C71—C72-2.10 (17)-17.4 (2)0.2 (5)
Cytotoxicity of compound 2 (IC50, mM)* top
24 h72 h
HACAT3.241.17
A5491.201.10
DU1454.600.73
SKOV-30.900.37
MDA-MB-2310.360.27
Note: (*) compound concentration that reduces cell proliferation by 50%, as was estimated by the MTT assay. The results are presented in millimolar concentration. The data correspond to mean values (±SD) for n 3.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds