Download citation
Download citation
link to html
Isopropyl 3-de­oxy-α-D-ribo-hexo­pyran­oside (isopropyl 3-de­oxy-α-D-gluco­py­ran­oside), C9H18O5, (I), crystallizes from a methanol–ethyl acetate solvent mixture at room temperature in a 4C1 chair con­form­ation that is slightly dis­torted towards the C5SC1 twist-boat form. A com­parison of the structural parameters in (I), methyl α-D-gluco­pyran­oside, (II), α-D-gluco­pyranosyl-(1→4)-D-glucitol (maltitol), (III), and 3-de­oxy-α-D-ribo-hexo­pyran­ose (3-de­oxy-α-D-gluco­pyran­ose), (IV), shows that most endocyclic and exocyclic bond lengths, valence bond angles and torsion angles in the aldohexo­pyranosyl rings are more affected by anomeric configuration, aglycone structure and/or the con­form­ation of exocyclic substituents, such as hy­droxy­methyl groups, than by mono­deoxy­genation at C3. The structural effects observed in the crystal structures of (I)–(IV) were confirmed though density functional theory (DFT) calculations in com­puted structures (I)c–(IV)c. Exocyclic hy­droxy­methyl groups adopt the gauchegauche (gg) con­form­ation (H5 anti to O6) in (I) and (III), and the gauchetrans (gt) con­form­ation (C4 anti to O6) in (II) and (IV). The O-glycoside linkage con­form­ations in (I) and (III) resemble those observed in disaccharides containing β-(1→4) linkages.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S205322962100749X/qf3048sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S205322962100749X/qf3048Isup2.hkl
Contains datablock I

CCDC reference: 2098123

Computing details top

Data collection: APEX3 (Bruker, 2018); cell refinement: SAINT (Bruker, 2018); data reduction: SAINT (Bruker, 2018); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020) and XP (Bruker, 2018); software used to prepare material for publication: CIFTAB (Sheldrick, 2008).

Isopropyl 3-deoxy-α-<it>D</it>-ribo-hexopyranoside top
Crystal data top
C9H18O5F(000) = 448
Mr = 206.23Dx = 1.297 Mg m3
Monoclinic, I2Cu Kα radiation, λ = 1.54184 Å
a = 13.7349 (11) ÅCell parameters from 9799 reflections
b = 5.0575 (4) Åθ = 3.7–70.5°
c = 16.0800 (12) ŵ = 0.89 mm1
β = 109.020 (7)°T = 120 K
V = 1056.00 (15) Å3Tablet, colorless
Z = 40.34 × 0.12 × 0.07 mm
Data collection top
Bruker PHOTON-II
diffractometer
1976 independent reflections
Radiation source: Incoatec micro-focus1889 reflections with I > 2σ(I)
Detector resolution: 7.41 pixels mm-1Rint = 0.062
combination of ω and φ–scansθmax = 70.8°, θmin = 3.7°
Absorption correction: numerical
(SADABS; Krause et al., 2015)
h = 1616
Tmin = 0.787, Tmax = 0.994k = 66
11702 measured reflectionsl = 1919
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.105 w = 1/[σ2(Fo2) + (0.0607P)2 + 0.4315P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
1976 reflectionsΔρmax = 0.19 e Å3
141 parametersΔρmin = 0.24 e Å3
1 restraintAbsolute structure: Flack x determined using 774 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: dualAbsolute structure parameter: 0.11 (12)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.68915 (12)0.5805 (4)0.37509 (11)0.0263 (4)
O20.69471 (13)0.4545 (4)0.20866 (12)0.0296 (4)
H2O0.728 (3)0.315 (9)0.214 (3)0.055 (11)*
O40.37421 (15)0.7884 (5)0.22265 (14)0.0391 (5)
H4O0.315 (3)0.727 (9)0.210 (3)0.054 (11)*
O50.55131 (11)0.2881 (4)0.35832 (11)0.0275 (4)
O60.33085 (14)0.1938 (5)0.32116 (15)0.0403 (5)
H6O0.363 (2)0.088 (7)0.3067 (19)0.019 (7)*
C10.64012 (16)0.3488 (5)0.33426 (16)0.0256 (5)
H10.6897480.1979060.3510730.031*
C20.60806 (17)0.3912 (5)0.23532 (16)0.0257 (5)
H20.5751310.2259940.2047080.031*
C30.53099 (18)0.6171 (5)0.20867 (16)0.0280 (6)
H3A0.5068080.6371710.1438890.034*
H3B0.5644780.7843710.2350260.034*
C40.43968 (17)0.5601 (6)0.24003 (17)0.0292 (6)
H40.4003620.4056390.2067400.035*
C50.47615 (17)0.4976 (6)0.33787 (17)0.0299 (6)
H50.5080770.6597140.3712880.036*
C60.39025 (19)0.4035 (7)0.37074 (18)0.0365 (7)
H6A0.4207390.3453310.4326080.044*
H6B0.3440380.5544640.3698610.044*
C70.75087 (17)0.5488 (6)0.46627 (16)0.0285 (6)
H70.7210280.4046850.4930570.034*
C80.86015 (19)0.4748 (7)0.47172 (19)0.0403 (7)
H8A0.8585020.3172480.4357900.060*
H8B0.9008220.4376310.5330310.060*
H8C0.8915040.6217280.4498420.060*
C90.7460 (2)0.8055 (7)0.51170 (19)0.0410 (7)
H9A0.6738540.8528570.5015340.062*
H9B0.7792890.9447140.4882090.062*
H9C0.7816560.7862850.5749970.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0155 (7)0.0324 (9)0.0283 (8)0.0017 (7)0.0035 (6)0.0009 (7)
O20.0203 (8)0.0336 (10)0.0393 (9)0.0035 (8)0.0157 (7)0.0028 (8)
O40.0177 (9)0.0480 (12)0.0507 (11)0.0075 (9)0.0100 (8)0.0059 (10)
O50.0147 (8)0.0357 (10)0.0322 (8)0.0022 (7)0.0080 (6)0.0025 (8)
O60.0195 (9)0.0493 (13)0.0553 (13)0.0061 (9)0.0166 (9)0.0035 (11)
C10.0135 (9)0.0303 (14)0.0337 (12)0.0008 (9)0.0087 (8)0.0001 (10)
C20.0161 (9)0.0291 (13)0.0328 (11)0.0024 (9)0.0092 (8)0.0011 (10)
C30.0168 (10)0.0342 (14)0.0324 (12)0.0015 (10)0.0072 (9)0.0036 (11)
C40.0140 (10)0.0350 (14)0.0370 (13)0.0001 (10)0.0060 (9)0.0005 (11)
C50.0131 (11)0.0399 (16)0.0368 (13)0.0011 (10)0.0085 (9)0.0036 (11)
C60.0184 (11)0.0542 (18)0.0386 (13)0.0029 (12)0.0116 (10)0.0011 (13)
C70.0192 (11)0.0372 (14)0.0268 (11)0.0034 (10)0.0045 (9)0.0037 (10)
C80.0177 (11)0.0564 (18)0.0419 (14)0.0002 (12)0.0030 (10)0.0128 (14)
C90.0430 (15)0.0434 (16)0.0328 (13)0.0072 (14)0.0071 (11)0.0003 (13)
Geometric parameters (Å, º) top
O1—C11.403 (3)C3—H3B0.9900
O1—C71.443 (3)C4—C51.521 (3)
O2—C21.427 (3)C4—H41.0000
O2—H2O0.83 (5)C5—C61.518 (3)
O4—C41.434 (3)C5—H51.0000
O4—H4O0.83 (5)C6—H6A0.9900
O5—C11.428 (3)C6—H6B0.9900
O5—C51.440 (3)C7—C91.502 (4)
O6—C61.415 (4)C7—C81.521 (3)
O6—H6O0.78 (3)C7—H71.0000
C1—C21.521 (3)C8—H8A0.9800
C1—H11.0000C8—H8B0.9800
C2—C31.521 (3)C8—H8C0.9800
C2—H21.0000C9—H9A0.9800
C3—C41.524 (3)C9—H9B0.9800
C3—H3A0.9900C9—H9C0.9800
C1—O1—C7114.6 (2)O5—C5—C4111.04 (19)
C2—O2—H2O105 (3)C6—C5—C4113.21 (19)
C4—O4—H4O104 (3)O5—C5—H5108.9
C1—O5—C5113.08 (19)C6—C5—H5108.9
C6—O6—H6O114 (2)C4—C5—H5108.9
O1—C1—O5112.01 (19)O6—C6—C5114.2 (2)
O1—C1—C2107.6 (2)O6—C6—H6A108.7
O5—C1—C2109.38 (17)C5—C6—H6A108.7
O1—C1—H1109.3O6—C6—H6B108.7
O5—C1—H1109.3C5—C6—H6B108.7
C2—C1—H1109.3H6A—C6—H6B107.6
O2—C2—C3108.6 (2)O1—C7—C9107.1 (2)
O2—C2—C1111.12 (18)O1—C7—C8109.1 (2)
C3—C2—C1109.8 (2)C9—C7—C8112.6 (2)
O2—C2—H2109.1O1—C7—H7109.3
C3—C2—H2109.1C9—C7—H7109.3
C1—C2—H2109.1C8—C7—H7109.3
C2—C3—C4109.7 (2)C7—C8—H8A109.5
C2—C3—H3A109.7C7—C8—H8B109.5
C4—C3—H3A109.7H8A—C8—H8B109.5
C2—C3—H3B109.7C7—C8—H8C109.5
C4—C3—H3B109.7H8A—C8—H8C109.5
H3A—C3—H3B108.2H8B—C8—H8C109.5
O4—C4—C5110.1 (2)C7—C9—H9A109.5
O4—C4—C3108.3 (2)C7—C9—H9B109.5
C5—C4—C3110.65 (18)H9A—C9—H9B109.5
O4—C4—H4109.3C7—C9—H9C109.5
C5—C4—H4109.3H9A—C9—H9C109.5
C3—C4—H4109.3H9B—C9—H9C109.5
O5—C5—C6105.7 (2)
C7—O1—C1—O577.4 (2)C2—C3—C4—C552.9 (3)
C7—O1—C1—C2162.35 (18)C1—O5—C5—C6177.9 (2)
C5—O5—C1—O157.7 (2)C1—O5—C5—C458.9 (3)
C5—O5—C1—C261.5 (3)O4—C4—C5—O5173.36 (19)
O1—C1—C2—O257.6 (2)C3—C4—C5—O553.6 (3)
O5—C1—C2—O2179.5 (2)O4—C4—C5—C667.9 (3)
O1—C1—C2—C362.5 (2)C3—C4—C5—C6172.3 (2)
O5—C1—C2—C359.4 (3)O5—C5—C6—O670.4 (3)
O2—C2—C3—C4177.49 (19)C4—C5—C6—O651.4 (3)
C1—C2—C3—C455.8 (3)C1—O1—C7—C9147.9 (2)
C2—C3—C4—O4173.7 (2)C1—O1—C7—C889.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···O1i0.83 (5)2.41 (4)3.055 (2)135 (4)
O2—H2O···O2i0.83 (5)2.27 (5)3.025 (2)152 (4)
O4—H4O···O6ii0.83 (5)1.91 (5)2.714 (3)163 (5)
O6—H6O···O4iii0.78 (3)2.07 (3)2.772 (3)150 (3)
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x, y1, z.
Cremer–Pople structural parameters for compounds (I)–(IV) top
Compoundϕ (°)θ (°)Q (Å)q2q3
(I)81 (4)4.1 (3)0.573 (3)0.037 (3)0.572 (3)
(II)117 (6)1.7 (2)0.569 (2)0.022 (2)0.569 (2)
(III)313.7 (8)11.05 (15)0.5674 (15)0.1087 (15)0.5569 (15)
(IV)59.0 (16)4.80 (14)0.5734 (14)0.0484 (14)0.5714 (14)
Selected structural parameters (Å, °) in compounds (I)–(IV) top
Structure parameterCompound
(I)(II)d(III)a(IV)
Bond lengths
C1—C21.521 (3)1.5291.537 (2)1.525 (2)
C2—C31.521 (3)1.5211.527 (2)1.522 (2)
C3—C41.524 (3)1.5311.529 (2)1.530 (2)
C4—C51.521 (3)1.5291.525 (2)1.533 (2)
C5—C61.518 (3)1.5161.516 (2)1.509 (2)
C1—O11.403 (3)1.4011.405 (2)1.400 (2)
C1—O51.428 (3)1.4141.427 (2)1.415 (2)
C2—O21.427 (3)1.4101.428 (2)1.423 (2)
C3—O31.4201.429 (2)
C4—O41.434 (3)1.4141.426 (2)1.432 (2)
C5—O51.440 (3)1.4281.453 (2)1.438 (2)
C6—O61.415 (4)1.4211.419 (2)1.429 (2)
O1—C71.444 (3)1.422
O1—C4'1.448 (2)
Angles
C5—O5—C1113.08 (19)113.49112.6 (1)112.78 (10)
O5—C1—O1112.01 (19)113.03111.4 (1)105.67 (10)
C2—C1—O1107.6 (2)106.99107.5 (1)110.32 (10)
C2—C3—C4109.7 (2)109.24111.8 (1)110.76 (11)
C1—O1—C7114.6 (2)113.82
C1—O1—C4'116.2 (1)
Torsion angles
C1—C2—C3—C4-55.8 (3)-55.32-45.6 (2)-54.39 (14)
C1—O5—C5—C458.9 (3)58.4366.7 (1)60.09 (13)
C4—C5—C6—O651.4 (3) (gg)–164.33 (gt)54.3 (2) (gg)-165.04 (10) (gt)
O5—C5—C6—O6-70.4 (3)73.94-64.8 (1)74.22 (13)
C2—C1—O1—C7/C4' (ϕ)b-162.34 (18)-175.22-165.3 (1)
O5—C1—O1—C7/C4' (ϕ')77.4 (2)62.6773.2 (1)
C1—O1—C7—C8 (ψ)c89.9 (2)
C1—O1—C7—C9 (ψ')–147.9 (2)
C1—O1—C4'—C3' (ψ)94.0 (1)
C1—O1—C4'—C5' (ψ')–139.1 (1)
Notes: (a) In compound (III), the atoms in the aldohexopyranosyl ring are unprimed and those in the acyclic alditol aglycone are primed (see Scheme 1) to simplify structural comparisons between (I)–(IV). (b) Either torsion angle ϕ or ϕ' can be used to define rotation about the C1—O1 bonds in (I)–(III). (c) Either ψ or ψ' can be used to define rotation about the O1—C7 or O1—C4' bonds in (I) and (III), respectively. (d) S.u. values were not reported in the original article.
DFT-calculated bond lengths (°), angles (°) and torsion angles (°) in (I)c–(IV)c top
Structureggagttggggttg
O1—O7 bond lengthO1—C4' bond length
(I)c1.4521.4521.453
(II)c1.4311.4311.431
(III)c1.4451.4351.446
C1—O5 bond lengthC5—O5 bond length
(I)c1.4201.4191.4221.4391.4411.437
(II)c1.4221.4231.4251.4391.4411.437
(III)c1.4141.4121.4171.4401.4421.438
(IV)c1.4271.4271.4301.4321.4341.431
C5—O5—C1 angle
(I)c115.2115.7115.6
(II)c114.5114.9114.8
(III)c116.0115.8116.0
(IV)c113.8114.1114.3
O5—C1—O1 angle
(I)c113.7113.5113.7
(II)c112.5112.7112.5
(III)c112.6112.9112.5
(IV)c107.6107.6107.5
C2—C1—O1 angle
(I)c107.1107.5107.3
(II)c109.4109.4109.4
(III)c109.7107.7109.9
(IV)c109.4109.5109.5
C2–C3–C4 bond angle
(I)c110.9111.2111.1
(II)c110.4110.6110.5
(III)c109.7110.4109.9
C1—O1—C7 angleC1–O1–C4' angle
(I)c117.4117.2117.4
(II)c114.1114.1114.2
(III)c118.2117.6118.8
O5—C1—O1—C7 torsion angleO5—C1—O1—C4' torsion angle
(I)c83.092.782.2
(II)c70.670.970.9
(III)c101.186.7103.2
C2—C1—O1—C7 torsion angleC2—C1—O1—C4' torsion angle
(I)c205.5215.0204.5
(II)c192.3192.6192.4
(III)c223.1208.3224.9
Note: (a gg, gt and tg refer to the conformation of the exocyclic hydroxymethyl group in the geometry-optimized structures (I)c–(IV)c (see text).
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds