Download citation
Download citation
link to html
The furocoumarin 1,2-di­hydro-2-(1,2-di­hydroxy­prop-2-yl)-8H-furo­[2,3-h]­benzo­pyran-8-one crystallizes from methanol-water as the monohydrate C14H14O5·H2O. Both chiral centers have the S configuration. Both OH groups and both H atoms of the water mol­ecule form intermolecular hydrogen bonds with O...O distances in the range 2.7686 (18)-2.8717 (18) Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100002705/qb0188sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100002705/qb0188Isup2.hkl
Contains datablock I

CCDC reference: 144696

Comment top

Isolation of furocoumarins from the roots of Angelica species has been reported by Harmala et al. (1992). The structure of the title furocoumarin, (I), was studied in order to determine the stereochemistry of the two chiral centers, C11 and C12. The complete sphere of Cu Kα data proved adequate to determine not only the relative configurations of these centers, but also the absolute configurations in the absence of elements heavier than oxygen. Both centers are found to have the S configuration. The bond lengths and angles of the coumarin rings are similar to those found in other recently reported coumarin structures (Chinnakali et al., 1998; Yip et al., 1995). Both six-membered rings are fairly planar, with maximum deviations from their respective rings of 0.0087 (13) Å for O1 and 0.0077 (12) Å for C10. The furan ring is much less planar, having a flattened envelope conformation with C11 at the flap position, lying 0.0541 (9) Å from the best plane of the five-membered ring. All potential donors of the OH groups and H2O are involved in nearly linear intermolecular O—H···O hydrogen bonds, as detailed in Table 1.

Experimental top

Crystals were kindly provided by Professor O. Sticher (ETH, Zürich), having been crystallized from a methanol–water mixture.

Refinement top

The absolute configuration was determined by refinement of the Flack (1983) parameter, based on 1040 Friedel pairs. The reported configuration yielded x = -0.06 (15), while the inverse configuration yielded x = 1.06 (15). The OH and H2O H atoms were refined isotropically. Other H atoms were placed in calculated positions with C—H distances of 0.93 (Csp2), 0.97 (CH2) and 0.96 Å (CH3), and Uiso = 1.2Ueq of the attached C atom (1.5 for methyl), and thereafter treated as riding. A torsional parameter was refined for the methyl group.

Computing details top

Data collection: CAD-4 Software (Enraf-Nonius, 1994); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1996); program(s) used to solve structure: SHELXS (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997).

1,2-dihydro-2-(1,2-dihydroxyprop-2-yl)-8H-furo[2,3-h]benzopyran-8-one monohydrate top
Crystal data top
C14H14O5·H2OF(000) = 296
Mr = 280.27Dx = 1.403 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54184 Å
a = 7.1304 (4) ÅCell parameters from 25 reflections
b = 6.9381 (4) Åθ = 13.0–44.0°
c = 13.4150 (7) ŵ = 0.93 mm1
β = 90.901 (4)°T = 297 K
V = 663.58 (6) Å3Lath, colorless
Z = 20.58 × 0.18 × 0.05 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
2428 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.013
Graphite monochromatorθmax = 74.8°, θmin = 3.3°
θ/2θ scansh = 88
Absorption correction: ψ scan
(North et al., 1968)
k = 88
Tmin = 0.614, Tmax = 0.954l = 1616
3733 measured reflections3 standard reflections every 120 min
2519 independent reflections intensity decay: 0.8%
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.036 w = 1/[σ2(Fo2) + (0.0682P)2 + 0.0326P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.097(Δ/σ)max = 0.003
S = 1.07Δρmax = 0.25 e Å3
2519 reflectionsΔρmin = 0.21 e Å3
200 parametersExtinction correction: Zachariasen (1963), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.0075 (12)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983)
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.06 (15)
Crystal data top
C14H14O5·H2OV = 663.58 (6) Å3
Mr = 280.27Z = 2
Monoclinic, P21Cu Kα radiation
a = 7.1304 (4) ŵ = 0.93 mm1
b = 6.9381 (4) ÅT = 297 K
c = 13.4150 (7) Å0.58 × 0.18 × 0.05 mm
β = 90.901 (4)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
2428 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.013
Tmin = 0.614, Tmax = 0.9543 standard reflections every 120 min
3733 measured reflections intensity decay: 0.8%
2519 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.097Δρmax = 0.25 e Å3
S = 1.07Δρmin = 0.21 e Å3
2519 reflectionsAbsolute structure: Flack (1983)
200 parametersAbsolute structure parameter: 0.06 (15)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.26752 (14)0.53354 (18)0.48838 (7)0.0456 (3)
C10.27148 (18)0.5208 (2)0.26446 (10)0.0405 (3)
H1A0.34110.40160.27260.049*
H1B0.35580.62900.27480.049*
O1W0.5131 (2)0.0559 (2)0.17145 (10)0.0558 (3)
H2W0.536 (3)0.039 (3)0.2375 (17)0.058 (6)*
H1W0.407 (4)0.002 (4)0.1588 (18)0.078 (8)*
C20.10989 (18)0.5295 (2)0.33353 (10)0.0388 (3)
O20.42801 (19)0.5295 (3)0.62891 (9)0.0695 (4)
O30.02807 (14)0.5136 (2)0.17890 (8)0.0496 (3)
C30.10038 (19)0.5328 (2)0.43561 (10)0.0400 (3)
C40.2727 (2)0.5319 (3)0.59073 (11)0.0512 (4)
O40.19535 (16)0.18773 (16)0.13091 (8)0.0460 (3)
H4O0.075 (3)0.174 (3)0.1231 (15)0.056 (5)*
O50.16511 (16)0.55321 (17)0.06744 (8)0.0465 (3)
H5O0.270 (3)0.541 (4)0.0981 (15)0.058 (5)*
C50.0960 (3)0.5349 (3)0.64153 (12)0.0557 (4)
H50.09540.53590.71080.067*
C60.0675 (2)0.5363 (3)0.59070 (13)0.0536 (4)
H60.17950.53900.62530.064*
C70.0721 (2)0.5336 (3)0.48410 (12)0.0472 (3)
C80.2363 (2)0.5312 (3)0.42468 (14)0.0550 (4)
H80.35230.53280.45540.066*
C90.2300 (2)0.5264 (3)0.32227 (14)0.0547 (4)
H90.33950.52480.28360.066*
C100.0553 (2)0.5240 (2)0.27859 (11)0.0431 (3)
C110.17334 (19)0.5309 (2)0.16101 (10)0.0392 (3)
H110.19820.65710.13120.047*
C120.23284 (19)0.3736 (2)0.08852 (10)0.0375 (3)
C130.1255 (2)0.3843 (2)0.01131 (11)0.0429 (3)
H13A0.15670.27200.05080.052*
H13B0.00800.37980.00140.052*
C140.4433 (2)0.3885 (2)0.07371 (11)0.0432 (3)
H14A0.47870.30880.01860.065*
H14B0.50800.34620.13310.065*
H14C0.47610.52000.06010.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0385 (5)0.0605 (6)0.0377 (5)0.0012 (5)0.0006 (4)0.0023 (5)
C10.0317 (6)0.0531 (8)0.0367 (6)0.0004 (6)0.0002 (5)0.0033 (7)
O1W0.0612 (8)0.0615 (7)0.0448 (6)0.0083 (6)0.0003 (6)0.0021 (5)
C20.0315 (6)0.0404 (6)0.0445 (7)0.0008 (6)0.0003 (6)0.0023 (6)
O20.0564 (7)0.1104 (11)0.0417 (5)0.0026 (8)0.0076 (5)0.0008 (8)
O30.0330 (5)0.0699 (8)0.0457 (5)0.0052 (5)0.0054 (4)0.0047 (5)
C30.0340 (6)0.0408 (7)0.0452 (7)0.0001 (6)0.0006 (6)0.0009 (6)
C40.0542 (9)0.0606 (9)0.0388 (7)0.0000 (8)0.0018 (7)0.0010 (8)
O40.0435 (6)0.0384 (5)0.0559 (7)0.0040 (4)0.0061 (5)0.0090 (5)
O50.0466 (5)0.0486 (6)0.0442 (5)0.0047 (4)0.0007 (5)0.0080 (5)
C50.0630 (9)0.0636 (10)0.0406 (7)0.0009 (9)0.0101 (7)0.0022 (8)
C60.0517 (8)0.0556 (9)0.0540 (8)0.0007 (8)0.0173 (7)0.0007 (8)
C70.0408 (7)0.0473 (7)0.0539 (8)0.0002 (7)0.0108 (7)0.0033 (8)
C80.0344 (7)0.0655 (10)0.0655 (9)0.0001 (7)0.0111 (7)0.0056 (10)
C90.0294 (6)0.0688 (10)0.0657 (9)0.0030 (8)0.0017 (7)0.0080 (10)
C100.0360 (7)0.0457 (7)0.0476 (7)0.0030 (6)0.0016 (6)0.0023 (7)
C110.0345 (6)0.0424 (7)0.0406 (6)0.0005 (6)0.0026 (5)0.0000 (6)
C120.0383 (7)0.0345 (6)0.0396 (6)0.0013 (5)0.0013 (6)0.0023 (5)
C130.0446 (7)0.0443 (7)0.0398 (7)0.0033 (6)0.0036 (6)0.0006 (6)
C140.0383 (7)0.0460 (8)0.0456 (7)0.0006 (6)0.0017 (6)0.0009 (6)
Geometric parameters (Å, º) top
O1—C41.3730 (16)C5—C61.341 (3)
O1—C31.3766 (17)C5—H50.9300
C1—C21.4911 (18)C6—C71.430 (2)
C1—C111.5460 (18)C6—H60.9300
C1—H1A0.9700C7—C81.406 (2)
C1—H1B0.9700C8—C91.376 (3)
O1W—H2W0.91 (2)C8—H80.9300
O1W—H1W0.85 (3)C9—C101.385 (2)
C2—C31.3724 (19)C9—H90.9300
C2—C101.3799 (19)C11—C121.526 (2)
O2—C41.213 (2)C11—H110.9800
O3—C101.3563 (18)C12—C141.5206 (19)
O3—C111.4647 (16)C12—C131.5338 (19)
C3—C71.400 (2)C13—H13A0.9700
C4—C51.442 (3)C13—H13B0.9700
O4—C121.4364 (17)C14—H14A0.9600
O4—H4O0.87 (2)C14—H14B0.9600
O5—C131.4236 (19)C14—H14C0.9600
O5—H5O0.86 (2)
C4—O1—C3121.57 (11)C7—C8—H8119.1
C2—C1—C11102.28 (10)C8—C9—C10117.80 (14)
C2—C1—H1A111.3C8—C9—H9121.1
C11—C1—H1A111.3C10—C9—H9121.1
C2—C1—H1B111.3O3—C10—C2113.21 (12)
C11—C1—H1B111.3O3—C10—C9124.14 (13)
H1A—C1—H1B109.2C2—C10—C9122.65 (14)
H2W—O1W—H1W106 (2)O3—C11—C12109.19 (11)
C3—C2—C10118.57 (12)O3—C11—C1106.28 (11)
C3—C2—C1132.18 (11)C12—C11—C1114.40 (12)
C10—C2—C1109.17 (12)O3—C11—H11108.9
C10—O3—C11108.23 (10)C12—C11—H11108.9
C2—C3—O1117.21 (12)C1—C11—H11108.9
C2—C3—C7121.41 (13)O4—C12—C14107.64 (11)
O1—C3—C7121.38 (13)O4—C12—C11109.54 (11)
O2—C4—O1115.61 (14)C14—C12—C11108.63 (11)
O2—C4—C5126.82 (14)O4—C12—C13107.20 (11)
O1—C4—C5117.57 (13)C14—C12—C13111.26 (11)
C12—O4—H4O103.9 (15)C11—C12—C13112.45 (12)
C13—O5—H5O110.6 (16)O5—C13—C12113.65 (12)
C6—C5—C4121.25 (14)O5—C13—H13A108.8
C6—C5—H5119.4C12—C13—H13A108.8
C4—C5—H5119.4O5—C13—H13B108.8
C5—C6—C7120.93 (14)C12—C13—H13B108.8
C5—C6—H6119.5H13A—C13—H13B107.7
C7—C6—H6119.5C12—C14—H14A109.5
C3—C7—C8117.79 (15)C12—C14—H14B109.5
C3—C7—C6117.28 (14)H14A—C14—H14B109.5
C8—C7—C6124.93 (14)C12—C14—H14C109.5
C9—C8—C7121.77 (14)H14A—C14—H14C109.5
C9—C8—H8119.1H14B—C14—H14C109.5
C11—C1—C2—C3177.66 (16)C11—O3—C10—C25.58 (19)
C11—C1—C2—C105.65 (17)C11—O3—C10—C9175.27 (17)
C10—C2—C3—O1178.47 (13)C3—C2—C10—O3177.56 (13)
C1—C2—C3—O12.0 (2)C1—C2—C10—O30.3 (2)
C10—C2—C3—C71.0 (2)C3—C2—C10—C91.6 (2)
C1—C2—C3—C7177.40 (17)C1—C2—C10—C9178.82 (17)
C4—O1—C3—C2178.34 (14)C8—C9—C10—O3177.95 (17)
C4—O1—C3—C71.1 (2)C8—C9—C10—C21.1 (3)
C3—O1—C4—O2178.82 (17)C10—O3—C11—C12132.77 (13)
C3—O1—C4—C51.7 (2)C10—O3—C11—C18.90 (16)
O2—C4—C5—C6179.6 (2)C2—C1—C11—O38.62 (15)
O1—C4—C5—C61.0 (3)C2—C1—C11—C12129.19 (13)
C4—C5—C6—C70.4 (3)O3—C11—C12—O460.54 (14)
C2—C3—C7—C80.1 (3)C1—C11—C12—O458.39 (15)
O1—C3—C7—C8179.50 (15)O3—C11—C12—C14177.86 (11)
C2—C3—C7—C6179.76 (15)C1—C11—C12—C1458.93 (15)
O1—C3—C7—C60.4 (2)O3—C11—C12—C1358.54 (15)
C5—C6—C7—C31.1 (3)C1—C11—C12—C13177.47 (12)
C5—C6—C7—C8178.77 (19)O4—C12—C13—O5173.63 (12)
C3—C7—C8—C90.6 (3)C14—C12—C13—O556.19 (16)
C6—C7—C8—C9179.25 (18)C11—C12—C13—O565.93 (16)
C7—C8—C9—C100.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O40.85 (3)2.04 (3)2.8717 (18)165 (3)
O1W—H2W···O2i0.91 (2)1.87 (2)2.7686 (18)173 (2)
O4—H4O···O5ii0.87 (2)2.04 (2)2.8519 (15)156 (2)
O5—H5O···O1Wiii0.86 (2)1.97 (2)2.8083 (18)165 (3)
Symmetry codes: (i) x+1, y1/2, z+1; (ii) x, y1/2, z; (iii) x+1, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC14H14O5·H2O
Mr280.27
Crystal system, space groupMonoclinic, P21
Temperature (K)297
a, b, c (Å)7.1304 (4), 6.9381 (4), 13.4150 (7)
β (°) 90.901 (4)
V3)663.58 (6)
Z2
Radiation typeCu Kα
µ (mm1)0.93
Crystal size (mm)0.58 × 0.18 × 0.05
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.614, 0.954
No. of measured, independent and
observed [I > 2σ(I)] reflections
3733, 2519, 2428
Rint0.013
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.097, 1.07
No. of reflections2519
No. of parameters200
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.21
Absolute structureFlack (1983)
Absolute structure parameter0.06 (15)

Computer programs: CAD-4 Software (Enraf-Nonius, 1994), CAD-4 Software, XCAD4 (Harms & Wocadlo, 1996), SHELXS (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···O40.85 (3)2.04 (3)2.8717 (18)165 (3)
O1W—H2W···O2i0.91 (2)1.87 (2)2.7686 (18)173 (2)
O4—H4O···O5ii0.87 (2)2.04 (2)2.8519 (15)156 (2)
O5—H5O···O1Wiii0.86 (2)1.97 (2)2.8083 (18)165 (3)
Symmetry codes: (i) x+1, y1/2, z+1; (ii) x, y1/2, z; (iii) x+1, y+1/2, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds