Download citation
Download citation
link to html
The Sn atom in catena-poly­[tri­phenyl­tin(IV)-[mu]-(3-ureidopropionato-O1:O3)], [Sn(C6H5)3(C4H7N2O3)]n, is five-coordinate and has a trans-C3SnO2 trigonal-bipyrmidal geometry arising from bridging through the O atom of the ureido fragment of an adjacent carboxyl­ate group. Infinite chains propagate helically along the c axis and adjacent chains are linked by N-H...O [N...O 2.851 (4) Å] hydrogen bonds into layers.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100002432/qb0186sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100002432/qb0186Isup2.hkl
Contains datablock I

CCDC reference: 143325

Comment top

Triphenyltin alkanoates generally adopt carboxylate-bridged chain structures whose chains have either a flat or a helical conformation (Ng et al., 1988; Tiekink, 1991, 1994). A strongly Lewis-basic site in the alkanoate group can compete successfully with the carboxyl O atom, and this is exemplified by the diethylphosphonoacetate (Ng & Kumar Das, 1994) and 3-diethylphosphonopropionate (Ng & Kumar Das, 1996). The ureido O atom in the 3-ureidopropionate is probably more basic than the phosphoryl O atoms in 3-diethylphosphonopionate [Sn—O 2.116 (2), Sn O 2.397 (3) Å] as the dative bond [Sn—O = 2.161 (2) Å and Sn O 2.327 (2) Å] is much shorter than than in the 3-diethylphosphopripionate. Bond dimensions involving the Sn atom in the orthorhombic modification, (I), do not differ much from those found in the monoclinic modification (Lo et al., 1991); the most significant difference is the almost linear O—Sn O skeleton [O—Sn O 179.2 (1)°], which contrasts with the bent skeleton [O—Sn O 171.5 (1)°] of the monoclinic modification. The monoclinic (P21/n) modification which propagates in a zigzag manner along the c axis, adopts a similar hydrogen-bonded [N···O 2.882 (4) Å] architecture.

Experimental top

The crystal used for the X-ray measurements was a crystal that was selected from a batch of triphenyltin N,N-3-oxapentamethylenethiocarbamoylthioacetate hydrate (Ng & Hook, 1999) crystals that had been kept in a bottle for several years. Whether the crystal had resulted from the solid-state decomposition of the hydrate or whether 3-ureidopropionic acid was a contaminant in the N,N-3-oxapentamethylenethiocarbamoylacetic acid that reacted with triphenyltin hydroxide to form the 3-ureidopropionate could not be ascertained.

Refinement top

The structure was refined using 6262 reflections (3510 unique and an additional 2752 Friedel pairs); the chirality of the crystal used in the measurements was established by the Flack parameter, which refined to -0.04 (2).

Computing details top

Data collection: CAD-4-PC (Kretschmar, 1994); cell refinement: CELDIM in CAD-4 VAX/PC Fortran System (Enraf-Nonius, 1988); data reduction: XCAD4 (Harms, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); software used to prepare material for publication: SHELXL97.

Catena-poly[triphenyltin-µu-(3-ureidopropionato-O:O')] top
Crystal data top
[Sn(C6H5)3(C4H7N2O3)]Dx = 1.483 Mg m3
Mr = 481.11Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 25 reflections
a = 11.2608 (6) Åθ = 14.5–15.0°
b = 13.0527 (5) ŵ = 1.21 mm1
c = 14.6607 (6) ÅT = 298 K
V = 2154.9 (2) Å3Cube, colorless
Z = 40.43 × 0.43 × 0.43 mm
F(000) = 968
Data collection top
Enraf-Nonius CAD-4
diffractometer
5401 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.015
Graphite monochromatorθmax = 30.0°, θmin = 2.1°
ω scansh = 1515
Absorption correction: semi-empirical (using intensity measurements)
ψ scans [North et al. (1968) in WinGX (Farrugia, 1999)]
k = 018
Tmin = 0.666, Tmax = 0.724l = 020
7014 measured reflections3 standard reflections every 60 min
6262 independent reflections intensity decay: 3%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.077 w = 1/[σ2(Fo2) + (0.0412P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
6262 reflectionsΔρmax = 0.83 e Å3
253 parametersΔρmin = 0.31 e Å3
0 restraintsAbsolute structure: Flack & Schwarzenbach, 1988
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (2)
Crystal data top
[Sn(C6H5)3(C4H7N2O3)]V = 2154.9 (2) Å3
Mr = 481.11Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 11.2608 (6) ŵ = 1.21 mm1
b = 13.0527 (5) ÅT = 298 K
c = 14.6607 (6) Å0.43 × 0.43 × 0.43 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
5401 reflections with I > 2σ(I)
Absorption correction: semi-empirical (using intensity measurements)
ψ scans [North et al. (1968) in WinGX (Farrugia, 1999)]
Rint = 0.015
Tmin = 0.666, Tmax = 0.7243 standard reflections every 60 min
7014 measured reflections intensity decay: 3%
6262 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.077Δρmax = 0.83 e Å3
S = 1.06Δρmin = 0.31 e Å3
6262 reflectionsAbsolute structure: Flack & Schwarzenbach, 1988
253 parametersAbsolute structure parameter: 0.04 (2)
0 restraints
Special details top

Refinement. H atoms: 'Riding, U(H) = 1.5Ueq(C,N).'

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.83471 (2)0.02473 (2)0.78624 (1)0.04325 (6)
O10.6931 (2)0.0605 (2)0.8805 (1)0.050 (1)
O20.7772 (2)0.2111 (2)0.9042 (2)0.065 (1)
O30.5145 (2)0.0133 (2)1.1832 (2)0.057 (1)
N10.4347 (2)0.1189 (2)1.0794 (2)0.054 (1)
N20.3713 (3)0.1241 (3)1.2266 (2)0.074 (1)
C10.7873 (3)0.1392 (3)0.6884 (2)0.049 (1)
C20.8612 (3)0.1734 (3)0.6199 (2)0.062 (1)
C30.8256 (5)0.2489 (4)0.5590 (3)0.081 (1)
C40.7146 (5)0.2901 (4)0.5655 (3)0.082 (1)
C50.6381 (4)0.2579 (4)0.6325 (3)0.074 (1)
C60.6742 (4)0.1830 (3)0.6934 (2)0.060 (1)
C70.9659 (3)0.0260 (3)0.8909 (2)0.046 (1)
C80.9413 (3)0.0186 (3)0.9748 (2)0.056 (1)
C91.0256 (3)0.0186 (4)1.0436 (2)0.067 (1)
C101.1341 (3)0.0263 (4)1.0308 (2)0.064 (1)
C111.1594 (4)0.0707 (3)0.9479 (3)0.065 (1)
C121.0772 (3)0.0703 (3)0.8793 (2)0.056 (1)
C130.7587 (3)0.1232 (3)0.7646 (2)0.049 (1)
C140.7995 (4)0.2081 (3)0.8092 (3)0.070 (1)
C150.7465 (5)0.3034 (4)0.7971 (4)0.086 (1)
C160.6528 (5)0.3131 (4)0.7384 (4)0.090 (2)
C170.6142 (5)0.2331 (5)0.6942 (4)0.101 (2)
C180.6655 (4)0.1361 (4)0.7058 (3)0.079 (1)
C190.7031 (3)0.1458 (3)0.9226 (2)0.048 (1)
C200.6163 (3)0.1648 (3)0.9995 (2)0.060 (1)
C210.5160 (3)0.0895 (3)1.0070 (2)0.051 (1)
C220.4450 (3)0.0845 (3)1.1644 (2)0.046 (1)
H10.37750.16021.06680.082*
H2a0.37100.10041.28130.111*
H2b0.32420.17321.21190.111*
H20.93670.14520.61440.093*
H30.87740.27140.51380.121*
H40.69060.34020.52440.123*
H50.56250.28610.63690.111*
H60.62210.16140.73860.090*
H80.86760.04870.98490.084*
H91.00820.04941.09920.100*
H101.19010.02681.07740.096*
H111.23300.10120.93840.097*
H121.09610.10040.82360.084*
H140.86400.20210.84840.105*
H150.77460.36010.82880.129*
H160.61680.37650.73010.136*
H170.55090.24060.65390.151*
H180.63620.08030.67340.119*
H20a0.65990.16451.05660.090*
H20b0.58290.23280.99190.090*
H21a0.47340.08670.94950.076*
H21b0.54760.02191.01950.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.0412 (1)0.0507 (1)0.0379 (1)0.0014 (1)0.0020 (1)0.0020 (1)
O10.047 (1)0.056 (1)0.047 (1)0.008 (1)0.010 (1)0.007 (1)
O20.065 (2)0.067 (2)0.062 (2)0.019 (1)0.012 (1)0.006 (1)
O30.056 (1)0.068 (2)0.046 (1)0.018 (1)0.008 (1)0.001 (1)
N10.047 (1)0.072 (2)0.044 (1)0.020 (1)0.009 (1)0.012 (1)
N20.093 (2)0.086 (2)0.043 (2)0.034 (2)0.015 (2)0.000 (2)
C10.052 (2)0.054 (2)0.041 (2)0.004 (2)0.000 (1)0.001 (1)
C20.067 (2)0.063 (2)0.057 (2)0.004 (1)0.012 (2)0.005 (2)
C30.106 (3)0.078 (3)0.058 (2)0.002 (3)0.014 (3)0.019 (2)
C40.113 (4)0.071 (3)0.063 (2)0.010 (3)0.020 (3)0.012 (2)
C50.069 (3)0.076 (3)0.077 (3)0.014 (2)0.018 (2)0.007 (2)
C60.052 (2)0.068 (2)0.060 (2)0.004 (2)0.007 (2)0.004 (2)
C70.044 (2)0.052 (2)0.040 (1)0.002 (2)0.001 (1)0.006 (2)
C80.051 (2)0.072 (2)0.045 (2)0.006 (2)0.003 (1)0.005 (2)
C90.074 (2)0.082 (2)0.044 (2)0.005 (2)0.003 (2)0.003 (2)
C100.063 (2)0.072 (2)0.058 (2)0.002 (2)0.017 (2)0.007 (2)
C110.049 (2)0.072 (2)0.074 (2)0.011 (2)0.006 (2)0.003 (2)
C120.048 (2)0.071 (2)0.049 (2)0.010 (2)0.003 (1)0.003 (2)
C130.050 (2)0.055 (2)0.042 (2)0.003 (2)0.005 (1)0.005 (1)
C140.087 (3)0.061 (2)0.061 (2)0.006 (2)0.001 (2)0.004 (2)
C150.118 (4)0.058 (2)0.082 (3)0.011 (3)0.023 (3)0.004 (2)
C160.097 (4)0.082 (3)0.092 (3)0.039 (3)0.034 (3)0.031 (3)
C170.082 (3)0.114 (5)0.106 (4)0.033 (3)0.011 (3)0.028 (3)
C180.073 (2)0.084 (3)0.081 (3)0.012 (2)0.022 (3)0.004 (2)
C190.044 (2)0.057 (2)0.042 (2)0.004 (1)0.003 (1)0.002 (1)
C200.057 (2)0.071 (2)0.052 (2)0.011 (2)0.010 (2)0.012 (2)
C210.047 (2)0.064 (2)0.041 (2)0.002 (2)0.007 (1)0.001 (2)
C220.038 (1)0.057 (2)0.043 (2)0.000 (1)0.001 (1)0.002 (1)
Geometric parameters (Å, º) top
Sn1—C12.138 (3)C16—C171.304 (8)
Sn1—C72.130 (3)C17—C181.403 (7)
Sn1—C132.136 (3)C19—C201.513 (4)
Sn1—O12.161 (2)C20—C211.501 (5)
Sn1—O3i2.327 (2)N1—H10.8600
O1—C191.278 (4)N2—H2a0.8600
O2—C191.223 (4)N2—H2b0.8600
O3—C221.245 (4)C2—H20.9300
N1—C221.329 (4)C3—H30.9300
N1—C211.454 (4)C4—H40.9300
N2—C221.337 (4)C5—H50.9300
C1—C21.378 (5)C6—H60.9300
C1—C61.398 (5)C8—H80.9300
C2—C31.390 (6)C9—H90.9300
C3—C41.364 (7)C10—H100.9300
C4—C51.372 (6)C11—H110.9300
C5—C61.384 (6)C12—H120.9300
C7—C81.389 (4)C14—H140.9300
C7—C121.390 (4)C15—H150.9300
C8—C91.384 (5)C16—H160.9300
C9—C101.368 (6)C17—H170.9300
C10—C111.376 (5)C18—H180.9300
C11—C121.367 (5)C20—H20a0.9700
C13—C141.368 (5)C20—H20b0.9700
C13—C181.368 (5)C21—H21a0.9700
C14—C151.390 (6)C21—H21b0.9700
C15—C161.367 (8)
C1—Sn1—C7130.6 (1)C22—N1—H1118.6
C1—Sn1—C13115.6 (1)C21—N1—H1118.6
C1—Sn1—O195.4 (1)C22—N2—H2a120.0
C1—Sn1—O3i84.0 (1)C22—N2—H2b120.0
C7—Sn1—C13113.1 (1)H2a—N2—H2b120.0
C7—Sn1—O192.9 (1)C1—C2—H2119.2
C7—Sn1—O3i87.9 (1)C3—C2—H2119.2
C13—Sn1—O189.7 (1)C4—C3—H3120.0
C13—Sn1—O3i90.2 (1)C2—C3—H3120.0
O1—Sn1—O3i179.2 (1)C3—C4—H4119.8
C19—O1—Sn1115.6 (2)C5—C4—H4119.8
C22—O3—Sn1ii139.6 (2)C4—C5—H5120.2
C22—N1—C21122.7 (3)C6—C5—H5120.2
C2—C1—C6117.1 (3)C5—C6—H6119.2
C2—C1—Sn1124.3 (3)C1—C6—H6119.2
C6—C1—Sn1118.6 (2)C9—C8—H8119.7
C1—C2—C3121.6 (4)C7—C8—H8119.7
C4—C3—C2119.9 (4)C10—C9—H9119.6
C3—C4—C5120.3 (4)C8—C9—H9119.6
C4—C5—C6119.5 (4)C9—C10—H10120.5
C5—C6—C1121.5 (4)C11—C10—H10120.5
C8—C7—C12117.5 (3)C12—C11—H11119.7
C8—C7—Sn1119.8 (2)C10—C11—H11119.7
C12—C7—Sn1122.7 (2)C11—C12—H12119.3
C9—C8—C7120.6 (3)C7—C12—H12119.3
C10—C9—C8120.8 (4)C13—C14—H14119.3
C9—C10—C11119.1 (3)C15—C14—H14119.3
C12—C11—C10120.6 (4)C16—C15—H15120.2
C11—C12—C7121.5 (3)C14—C15—H15120.2
C14—C13—C18117.3 (4)C17—C16—H16120.1
C14—C13—Sn1121.8 (3)C15—C16—H16120.1
C18—C13—Sn1120.9 (3)C16—C17—H17119.2
C13—C14—C15121.3 (4)C18—C17—H17119.2
C16—C15—C14119.7 (5)C13—C18—H18119.9
C17—C16—C15119.8 (5)C17—C18—H18119.9
C16—C17—C18121.6 (5)C21—C20—H20a108.4
C13—C18—C17120.3 (5)C19—C20—H20a108.4
O2—C19—O1124.2 (3)C21—C20—H20b108.4
O2—C19—C20119.3 (3)C19—C20—H20b108.4
O1—C19—C20116.5 (3)H20a—C20—H20b107.4
C21—C20—C19115.6 (3)N1—C21—H21a109.5
N1—C21—C20110.8 (3)C20—C21—H21a109.5
O3—C22—N1120.9 (3)N1—C21—H21b109.5
O3—C22—N2121.8 (3)C20—C21—H21b109.5
N1—C22—N2117.0 (3)H21a—C21—H21b108.1
Symmetry codes: (i) x+3/2, y, z1/2; (ii) x+3/2, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2iii0.862.072.851 (4)151
N2—H2b···O2iii0.862.343.070 (4)144
Symmetry code: (iii) x1/2, y+1/2, z+2.

Experimental details

Crystal data
Chemical formula[Sn(C6H5)3(C4H7N2O3)]
Mr481.11
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)11.2608 (6), 13.0527 (5), 14.6607 (6)
V3)2154.9 (2)
Z4
Radiation typeMo Kα
µ (mm1)1.21
Crystal size (mm)0.43 × 0.43 × 0.43
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correctionSemi-empirical (using intensity measurements)
ψ scans [North et al. (1968) in WinGX (Farrugia, 1999)]
Tmin, Tmax0.666, 0.724
No. of measured, independent and
observed [I > 2σ(I)] reflections
7014, 6262, 5401
Rint0.015
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.077, 1.06
No. of reflections6262
No. of parameters253
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.83, 0.31
Absolute structureFlack & Schwarzenbach, 1988
Absolute structure parameter0.04 (2)

Computer programs: CAD-4-PC (Kretschmar, 1994), CELDIM in CAD-4 VAX/PC Fortran System (Enraf-Nonius, 1988), XCAD4 (Harms, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXL97.

 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds