Download citation
Download citation
link to html
The title compound, [Nd(bipy-N,N')2(NO3-O,O')3], is found to be isomorphous with the La and Lu analogues having three bidentate nitrate and two bipyridyl ligands giving a ten co-ordinate environment.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270199016157/qb0157sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270199016157/qb0157Isup2.hkl
Contains datablock I

CCDC reference: 140854

Comment top

Compounds Ln(bipy)2(NO3)3 (Ln = La—Lu; bipy = 2,2'-bipyridyl) have been known for many years (Lobanov & Smirnova, 1963; Sinha, 1964; Hart & Laming, 1965). The structures of the La and Lu compounds have more recently been confirmed by X-ray diffraction studies (Al-Kharaghouli & Wood, 1972; Kravchenko, 1972; Kepert et al., 1996). Nd(bipy)2(NO3)3, (I), is isomorphous with those structures, with three bidentate nitrate and two bipyridyl ligands giving a ten-coordinate environment about the Nd atom. The coordination polyhedron has been described as a bicapped dodecahedron (Al-Kharaghouli & Wood, 1972) or sphenocorona (Kepert et al., 1996). The average Nd—N bond length of 2.596 Å (Table 1) is 0.07 Å shorter than in the La analogue closely corresponding to the 0.05 Å expected on ionic radius grounds (Shannon, 1976). Similarly the average Nd—O bond length of 2.549 Å is 0.05 Å less than that found for the La analogue and is similar to the average value of 2.587 Å found in the 12-coordinate Nd(NO3)3(18-crown-6) (Bombieri et al., 1980). The O5 atom of the NO3 group on the twofold axis exhibits very high anisotropic displacement parameters perpendicular to that axis. This may be due to non-planarity of the NO3 group and consequent disorder of the O5 across the axis which could not be resolved in the presence of the Nd atom.

It has generally been believed that bipy and phen (1,10-phenanthroline) will not form complexes beyond a 2:1 stoichiometry with Ln(NO3)3 (Forsberg, 1973; Fréchette, 1992), however, the complexes Ln(bipy)3(NO3)3 (Ln = Ce, Pr, Nd, Yb) have been reported (Dong et al., 1992) from the reaction of hydrated lanthanide nitrates with 2,2'-bipyridyl (3 moles). A study of the 1:3 N d:bipy complex was undertaken to clarify this point. Unfortunately all crystals obtained from this reaction were of poor quality with the best data giving R1 = 0.096 (wR2 = 1/3, all data) but the structure was Nd(bipy)2(NO3)3.(bipy). There are no unusual non-bonded contacts between the non co-ordinated bipy molecules and the Nd(bipy)2(NO3)3 molecules.

Experimental top

The title complex (I) was prepared by methods similar to those in the literature (Hart & Laming, 1965). Hot solutions of Nd(NO3)3.6H2O (0.219 g, 0.5 mmol) in ethanol (15 ml) and bipy (0.156 g, 1 mmol) in ethanol (15 ml) were mixed. Violet crystals formed overnight.

Computing details top

Data collection: XSCANS (Fait, 1991); cell refinement: XSCANS (Fait, 1991); data reduction: XSCANS (Fait, 1991); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXL97 (Sheldrick, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

(I) top
Crystal data top
[Nd(NO3)3(C10H8N2)2]F(000) = 1268
Mr = 642.64Dx = 1.852 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 47 reflections
a = 16.935 (3) Åθ = 5.4–30.0°
b = 9.0806 (7) ŵ = 2.32 mm1
c = 14.987 (3) ÅT = 190 K
V = 2304.8 (6) Å3Block, violet
Z = 40.34 × 0.28 × 0.19 mm
Data collection top
Siemens P4
diffractometer
1867 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.025
Graphite monochromatorθmax = 27.0°, θmin = 2.6°
ω scansh = 121
Absorption correction: ψ scan
(North et al., 1968)
k = 111
Tmin = 0.506, Tmax = 0.667l = 119
3149 measured reflections3 standard reflections every 100 reflections
2499 independent reflections intensity decay: <1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H-atom parameters constrained
S = 2.23 w = 1/[σ2(Fo2) + (0.0268P)2 + 3.6161P]
where P = (Fo2 + 2Fc2)/3
2499 reflections(Δ/σ)max = 0.010
169 parametersΔρmax = 1.66 e Å3
0 restraintsΔρmin = 2.21 e Å3
Crystal data top
[Nd(NO3)3(C10H8N2)2]V = 2304.8 (6) Å3
Mr = 642.64Z = 4
Orthorhombic, PbcnMo Kα radiation
a = 16.935 (3) ŵ = 2.32 mm1
b = 9.0806 (7) ÅT = 190 K
c = 14.987 (3) Å0.34 × 0.28 × 0.19 mm
Data collection top
Siemens P4
diffractometer
1867 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.025
Tmin = 0.506, Tmax = 0.6673 standard reflections every 100 reflections
3149 measured reflections intensity decay: <1%
2499 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.129H-atom parameters constrained
S = 2.23Δρmax = 1.66 e Å3
2499 reflectionsΔρmin = 2.21 e Å3
169 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Nd10.00000.09597 (5)0.75000.01788 (16)
N10.0861 (3)0.1858 (7)0.9146 (4)0.0342 (14)
O10.0187 (3)0.1242 (6)0.9199 (4)0.0350 (12)
O20.1171 (2)0.1955 (6)0.8385 (3)0.0332 (11)
O30.1188 (4)0.2358 (9)0.9817 (4)0.071 (2)
N20.00000.4203 (10)0.75000.078 (5)
O40.0372 (3)0.3470 (6)0.8087 (5)0.0464 (14)
O50.00000.5529 (10)0.75000.133 (7)
N30.0720 (3)0.1317 (6)0.6847 (4)0.0288 (13)
N40.1309 (3)0.0139 (6)0.8264 (4)0.0268 (12)
C10.0379 (4)0.2108 (8)0.6210 (5)0.0341 (15)
H1A0.01500.18790.60480.041*
C20.0755 (5)0.3254 (8)0.5766 (5)0.0401 (18)
H2A0.04940.37890.53080.048*
C30.1519 (5)0.3593 (10)0.6011 (6)0.047 (2)
H3A0.17920.43820.57310.057*
C40.1882 (4)0.2774 (9)0.6666 (6)0.0403 (18)
H4A0.24110.29830.68350.048*
C50.1475 (4)0.1650 (7)0.7075 (5)0.0262 (13)
C60.1811 (4)0.0732 (7)0.7820 (5)0.0260 (14)
C70.2621 (4)0.0768 (8)0.8016 (6)0.0372 (18)
H7A0.29700.13670.76770.045*
C80.2902 (4)0.0085 (9)0.8709 (6)0.0407 (18)
H8A0.34480.00850.88550.049*
C90.2383 (4)0.0928 (8)0.9183 (6)0.0386 (18)
H9A0.25640.15110.96680.046*
C100.1593 (4)0.0929 (8)0.8953 (6)0.0353 (17)
H10A0.12370.15090.92930.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Nd10.0110 (2)0.0170 (2)0.0257 (3)0.0000.00157 (18)0.000
N10.022 (3)0.034 (3)0.046 (4)0.009 (2)0.000 (3)0.003 (3)
O10.021 (2)0.036 (3)0.048 (3)0.0103 (19)0.005 (2)0.008 (2)
O20.017 (2)0.040 (3)0.042 (3)0.008 (2)0.001 (2)0.002 (2)
O30.048 (4)0.104 (6)0.060 (4)0.036 (4)0.009 (3)0.025 (4)
N20.125 (12)0.006 (4)0.102 (11)0.0000.073 (10)0.000
O40.042 (3)0.030 (3)0.067 (4)0.015 (3)0.005 (3)0.015 (3)
O50.236 (19)0.007 (4)0.154 (14)0.0000.081 (13)0.000
N30.019 (2)0.018 (3)0.049 (3)0.001 (2)0.001 (2)0.002 (3)
N40.013 (2)0.025 (3)0.042 (3)0.004 (2)0.005 (2)0.001 (3)
C10.028 (3)0.029 (3)0.046 (4)0.002 (3)0.003 (3)0.003 (3)
C20.048 (4)0.033 (4)0.039 (4)0.002 (3)0.006 (4)0.008 (3)
C30.049 (5)0.038 (4)0.055 (5)0.015 (4)0.011 (4)0.014 (4)
C40.031 (3)0.040 (4)0.050 (5)0.013 (3)0.002 (3)0.004 (4)
C50.024 (3)0.022 (3)0.032 (4)0.001 (3)0.005 (3)0.002 (3)
C60.020 (3)0.027 (3)0.031 (3)0.004 (3)0.004 (3)0.007 (3)
C70.019 (3)0.036 (4)0.056 (5)0.009 (3)0.006 (3)0.001 (4)
C80.019 (3)0.045 (4)0.058 (5)0.001 (3)0.012 (3)0.010 (4)
C90.028 (4)0.037 (4)0.050 (4)0.002 (3)0.015 (3)0.000 (4)
C100.022 (3)0.033 (4)0.052 (5)0.003 (3)0.011 (3)0.004 (3)
Geometric parameters (Å, º) top
Nd1—O42.524 (5)N2—O41.271 (8)
Nd1—O4i2.524 (5)N2—O4i1.271 (8)
Nd1—O22.551 (5)N3—C11.327 (9)
Nd1—O2i2.551 (5)N3—C51.358 (8)
Nd1—O12.578 (6)N4—C61.339 (9)
Nd1—O1i2.578 (6)N4—C101.346 (9)
Nd1—N32.592 (6)C1—C21.389 (10)
Nd1—N3i2.592 (5)C2—C31.380 (11)
Nd1—N42.604 (5)C3—C41.377 (12)
Nd1—N4i2.604 (5)C4—C51.376 (10)
Nd1—N22.945 (9)C5—C61.504 (10)
Nd1—N12.979 (6)C6—C71.403 (9)
N1—O31.235 (8)C7—C81.380 (11)
N1—O21.259 (8)C8—C91.365 (11)
N1—O11.272 (7)C9—C101.382 (9)
N2—O51.203 (12)
O4—Nd1—O4i50.8 (3)N3—Nd1—N2142.91 (12)
O4—Nd1—O272.12 (18)N3i—Nd1—N2142.91 (13)
O4i—Nd1—O270.57 (18)N4—Nd1—N2106.64 (13)
O4—Nd1—O2i70.57 (18)N4i—Nd1—N2106.64 (13)
O4i—Nd1—O2i72.12 (17)O4—Nd1—N165.54 (18)
O2—Nd1—O2i138.5 (2)O4i—Nd1—N185.37 (19)
O4—Nd1—O166.20 (19)O2—Nd1—N124.81 (15)
O4i—Nd1—O1102.93 (19)O2i—Nd1—N1135.54 (16)
O2—Nd1—O149.90 (15)O1—Nd1—N125.16 (15)
O2i—Nd1—O1125.01 (15)O1i—Nd1—N1148.27 (16)
O4—Nd1—O1i102.93 (19)N3—Nd1—N1139.57 (18)
O4i—Nd1—O1i66.20 (19)N3i—Nd1—N171.08 (18)
O2—Nd1—O1i125.01 (15)N4—Nd1—N197.51 (17)
O2i—Nd1—O1i49.90 (15)N4i—Nd1—N191.50 (17)
O1—Nd1—O1i168.6 (2)N2—Nd1—N174.10 (12)
O4—Nd1—N3137.29 (17)O3—N1—O2121.6 (6)
O4i—Nd1—N3134.9 (2)O3—N1—O1120.9 (7)
O2—Nd1—N3147.60 (17)O2—N1—O1117.5 (6)
O2i—Nd1—N373.77 (17)O3—N1—Nd1174.1 (6)
O1—Nd1—N3120.67 (18)O2—N1—Nd158.2 (3)
O1i—Nd1—N369.43 (18)O1—N1—Nd159.5 (4)
O4—Nd1—N3i134.9 (2)N1—O1—Nd195.3 (4)
O4i—Nd1—N3i137.29 (17)N1—O2—Nd197.0 (3)
O2—Nd1—N3i73.77 (17)O5—N2—O4121.6 (4)
O2i—Nd1—N3i147.60 (17)O5—N2—O4i121.6 (4)
O1—Nd1—N3i69.43 (18)O4—N2—O4i116.8 (8)
O1i—Nd1—N3i120.67 (18)O5—N2—Nd1180.000 (3)
N3—Nd1—N3i74.2 (2)O4—N2—Nd158.4 (4)
O4—Nd1—N483.84 (19)O4i—N2—Nd158.4 (4)
O4i—Nd1—N4128.66 (19)N2—O4—Nd196.2 (5)
O2—Nd1—N4122.32 (17)C1—N3—C5118.1 (6)
O2i—Nd1—N470.62 (17)C1—N3—Nd1119.9 (4)
O1—Nd1—N472.48 (16)C5—N3—Nd1121.7 (4)
O1i—Nd1—N4110.98 (16)C6—N4—C10118.0 (5)
N3—Nd1—N462.44 (18)C6—N4—Nd1119.4 (4)
N3i—Nd1—N490.33 (18)C10—N4—Nd1119.3 (4)
O4—Nd1—N4i128.66 (19)N3—C1—C2123.4 (7)
O4i—Nd1—N4i83.84 (19)C3—C2—C1118.0 (7)
O2—Nd1—N4i70.62 (17)C2—C3—C4119.2 (7)
O2i—Nd1—N4i122.32 (17)C5—C4—C3119.6 (7)
O1—Nd1—N4i110.98 (16)N3—C5—C4121.7 (7)
O1i—Nd1—N4i72.48 (16)N3—C5—C6114.8 (6)
N3—Nd1—N4i90.33 (17)C4—C5—C6123.5 (6)
N3i—Nd1—N4i62.44 (18)N4—C6—C7122.1 (7)
N4—Nd1—N4i146.7 (3)N4—C6—C5117.1 (5)
O4—Nd1—N225.40 (16)C7—C6—C5120.8 (6)
O4i—Nd1—N225.40 (16)C8—C7—C6118.8 (7)
O2—Nd1—N269.26 (12)C9—C8—C7119.0 (6)
O2i—Nd1—N269.26 (12)C8—C9—C10119.6 (7)
O1—Nd1—N284.29 (12)N4—C10—C9122.5 (7)
O1i—Nd1—N284.29 (12)
Symmetry code: (i) x, y, z+3/2.

Experimental details

Crystal data
Chemical formula[Nd(NO3)3(C10H8N2)2]
Mr642.64
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)190
a, b, c (Å)16.935 (3), 9.0806 (7), 14.987 (3)
V3)2304.8 (6)
Z4
Radiation typeMo Kα
µ (mm1)2.32
Crystal size (mm)0.34 × 0.28 × 0.19
Data collection
DiffractometerSiemens P4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.506, 0.667
No. of measured, independent and
observed [I > 2σ(I)] reflections
3149, 2499, 1867
Rint0.025
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.129, 2.23
No. of reflections2499
No. of parameters169
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.66, 2.21

Computer programs: XSCANS (Fait, 1991), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997).

 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds