Download citation
Download citation
link to html
In the title compound, [Pd(CH3)2(C27H26P2)]·0.5C7H8, the Pd atom is at the centre of an approximately square-planar arrangement of two P atoms and two methyl groups. The P-Pd-P angle [93.19 (3)°] is significantly larger than that in the corresponding dichloride complex [Pd(dppp)Cl2]. The toluene mol­ecule is disordered across an inversion centre.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100000391/qb0151sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100000391/qb0151Isup2.hkl
Contains datablock I

CCDC reference: 142929

Comment top

The solvated dicationic palladium(II) complex [Pd(dppp)(NCCH3)2](BF4)2, bis(acetonitrile)[1,3-bis(diphenylphosphino)propane]palladium(II) bis(tetrafluoroborate), has been successfully used as catalyst precursor in the perfectly alternating copolymerization of alkenes with carbon monoxide (Abu-Surrah & Rieger, 1999). The two alternating propagation steps in this reaction are migratory insertion of carbon monoxide in the Pd–alkyl bond and subsequent migratory insertion of olefin in the resulting Pd–acyl bond. Since alkyl–palladium compounds with bidentate phosphines are of low stability, thermodynamically and kinetically, few of them have been structurally characterized (Wisner et al., 1986). Here we report on the X-ray structure of the dimethylpalladium complex [Pd(dppp)(CH3)2]·0.5C7H8, (I),

The bond lengths of the two Pd—CH3 distances [2.084 (2) and 2.087 (3) Å] are typical for Pd—C bonds (Crociani et al., 1980) and in close agreement with the values found in [Pd(dmpe)(CH3)2] [2.087 (4) Å; de Graaf et al., 1989; dmpe is 1,2-bis(dimethylphosphino)ethane], but they are significantly longer than those in [Pd(tmeda)(CH3)2] [2.026 (3) and 2.029 (3) Å; tmeda is N,N,N,,N,-tetramethylethylendiamine; de Graaf et al., 1989]; this is an indication to the larger trans influence of the diphosphine ligand (Abu-Surrah et al., 1999).

The lengths of the Pd—P bonds in the title compound (I) are 2.2999 (7) and 2.3038 (7) Å, which are longer than in the monomeric compound [Pd(dppp)Cl2] [Steffen & Palenik, 1976; 2.244 (2) and 2.249 (2) Å]. Phosphines trans to alkyl groups in square-planar complexes tend to have longer M—P bond distances because alkyl groups are believed to weaken the trans bond by inductive effect (Appleton et al., 1973; Saleem & Hodali, 1991).

The P—Pd—P angle of 93.19 (3)° in the dimethyl complex is significantly larger than that reported for the corresponding dichloride complex [89.32 (3)°], despite that both square-planar complexes contain the same diphosphine ligand. This indicate that the P—Pd—P angle is dependent not only on the ligand (Steffen & Palenik, 1976), but also on the influence of the alkyl groups occupying the two other coordinating positions. Upon formation of the Pd—C bond, believed to be the intermediate in catalytic processes forming C—C bonds, the steric constrains imposed by chelation of the dppp ligand decreases, thus leading to greater flexibility in the catalytically active palladium–alkyl species.

Experimental top

The title compound (I) was prepared following a previously published procedure (Saleem & Hodali, 1990). A suspension of the dichloride complex [Pd(dppp)Cl2] (2.0 g, 3.39 mmol) in dry diethyl ether (50 ml) was cooled to 273 K. Methyl lithium solution (1.6 M, 17 mmol) was added dropwise within 30 min. The mixture was then allowed to warm up to room temperature, and treated at 273 K with saturated aqueous NH4Cl (50 ml). The ether layer was separated and dried over MgSO4. The filtrate was evaporated to dryness to give a white microcrystalline solid. Recrystallization from toluene yielded colourless crystals suitable for X-ray analysis (total yield 1.50 g, 81%).

Refinement top

The measured intensities were corrected for Lorentz and polarization effects. The structure was solved by direct methods using XMY program package (Debaerdemaeker, 1993). All non-H atoms were refined anisotropically. H atoms were positioned geometrically and their displacement factors were set at 1.2 times the isotropic factor for the host atom.

Computing details top

Data collection: IDPS (Stoe & Cie, 1997)); cell refinement: IDPS; data reduction: IDPS; program(s) used to solve structure: XMY93 (Debaermaeker, 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Dimethyl[1,3-bis(diphenylphosphino)propane]palladium(II) hemitoluene top
Crystal data top
[Pd(CH3)2(C27H26P2)]·0.5C7H8F(000) = 1228
Mr = 594.95Dx = 1.329 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 12.260 (3) ÅCell parameters from 4521 reflections
b = 15.025 (2) Åθ = 2.2–24.1°
c = 16.347 (3) ŵ = 0.75 mm1
β = 99.00 (2)°T = 293 K
V = 2974.2 (10) Å3Prism, colourless
Z = 40.45 × 0.40 × 0.35 mm
Data collection top
Stoe-IPDS image-plate
diffractometer
3825 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.034
Graphite monochromatorθmax = 24.1°, θmin = 2.2°
Detector resolution: 0.15 pixels mm-1h = 1314
rotation scansk = 1616
22466 measured reflectionsl = 1818
4521 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.062H-atom parameters constrained
S = 1.04Calculated w = 1/[σ2(Fo2) + (0.0393P)2 + 0.220P]
where P = (Fo2 + 2Fc2)/3
4521 reflections(Δ/σ)max = 0.002
355 parametersΔρmax = 0.28 e Å3
55 restraintsΔρmin = 0.20 e Å3
Crystal data top
[Pd(CH3)2(C27H26P2)]·0.5C7H8V = 2974.2 (10) Å3
Mr = 594.95Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.260 (3) ŵ = 0.75 mm1
b = 15.025 (2) ÅT = 293 K
c = 16.347 (3) Å0.45 × 0.40 × 0.35 mm
β = 99.00 (2)°
Data collection top
Stoe-IPDS image-plate
diffractometer
3825 reflections with I > 2σ(I)
22466 measured reflectionsRint = 0.034
4521 independent reflectionsθmax = 24.1°
Refinement top
R[F2 > 2σ(F2)] = 0.02355 restraints
wR(F2) = 0.062H-atom parameters constrained
S = 1.04Δρmax = 0.28 e Å3
4521 reflectionsΔρmin = 0.20 e Å3
355 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pd10.112737 (13)0.626486 (12)0.218962 (9)0.04119 (7)
P10.04181 (5)0.56046 (5)0.32618 (3)0.04852 (16)
P20.24781 (5)0.51983 (4)0.21929 (3)0.04253 (14)
C10.1380 (2)0.4962 (2)0.40105 (14)0.0627 (7)
H1A0.19190.53750.43260.075*
H1B0.09610.46730.44090.075*
C20.2003 (2)0.42523 (19)0.36082 (14)0.0582 (7)
H2A0.14700.39200.32030.070*
H2B0.23300.38260.40400.070*
C30.29190 (19)0.46105 (18)0.31673 (14)0.0524 (6)
H3A0.33920.41050.30560.063*
H3B0.33820.50200.35500.063*
C40.38276 (19)0.5544 (2)0.19665 (15)0.0575 (7)
C50.4223 (3)0.6360 (2)0.22433 (19)0.0802 (9)
H50.37680.67470.25020.096*
C60.5282 (3)0.6629 (4)0.2151 (3)0.1131 (15)
H60.55490.71950.23520.136*
C70.5926 (3)0.6092 (5)0.1780 (3)0.1263 (19)
H70.66500.62770.17170.152*
C80.5551 (3)0.5289 (4)0.1493 (3)0.1313 (18)
H80.60110.49140.12270.158*
C90.4490 (3)0.5002 (3)0.1585 (2)0.0919 (11)
H90.42320.44340.13840.110*
C100.2057 (2)0.43200 (18)0.14431 (14)0.0510 (6)
C110.2171 (3)0.3432 (2)0.16084 (18)0.0748 (8)
H110.25000.32430.21450.090*
C120.1812 (4)0.2797 (3)0.1003 (2)0.0979 (11)
H120.18780.21810.11330.117*
C130.1377 (4)0.3056 (3)0.0240 (2)0.1121 (14)
H130.11580.26230.01770.135*
C140.1246 (5)0.3925 (3)0.0059 (2)0.1315 (18)
H140.09340.41050.04850.158*
C150.1567 (3)0.4562 (2)0.06664 (18)0.0946 (12)
H150.14450.51740.05390.113*
C160.0167 (2)0.63715 (19)0.39387 (15)0.0617 (7)
C170.1268 (3)0.6459 (2)0.3978 (2)0.0794 (9)
H170.17910.60800.36590.095*
C180.1622 (4)0.7116 (3)0.4495 (3)0.0995 (12)
H180.23840.71690.45340.119*
C190.0891 (5)0.7665 (3)0.4932 (2)0.1083 (14)
H190.11400.81080.52730.130*
C200.0181 (5)0.7596 (3)0.4891 (3)0.1299 (17)
H200.06940.79920.51980.156*
C210.0542 (3)0.6949 (3)0.4403 (2)0.1053 (13)
H210.13110.69000.43870.126*
C220.0661 (2)0.47956 (18)0.29188 (16)0.0570 (6)
C230.0948 (2)0.4642 (2)0.20833 (18)0.0760 (9)
H230.05930.49670.17020.091*
C240.1752 (3)0.4015 (3)0.1787 (3)0.0984 (11)
H240.19390.39130.12090.118*
C250.2265 (3)0.3553 (3)0.2329 (3)0.1001 (12)
H250.28250.31350.21290.120*
C260.1985 (3)0.3682 (2)0.3149 (3)0.0963 (12)
H260.23430.33470.35230.116*
C270.1184 (3)0.4293 (2)0.3456 (2)0.0806 (9)
H270.09900.43710.40370.097*
C280.1634 (2)0.69323 (19)0.11963 (15)0.0620 (7)
H28A0.23160.66630.10700.074*
H28B0.17670.75600.13410.074*
H28C0.10570.68880.07100.074*
C290.0101 (3)0.7237 (2)0.21083 (17)0.0710 (8)
H29A0.08250.69500.20740.085*
H29B0.00850.75990.16120.085*
H29C0.00290.76180.26010.085*
C310.0360 (5)0.0013 (6)0.0321 (3)0.088 (2)0.50
C320.0007 (9)0.0733 (6)0.0073 (6)0.073 (4)0.50
H32A0.01640.13260.00850.088*0.50
C330.0666 (6)0.0620 (5)0.0673 (5)0.097 (2)0.50
H33A0.09070.11170.09680.116*0.50
C340.1002 (14)0.0228 (7)0.0852 (10)0.136 (7)0.50
H34A0.14990.03300.12410.163*0.50
C350.0558 (7)0.0957 (5)0.0509 (7)0.119 (3)0.50
H35A0.06870.15540.06800.143*0.50
C360.0100 (14)0.0839 (7)0.0093 (10)0.122 (9)0.50
H36A0.03340.13320.03960.146*0.50
C370.0959 (12)0.0141 (9)0.1035 (8)0.133 (8)0.50
H37A0.11230.04570.11810.159*0.50
H37B0.05370.04310.15040.159*0.50
H37C0.16350.04610.08690.159*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.04594 (11)0.03874 (13)0.03946 (10)0.00157 (7)0.00850 (7)0.00317 (7)
P10.0540 (4)0.0504 (4)0.0442 (3)0.0069 (3)0.0171 (3)0.0049 (3)
P20.0406 (3)0.0453 (4)0.0421 (3)0.0007 (2)0.0077 (2)0.0048 (2)
C10.0715 (17)0.078 (2)0.0401 (12)0.0157 (14)0.0143 (11)0.0148 (12)
C20.0648 (16)0.0618 (19)0.0498 (12)0.0147 (13)0.0148 (11)0.0192 (11)
C30.0498 (13)0.0577 (18)0.0476 (12)0.0079 (11)0.0016 (10)0.0082 (11)
C40.0441 (13)0.068 (2)0.0614 (14)0.0003 (13)0.0116 (11)0.0162 (12)
C50.0681 (18)0.095 (3)0.0768 (18)0.0296 (17)0.0093 (15)0.0101 (16)
C60.083 (3)0.143 (4)0.109 (3)0.055 (3)0.001 (2)0.037 (3)
C70.059 (2)0.178 (5)0.143 (4)0.017 (3)0.017 (2)0.078 (4)
C80.072 (3)0.157 (5)0.180 (4)0.031 (3)0.065 (3)0.052 (4)
C90.0637 (19)0.093 (3)0.128 (3)0.0117 (17)0.0421 (19)0.018 (2)
C100.0521 (14)0.0494 (18)0.0509 (12)0.0035 (11)0.0061 (10)0.0010 (10)
C110.106 (2)0.054 (2)0.0647 (16)0.0010 (16)0.0146 (16)0.0015 (13)
C120.149 (4)0.054 (2)0.093 (2)0.010 (2)0.026 (2)0.0113 (17)
C130.159 (4)0.082 (3)0.088 (3)0.019 (3)0.001 (2)0.028 (2)
C140.211 (5)0.091 (4)0.072 (2)0.001 (3)0.043 (3)0.007 (2)
C150.145 (3)0.060 (2)0.0649 (17)0.009 (2)0.0245 (19)0.0052 (14)
C160.0776 (18)0.061 (2)0.0527 (13)0.0111 (14)0.0303 (13)0.0058 (12)
C170.082 (2)0.062 (2)0.105 (2)0.0143 (16)0.0464 (18)0.0121 (16)
C180.110 (3)0.082 (3)0.124 (3)0.031 (2)0.075 (3)0.026 (2)
C190.159 (4)0.092 (3)0.089 (2)0.026 (3)0.064 (3)0.005 (2)
C200.148 (4)0.138 (4)0.107 (3)0.017 (3)0.028 (3)0.062 (3)
C210.103 (3)0.120 (4)0.096 (2)0.010 (2)0.025 (2)0.049 (2)
C220.0540 (14)0.0492 (18)0.0722 (16)0.0052 (12)0.0233 (12)0.0068 (12)
C230.0651 (18)0.084 (2)0.0760 (18)0.0141 (16)0.0028 (14)0.0140 (15)
C240.081 (2)0.099 (3)0.108 (3)0.024 (2)0.009 (2)0.007 (2)
C250.065 (2)0.080 (3)0.157 (4)0.0120 (17)0.022 (2)0.001 (2)
C260.097 (3)0.056 (2)0.153 (4)0.0095 (18)0.069 (3)0.007 (2)
C270.100 (2)0.058 (2)0.095 (2)0.0030 (18)0.0515 (19)0.0064 (16)
C280.0747 (17)0.0520 (18)0.0625 (15)0.0018 (13)0.0200 (13)0.0143 (12)
C290.0845 (19)0.066 (2)0.0659 (16)0.0284 (16)0.0208 (14)0.0102 (13)
C310.058 (4)0.134 (8)0.062 (4)0.024 (5)0.019 (3)0.004 (5)
C320.063 (7)0.041 (6)0.104 (10)0.007 (5)0.023 (7)0.001 (6)
C330.079 (5)0.098 (7)0.109 (6)0.014 (5)0.001 (4)0.027 (5)
C340.109 (11)0.22 (2)0.071 (6)0.055 (11)0.005 (6)0.019 (8)
C350.104 (7)0.076 (7)0.159 (9)0.020 (6)0.037 (7)0.023 (7)
C360.113 (14)0.109 (15)0.134 (17)0.034 (11)0.015 (12)0.028 (12)
C370.063 (7)0.21 (2)0.125 (12)0.040 (10)0.002 (7)0.012 (9)
Geometric parameters (Å, º) top
Pd1—C282.084 (2)C13—C141.344 (6)
Pd1—C292.087 (3)C14—C151.390 (5)
Pd1—P12.2999 (7)C16—C171.367 (4)
Pd1—P22.3038 (7)C16—C211.371 (5)
P1—C221.820 (3)C17—C181.411 (5)
P1—C161.821 (3)C18—C191.339 (6)
P1—C11.835 (2)C19—C201.330 (7)
P2—C101.820 (3)C20—C211.374 (5)
P2—C41.827 (2)C22—C231.376 (4)
P2—C31.828 (2)C22—C271.388 (4)
C1—C21.520 (4)C23—C241.393 (5)
C2—C31.524 (3)C24—C251.356 (5)
C4—C91.368 (4)C25—C261.344 (6)
C4—C51.368 (4)C26—C271.381 (5)
C5—C61.390 (5)C31—C321.371 (7)
C6—C71.340 (7)C31—C361.384 (8)
C7—C81.348 (7)C31—C371.486 (7)
C8—C91.401 (5)C32—C331.375 (7)
C10—C111.364 (4)C33—C341.385 (8)
C10—C151.366 (4)C34—C351.380 (8)
C11—C121.395 (5)C35—C361.378 (8)
C12—C131.335 (5)
C28—Pd1—C2985.05 (11)C15—C10—P2118.1 (2)
C28—Pd1—P1174.63 (8)C10—C11—C12121.1 (3)
C29—Pd1—P189.72 (8)C13—C12—C11119.9 (4)
C28—Pd1—P292.00 (8)C12—C13—C14120.4 (3)
C29—Pd1—P2176.49 (7)C13—C14—C15120.0 (3)
P1—Pd1—P293.19 (3)C10—C15—C14121.0 (3)
C22—P1—C16105.84 (13)C17—C16—C21117.3 (3)
C22—P1—C1102.38 (14)C17—C16—P1125.1 (3)
C16—P1—C1101.59 (12)C21—C16—P1117.4 (2)
C22—P1—Pd1113.38 (8)C16—C17—C18119.6 (4)
C16—P1—Pd1114.97 (9)C19—C18—C17120.5 (4)
C1—P1—Pd1117.07 (9)C20—C19—C18120.6 (4)
C10—P2—C4103.91 (12)C19—C20—C21119.6 (5)
C10—P2—C3104.52 (12)C16—C21—C20122.4 (4)
C4—P2—C399.22 (11)C23—C22—C27117.7 (3)
C10—P2—Pd1112.01 (8)C23—C22—P1118.6 (2)
C4—P2—Pd1118.38 (10)C27—C22—P1123.6 (2)
C3—P2—Pd1116.91 (8)C22—C23—C24121.0 (3)
C2—C1—P1113.24 (16)C25—C24—C23119.6 (4)
C1—C2—C3114.5 (2)C26—C25—C24120.3 (4)
C2—C3—P2116.32 (16)C25—C26—C27121.0 (3)
C9—C4—C5118.7 (3)C26—C27—C22120.3 (3)
C9—C4—P2122.9 (3)C32—C31—C36119.8 (6)
C5—C4—P2118.2 (2)C32—C31—C37120.4 (7)
C4—C5—C6120.9 (4)C36—C31—C37119.7 (7)
C7—C6—C5120.0 (5)C31—C32—C33120.7 (6)
C6—C7—C8120.2 (4)C32—C33—C34119.4 (7)
C7—C8—C9120.7 (5)C35—C34—C33119.7 (7)
C4—C9—C8119.5 (4)C36—C35—C34120.0 (7)
C11—C10—C15117.4 (3)C35—C36—C31119.7 (7)
C11—C10—P2124.49 (19)

Experimental details

Crystal data
Chemical formula[Pd(CH3)2(C27H26P2)]·0.5C7H8
Mr594.95
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)12.260 (3), 15.025 (2), 16.347 (3)
β (°) 99.00 (2)
V3)2974.2 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.75
Crystal size (mm)0.45 × 0.40 × 0.35
Data collection
DiffractometerStoe-IPDS image-plate
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
22466, 4521, 3825
Rint0.034
θmax (°)24.1
(sin θ/λ)max1)0.575
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.062, 1.04
No. of reflections4521
No. of parameters355
No. of restraints55
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.20

Computer programs: IDPS (Stoe & Cie, 1997)), IDPS, XMY93 (Debaermaeker, 1993), SHELXL97 (Sheldrick, 1997).

Selected geometric parameters (Å, º) top
Pd1—C282.084 (2)Pd1—P12.2999 (7)
Pd1—C292.087 (3)Pd1—P22.3038 (7)
C28—Pd1—C2985.05 (11)C28—Pd1—P292.00 (8)
C28—Pd1—P1174.63 (8)C29—Pd1—P2176.49 (7)
C29—Pd1—P189.72 (8)P1—Pd1—P293.19 (3)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds