Download citation
Download citation
link to html
Colourless prismatic crystals of the title compound, [Cd(tren)(phen)](NO3)2·H2O [phen = 1,10-phen­an­thro­line, C12H8N2; tren = tris(2-amino­ethyl)­amine, C6H18N4], form from an aqueous solution of equivalent amounts of Cd(NO3)2, tren and phen. Infinite one-dimensional polymeric zigzag motifs, constructed via alternating hydrogen-bonding and [pi]-[pi] interactions, are further mediated by nitrate-amine hydrogen bonds to create three-dimensional networks.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100016279/qa0409sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100016279/qa0409Isup2.hkl
Contains datablock I

CCDC reference: 156200

Comment top

Crystal engineering and the design of solid-state architectures are of considerable contemporary interest by virtue of the potential application of functional materials (Braga et al., 1998; Hagrman et al., 1999). Four main types of interactions have been exploited in the construction of supramolecular materials: (i) coordinate covalent bonds connecting metal centres and appropriate bi- or polydentate ligands (Wang et al., 1999); (ii) intermolecular hydrogen bonds (Aakeröy & Beatty, 1998); (iii) ππ interactions of aromatic rings (Ning et al., 1999); and (iv) charge-transfer interactions (Bailey et al., 1998). Among these interactions, hydrogen bonds and ππ stacking play vital roles in molecular recognition and supramolecular chemistry. Herein, we describe a three-dimensional supramolecular cadmium(II) complex, (I), directed by alternating hydrogen-bonding and ππ interactions. \scheme

The Cd atom of (I) adopts a distorted octahedral coordination with six N atoms from tren and phen. The Cd—N distances range from 2.314 to 2.508 Å, in accordance with those values previously reported (Klüfers & Mayer, 1998).

The crystal packing of the complex reveals offset π-stacking between the phen rings with the interplane distances of about 3.50 Å, which is comparable to the phen–phen distance of 3.24–3.42 Å in the stacking of [M(phen)2](X2) (Geremia et al., 1992; Ye et al., 1998). Two neighboring [Cd(phen)(tren)]2+ cations form a dimeric motif. Furthermore, nitates bridge the adjacent motifs by hydrogen bonds formed between nitrate and amine. Infinite one-dimensional polymeric zigzag motifs constructed via alternating hydrogen-bonding and ππ interactions are thus assembled (Munakata et al., 1996; Tse et al., 1998). These exotic supermotifs are further linked by another nitrate–amine hydrogen bond to extend into three-dimensional networks.

Experimental top

The ligand tren (2 mmol) in water (5 ml) was added dropwise with stirring to Cd(NO3)2 (2 mmol) dissolved in water (15 ml) at room temperature, followed by the addition of solid phen (2 mmol). After the filtrate was allowed to stand in the air for several weeks, colourless prismatic crystals of the compound were obtained (yield 65.2%). Elemental analysis calculated for C18H28CdN8O7 (%): C 37.22, H 4.86, N 19.29; found: C 37.23, H 4.50, N 19.27.

Refinement top

All H atoms of organic ligands were placed in idealized positions and refined as riding atoms with isotropic displacement parameters. H atoms of the water molecule were found from the difference Fourier map and were also refined as riding atoms.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SMART (Bruker, 1998); data reduction: SAINT+ (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); software used to prepare material for publication: SHELXTL (Bruker, 1998).

(1,10-phenanthroline)[tris(2-aminoethyl)amine]cadmium(II) dinitrate hydrate top
Crystal data top
[Cd(C6H18N4)(C12H8N2)](NO3)2·H2OF(000) = 1184
Mr = 580.88Dx = 1.644 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.385 (2) ÅCell parameters from 4451 reflections
b = 9.951 (2) Åθ = 1.8–25.7°
c = 20.745 (4) ŵ = 0.99 mm1
β = 92.72 (3)°T = 293 K
V = 2347.6 (8) Å3Prism, colourless
Z = 40.21 × 0.13 × 0.07 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
4451 independent reflections
Radiation source: fine-focus sealed tube3857 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ϕ and ω scansθmax = 25.7°, θmin = 1.8°
Absorption correction: empirical (using intensity measurements)
(Blessing, 1995)
h = 1312
Tmin = 0.820, Tmax = 0.934k = 129
12068 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0547P)2 + 0.9055P]
where P = (Fo2 + 2Fc2)/3
4451 reflections(Δ/σ)max = 0.001
309 parametersΔρmax = 0.77 e Å3
0 restraintsΔρmin = 0.61 e Å3
Crystal data top
[Cd(C6H18N4)(C12H8N2)](NO3)2·H2OV = 2347.6 (8) Å3
Mr = 580.88Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.385 (2) ŵ = 0.99 mm1
b = 9.951 (2) ÅT = 293 K
c = 20.745 (4) Å0.21 × 0.13 × 0.07 mm
β = 92.72 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4451 independent reflections
Absorption correction: empirical (using intensity measurements)
(Blessing, 1995)
3857 reflections with I > 2σ(I)
Tmin = 0.820, Tmax = 0.934Rint = 0.020
12068 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.087H-atom parameters constrained
S = 1.10Δρmax = 0.77 e Å3
4451 reflectionsΔρmin = 0.61 e Å3
309 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.248243 (16)0.039206 (18)0.126790 (9)0.04151 (9)
C10.0036 (3)0.0198 (4)0.19340 (19)0.0657 (9)
H1A0.01160.07570.18820.080*
H1B0.06000.04890.22340.080*
C20.0297 (3)0.0862 (4)0.12899 (19)0.0704 (9)
H2A0.02650.18190.13450.080*
H2B0.10740.06280.11270.080*
C30.1558 (4)0.0503 (4)0.26795 (17)0.0651 (9)
H3A0.21330.00990.29720.080*
H3B0.09070.07880.29230.080*
C40.2098 (3)0.1706 (4)0.23619 (16)0.0610 (8)
H4A0.15230.21210.20730.080*
H4B0.23470.23550.26830.080*
C50.1243 (3)0.1878 (4)0.24519 (17)0.0675 (9)
H5A0.07520.24670.21900.080*
H5B0.09640.18900.28810.080*
C60.2486 (3)0.2394 (4)0.24602 (17)0.0718 (10)
H6A0.29770.18190.27290.080*
H6B0.25230.32840.26380.080*
N10.1152 (2)0.0502 (2)0.21959 (12)0.0516 (6)
N20.0575 (3)0.0442 (3)0.08272 (14)0.0615 (7)
H2C0.03830.03810.06770.080*
H2D0.05440.10130.04900.080*
N30.3110 (2)0.1269 (3)0.19972 (12)0.0560 (6)
H3C0.36760.09410.22710.080*
H3D0.34060.19690.17840.080*
N40.2922 (3)0.2388 (3)0.18040 (13)0.0661 (7)
H4C0.25880.30770.15820.080*
H4D0.37060.25130.18220.080*
C70.2495 (3)0.2588 (3)0.04878 (16)0.0568 (7)
H7A0.21990.29010.08870.080*
C80.2594 (3)0.3498 (3)0.00211 (19)0.0662 (9)
H8A0.23420.44120.00250.080*
C90.3042 (3)0.3074 (3)0.05794 (16)0.0621 (8)
H9A0.31290.36950.09280.080*
C100.3378 (2)0.1723 (3)0.06468 (14)0.0497 (6)
C110.3842 (3)0.1216 (4)0.12208 (14)0.0587 (8)
H11A0.39720.18170.15720.080*
C120.4106 (3)0.0088 (4)0.12776 (15)0.0583 (8)
H12A0.44020.04130.16750.080*
C130.3967 (2)0.1003 (3)0.07603 (14)0.0492 (7)
C140.3539 (2)0.0543 (3)0.01708 (13)0.0396 (6)
C150.3234 (2)0.0862 (3)0.01188 (13)0.0398 (5)
C160.4249 (3)0.2368 (4)0.07984 (16)0.0606 (8)
H16A0.45390.27260.11900.080*
C170.4110 (3)0.3180 (3)0.02844 (18)0.0657 (9)
H17A0.43190.41120.03070.080*
C180.3676 (3)0.2646 (3)0.02800 (16)0.0569 (7)
H18A0.35640.32360.06380.080*
N50.2803 (2)0.1295 (2)0.04431 (11)0.0464 (5)
N60.3395 (2)0.1355 (2)0.03419 (11)0.0451 (5)
N70.4578 (2)0.5269 (2)0.18674 (13)0.0529 (6)
N80.0600 (3)0.3059 (4)0.06637 (18)0.0812 (9)
O10.3787 (4)0.5471 (3)0.1476 (2)0.1318 (17)
O20.5128 (3)0.4226 (3)0.1868 (2)0.1090 (12)
O30.4841 (3)0.6132 (3)0.22606 (14)0.0994 (10)
O40.0084 (4)0.3047 (6)0.11431 (19)0.1492 (18)
O50.0695 (5)0.2191 (6)0.0332 (3)0.208 (3)
O60.1042 (6)0.4073 (5)0.0622 (4)0.227 (4)
O1W0.1023 (4)0.3954 (5)0.1001 (2)0.1296 (14)
H1W0.02300.40340.08930.115 (19)*
H2W0.08910.47500.11660.18 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.04632 (14)0.03935 (13)0.03893 (13)0.00235 (8)0.00268 (9)0.00182 (7)
C10.0458 (17)0.072 (2)0.080 (2)0.0029 (15)0.0120 (16)0.0046 (18)
C20.0476 (17)0.070 (2)0.092 (3)0.0078 (16)0.0091 (17)0.008 (2)
C30.075 (2)0.072 (2)0.0494 (18)0.0030 (17)0.0108 (16)0.0114 (16)
C40.068 (2)0.0590 (18)0.0558 (18)0.0057 (16)0.0010 (15)0.0189 (15)
C50.076 (2)0.069 (2)0.0583 (19)0.0095 (18)0.0166 (17)0.0127 (17)
C60.085 (2)0.069 (2)0.061 (2)0.0047 (19)0.0009 (18)0.0257 (17)
N10.0532 (14)0.0541 (15)0.0480 (13)0.0032 (11)0.0079 (11)0.0007 (11)
N20.0632 (17)0.0662 (19)0.0538 (15)0.0063 (13)0.0122 (13)0.0076 (12)
N30.0537 (14)0.0566 (15)0.0572 (14)0.0089 (12)0.0027 (11)0.0027 (12)
N40.0708 (17)0.0582 (16)0.0698 (18)0.0172 (14)0.0103 (14)0.0186 (14)
C70.0641 (19)0.0410 (16)0.0661 (19)0.0081 (13)0.0102 (15)0.0006 (14)
C80.073 (2)0.0400 (16)0.085 (2)0.0062 (15)0.0010 (18)0.0095 (16)
C90.070 (2)0.0521 (18)0.0630 (19)0.0061 (15)0.0053 (16)0.0186 (15)
C100.0461 (15)0.0535 (16)0.0489 (15)0.0074 (12)0.0051 (12)0.0084 (13)
C110.0573 (17)0.079 (2)0.0400 (15)0.0135 (16)0.0009 (13)0.0088 (15)
C120.0545 (17)0.079 (2)0.0418 (16)0.0093 (16)0.0063 (13)0.0072 (15)
C130.0396 (13)0.0598 (18)0.0482 (15)0.0051 (13)0.0023 (11)0.0138 (14)
C140.0361 (12)0.0414 (14)0.0411 (13)0.0019 (10)0.0003 (11)0.0046 (11)
C150.0376 (13)0.0403 (13)0.0410 (13)0.0023 (11)0.0022 (10)0.0015 (11)
C160.0558 (18)0.064 (2)0.0621 (19)0.0002 (15)0.0073 (15)0.0219 (17)
C170.065 (2)0.0440 (16)0.088 (2)0.0078 (15)0.0015 (18)0.0186 (17)
C180.0633 (19)0.0421 (15)0.0654 (19)0.0048 (14)0.0036 (15)0.0008 (14)
N50.0537 (13)0.0369 (12)0.0488 (13)0.0034 (10)0.0058 (10)0.0012 (10)
N60.0489 (12)0.0378 (12)0.0485 (12)0.0039 (10)0.0021 (10)0.0012 (10)
N70.0587 (15)0.0430 (14)0.0563 (15)0.0114 (11)0.0034 (12)0.0110 (11)
N80.096 (2)0.069 (2)0.077 (2)0.0229 (18)0.0186 (18)0.0038 (17)
O10.128 (3)0.094 (3)0.164 (4)0.0122 (19)0.086 (3)0.033 (2)
O20.091 (2)0.0598 (16)0.173 (4)0.0173 (16)0.026 (2)0.016 (2)
O30.131 (3)0.088 (2)0.0803 (19)0.0179 (19)0.0133 (18)0.0254 (17)
O40.121 (3)0.236 (6)0.092 (2)0.033 (3)0.015 (2)0.025 (3)
O50.209 (6)0.175 (5)0.232 (6)0.047 (4)0.067 (5)0.129 (5)
O60.218 (6)0.100 (3)0.349 (9)0.054 (4)0.125 (6)0.001 (5)
O1W0.129 (3)0.108 (3)0.150 (4)0.012 (2)0.014 (3)0.040 (3)
Geometric parameters (Å, º) top
Cd1—N22.316 (3)C10—C151.407 (4)
Cd1—N42.320 (3)C10—C111.419 (4)
Cd1—N32.330 (3)C11—C121.338 (5)
Cd1—N62.424 (2)C12—C131.422 (5)
Cd1—N52.437 (2)C13—C161.399 (5)
Cd1—N12.508 (3)C13—C141.413 (4)
C1—N11.465 (4)C14—N61.352 (3)
C1—C21.507 (5)C14—C151.446 (4)
C2—N21.474 (5)C15—N51.357 (4)
C3—N11.475 (4)C16—C171.353 (5)
C3—C41.511 (5)C17—C181.397 (5)
C4—N31.473 (4)C18—N61.332 (4)
C5—N11.471 (4)N7—O11.201 (4)
C5—C61.505 (5)N7—O31.212 (4)
C6—N41.471 (4)N7—O21.213 (4)
C7—N51.337 (4)N8—O51.107 (5)
C7—C81.399 (5)N8—O61.129 (5)
C8—C91.354 (5)N8—O41.233 (5)
C9—C101.407 (5)
N2—Cd1—N4110.36 (11)C9—C8—C7119.4 (3)
N2—Cd1—N3121.62 (10)C8—C9—C10119.8 (3)
N4—Cd1—N3104.10 (10)C15—C10—C9117.6 (3)
N2—Cd1—N696.18 (9)C15—C10—C11119.9 (3)
N4—Cd1—N687.17 (9)C9—C10—C11122.5 (3)
N3—Cd1—N6131.70 (8)C12—C11—C10120.9 (3)
N2—Cd1—N584.62 (9)C11—C12—C13121.4 (3)
N4—Cd1—N5152.94 (9)C16—C13—C14116.9 (3)
N3—Cd1—N585.17 (9)C16—C13—C12123.0 (3)
N6—Cd1—N568.40 (7)C14—C13—C12120.1 (3)
N2—Cd1—N173.32 (10)N6—C14—C13123.2 (2)
N4—Cd1—N173.69 (9)N6—C14—C15118.7 (2)
N3—Cd1—N173.15 (9)C13—C14—C15118.1 (2)
N6—Cd1—N1152.65 (8)N5—C15—C10122.4 (3)
N5—Cd1—N1133.23 (8)N5—C15—C14118.0 (2)
N1—C1—C2112.2 (3)C10—C15—C14119.6 (2)
N2—C2—C1110.0 (3)C17—C16—C13119.9 (3)
N1—C3—C4111.2 (3)C16—C17—C18119.5 (3)
N3—C4—C3109.5 (3)N6—C18—C17122.9 (3)
N1—C5—C6111.8 (3)C7—N5—C15118.2 (3)
N4—C6—C5110.3 (3)C7—N5—Cd1124.4 (2)
C1—N1—C5112.0 (3)C15—N5—Cd1117.18 (17)
C1—N1—C3111.5 (3)C18—N6—C14117.5 (3)
C5—N1—C3111.8 (3)C18—N6—Cd1124.9 (2)
C1—N1—Cd1106.7 (2)C14—N6—Cd1117.40 (17)
C5—N1—Cd1106.44 (19)O1—N7—O3119.3 (3)
C3—N1—Cd1108.12 (19)O1—N7—O2120.9 (3)
C2—N2—Cd1113.4 (2)O3—N7—O2119.7 (3)
C4—N3—Cd1108.68 (18)O5—N8—O6128.3 (6)
C6—N4—Cd1111.8 (2)O5—N8—O4122.3 (5)
N5—C7—C8122.6 (3)O6—N8—O4109.4 (5)
N1—C1—C2—N257.4 (4)C10—C11—C12—C132.0 (5)
N1—C3—C4—N359.7 (4)C11—C12—C13—C16179.0 (3)
N1—C5—C6—N459.2 (4)C11—C12—C13—C140.1 (4)
C2—C1—N1—C575.0 (4)C16—C13—C14—N60.2 (4)
C2—C1—N1—C3158.9 (3)C12—C13—C14—N6179.4 (3)
C2—C1—N1—Cd141.0 (3)C16—C13—C14—C15179.7 (2)
C6—C5—N1—C1156.1 (3)C12—C13—C14—C151.1 (4)
C6—C5—N1—C378.0 (4)C9—C10—C15—N50.8 (4)
C6—C5—N1—Cd139.9 (3)C11—C10—C15—N5179.5 (3)
C4—C3—N1—C185.4 (4)C9—C10—C15—C14178.4 (3)
C4—C3—N1—C5148.4 (3)C11—C10—C15—C141.2 (4)
C4—C3—N1—Cd131.6 (3)N6—C14—C15—N50.7 (4)
N2—Cd1—N1—C113.8 (2)C13—C14—C15—N5178.8 (2)
N4—Cd1—N1—C1131.5 (2)N6—C14—C15—C10180.0 (2)
N3—Cd1—N1—C1117.7 (2)C13—C14—C15—C100.6 (4)
N6—Cd1—N1—C184.2 (3)C14—C13—C16—C170.1 (4)
N5—Cd1—N1—C151.7 (2)C12—C13—C16—C17179.1 (3)
N2—Cd1—N1—C5105.9 (2)C13—C16—C17—C180.5 (5)
N4—Cd1—N1—C511.8 (2)C16—C17—C18—N60.5 (5)
N3—Cd1—N1—C5122.6 (2)C8—C7—N5—C150.4 (5)
N6—Cd1—N1—C535.5 (3)C8—C7—N5—Cd1173.9 (2)
N5—Cd1—N1—C5171.37 (19)C10—C15—N5—C70.7 (4)
N2—Cd1—N1—C3133.8 (2)C14—C15—N5—C7178.5 (3)
N4—Cd1—N1—C3108.4 (2)C10—C15—N5—Cd1175.5 (2)
N3—Cd1—N1—C32.3 (2)C14—C15—N5—Cd13.8 (3)
N6—Cd1—N1—C3155.8 (2)N2—Cd1—N5—C780.0 (2)
N5—Cd1—N1—C368.4 (2)N4—Cd1—N5—C7154.3 (3)
C1—C2—N2—Cd142.4 (3)N3—Cd1—N5—C742.5 (2)
N4—Cd1—N2—C249.7 (2)N6—Cd1—N5—C7178.8 (3)
N3—Cd1—N2—C272.5 (2)N1—Cd1—N5—C718.9 (3)
N6—Cd1—N2—C2139.0 (2)N2—Cd1—N5—C1594.4 (2)
N5—Cd1—N2—C2153.5 (2)N4—Cd1—N5—C1531.4 (3)
N1—Cd1—N2—C215.2 (2)N3—Cd1—N5—C15143.19 (19)
C3—C4—N3—Cd155.6 (3)N6—Cd1—N5—C154.47 (18)
N2—Cd1—N3—C429.9 (2)N1—Cd1—N5—C15155.42 (17)
N4—Cd1—N3—C495.3 (2)C17—C18—N6—C140.2 (5)
N6—Cd1—N3—C4165.74 (19)C17—C18—N6—Cd1174.4 (2)
N5—Cd1—N3—C4110.5 (2)C13—C14—N6—C180.2 (4)
N1—Cd1—N3—C427.6 (2)C15—C14—N6—C18179.6 (3)
C5—C6—N4—Cd145.7 (4)C13—C14—N6—Cd1174.51 (19)
N2—Cd1—N4—C682.4 (3)C15—C14—N6—Cd14.9 (3)
N3—Cd1—N4—C649.7 (3)N2—Cd1—N6—C1897.4 (2)
N6—Cd1—N4—C6177.9 (2)N4—Cd1—N6—C1812.8 (2)
N5—Cd1—N4—C6157.2 (2)N3—Cd1—N6—C18119.2 (2)
N1—Cd1—N4—C617.7 (2)N5—Cd1—N6—C18179.1 (3)
N5—C7—C8—C91.5 (5)N1—Cd1—N6—C1832.1 (3)
C7—C8—C9—C101.3 (5)N2—Cd1—N6—C1476.8 (2)
C8—C9—C10—C150.2 (5)N4—Cd1—N6—C14173.0 (2)
C8—C9—C10—C11179.4 (3)N3—Cd1—N6—C1466.6 (2)
C15—C10—C11—C122.5 (4)N5—Cd1—N6—C144.86 (18)
C9—C10—C11—C12177.1 (3)N1—Cd1—N6—C14142.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2C···O50.902.283.142 (7)162
N2—H2D···O5i0.902.082.977 (6)171
N3—H3C···O2ii0.902.203.060 (5)160
N3—H3D···O3iii0.902.663.282 (4)127
N4—H4C···O1W0.902.283.088 (5)150
N4—H4D···O20.902.353.104 (4)142
O1W—H1W···O6iv0.922.433.134 (7)134
O1W—H2W···O4iv0.882.383.188 (7)154
Symmetry codes: (i) x, y, z; (ii) x+1, y1/2, z+1/2; (iii) x, y1, z; (iv) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Cd(C6H18N4)(C12H8N2)](NO3)2·H2O
Mr580.88
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.385 (2), 9.951 (2), 20.745 (4)
β (°) 92.72 (3)
V3)2347.6 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.99
Crystal size (mm)0.21 × 0.13 × 0.07
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(Blessing, 1995)
Tmin, Tmax0.820, 0.934
No. of measured, independent and
observed [I > 2σ(I)] reflections
12068, 4451, 3857
Rint0.020
(sin θ/λ)max1)0.610
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.087, 1.10
No. of reflections4451
No. of parameters309
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.77, 0.61

Computer programs: SMART (Bruker, 1998), SAINT+ (Bruker, 1999), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2C···O50.902.283.142 (7)161.5
N2—H2D···O5i0.902.082.977 (6)171.4
N3—H3C···O2ii0.902.203.060 (5)159.5
N3—H3D···O3iii0.902.663.282 (4)127.3
N4—H4C···O1W0.902.283.088 (5)149.7
N4—H4D···O20.902.353.104 (4)141.5
O1W—H1W···O6iv0.922.433.134 (7)133.6
O1W—H2W···O4iv0.882.383.188 (7)153.7
Symmetry codes: (i) x, y, z; (ii) x+1, y1/2, z+1/2; (iii) x, y1, z; (iv) x, y+1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds