Download citation
Download citation
link to html
The title complex, [Eu(C6H4O2)3(H2O)2], has a double carboxyl­ate-bridged infinite-chain structure, with one chelating carboxyl­ate group on each Eu ion centre, which also binds to two water mol­ecules to yield an eight-coordinate square-antiprismatic geometry, with Eu-O bond lengths in the range 2.338 (3)-2.594 (3) Å. The pyridine N atoms of the isonicotinate groups do not coordinate to the Eu ions; instead, they direct the formation of EuIII coordination polymers via hydrogen bonding with coordinated water mol­ecules.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100009604/qa0360sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100009604/qa0360Isup2.hkl
Contains datablock I

CCDC reference: 150378

Comment top

There has been considerable interest in rare earth isonicotinates (Moore et al., 1972; Chupakhina et al., 1963; Xu et al., 1997; Ye & Qin, 1991). In this paper, we report that catena-poly[[[diaqua(isonicotinato-O,O')europium(III)]-di-µ-isonicotinato-O:O'] dihydrate], (I), has a one-dimensional chain structure instead of the dimers reported for SmIII and LaIII isonicotinates (Moore et al., 1972).

In the title compound, the isonicotinates are coordinated to the EuIII ions solely through the carboxylate O atoms, leaving the pyridine N atoms uncoordinated, and two isonicotinates act as bridging ligands between all adjacent Eu ions, thus forming a one-dimensional structure. In other words, the complex has a double carboxylate-bridged infinite chain, with one chelating carboxylate group on each Eu ion centre. The chelating carboxyl groups of isonicotinate have two Eu—O distances of 2.594 (3) and 2.454 (3) Å. A prominent feature is that the distances of the bridging isoniconates have two shorter Eu—O distances: O1ii is 2.403 (3) Å from Eu1 and O2 is 2.338 (3) Å from Eu1, which represents a weak interaction between the metal ion and the C atom of the carboxylate group (see Table 1 for symmetry code).

The coordination sphere of each Eu ion is completed by two water molecules to yield an eight-coordinate square-antiprismatic geometry. The Eu1—OW1 and Eu1—OW2 bond lengths are 2.449 (3) and 2.444 (3) Å, respectively. The presence of water molecules permits hydrogen bonding to the N and O atoms of adjacent chain units, whose relevant geometric parameters are quoted in Table 2. This hydrogen bonding occurs between different chain units, so that the bulk structure is bound together by these hydrogen bonds into a three-dimensional network.

Experimental top

Isonicotinic acid (0.1 g) and Eu(CF3COO)3 (0.1 g) were mixed with ethanol (1 ml) and water (0.1 ml) in a heavy-walled Pyrex tube. The Pyrex tube was sealed under vacuum (while frozen with liquid nitrogen). The tube was kept in oven at the temperature 350 K for 24 h, after which time, colourless prismatic crystals were obtained.

Refinement top

The deepest difference electron-density hole was 1.07 Å from the Eu1 atom.

Computing details top

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXTL (Sheldrick, 1997); software used to prepare material for publication: SHELXTL.

catena-poly[[[diaqua(isonicotinato-O,O')europium(III)]-di-µ-isonicotinato-O:O'] dihydrate] top
Crystal data top
[Eu(C6H4O2)3(H2O)2]F(000) = 1088
Mr = 554.30Dx = 1.903 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.4860 (19) ÅCell parameters from 25 reflections
b = 18.974 (4) Åθ = 2.6–6.9°
c = 10.759 (2) ŵ = 3.30 mm1
β = 92.48 (3)°T = 293 K
V = 1934.7 (7) Å3Prism, colourless
Z = 40.32 × 0.26 × 0.24 mm
Data collection top
CAD-4
diffractometer
3060 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.017
Graphite monochromatorθmax = 25.0°, θmin = 2.2°
ω–2θ scansh = 011
Absorption correction: empirical (using intensity measurements) from ψ scan
(North et al., 1968)
k = 022
Tmin = 0.348, Tmax = 0.452l = 1212
3615 measured reflections3 standard reflections every 97 reflections
3402 independent reflections intensity decay: 0.0%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.070H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.046P)2 + 1.409P]
where P = (Fo2 + 2Fc2)/3
3402 reflections(Δ/σ)max = 0.002
271 parametersΔρmax = 0.73 e Å3
25 restraintsΔρmin = 2.01 e Å3
Crystal data top
[Eu(C6H4O2)3(H2O)2]V = 1934.7 (7) Å3
Mr = 554.30Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.4860 (19) ŵ = 3.30 mm1
b = 18.974 (4) ÅT = 293 K
c = 10.759 (2) Å0.32 × 0.26 × 0.24 mm
β = 92.48 (3)°
Data collection top
CAD-4
diffractometer
3060 reflections with I > 2σ(I)
Absorption correction: empirical (using intensity measurements) from ψ scan
(North et al., 1968)
Rint = 0.017
Tmin = 0.348, Tmax = 0.4523 standard reflections every 97 reflections
3615 measured reflections intensity decay: 0.0%
3402 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02525 restraints
wR(F2) = 0.070H-atom parameters constrained
S = 1.09Δρmax = 0.73 e Å3
3402 reflectionsΔρmin = 2.01 e Å3
271 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Eu10.752779 (16)0.510153 (9)0.456300 (14)0.01684 (9)
O1W0.6382 (3)0.40522 (14)0.3657 (2)0.0292 (6)
H10.54240.39190.37750.035*
H20.68290.36890.31770.035*
O2W0.8836 (3)0.47286 (17)0.2768 (2)0.0323 (6)
H30.96480.45270.30000.039*
H40.84160.44940.21730.039*
O11.1216 (3)0.38761 (14)0.6106 (2)0.0301 (6)
O20.9155 (3)0.42765 (14)0.5368 (2)0.0291 (6)
O30.6445 (3)0.61205 (13)0.5816 (2)0.0258 (6)
O40.8466 (3)0.56611 (15)0.6481 (2)0.0281 (6)
O50.6047 (3)0.46244 (15)0.6070 (2)0.0300 (6)
O60.4040 (2)0.44150 (16)0.6971 (2)0.0314 (6)
N10.7539 (4)0.4242 (2)1.0543 (3)0.0439 (10)
N20.7412 (5)0.7223 (2)1.0056 (4)0.0545 (11)
N30.7828 (4)0.20768 (19)0.7625 (4)0.0409 (9)
C10.8081 (6)0.6612 (3)0.9960 (4)0.0591 (14)
H1A0.85510.64221.06940.071*
C20.8131 (5)0.6234 (3)0.8865 (4)0.0454 (11)
H2A0.86740.58080.88270.055*
C30.7398 (4)0.6478 (2)0.7817 (3)0.0269 (8)
C40.6666 (4)0.7107 (2)0.7908 (4)0.0331 (9)
H4A0.61360.72930.72010.040*
C50.6728 (5)0.7463 (2)0.9032 (4)0.0429 (11)
H5A0.62410.79060.90800.051*
C60.7435 (4)0.60703 (19)0.6625 (3)0.0229 (7)
C70.7178 (5)0.2477 (2)0.6754 (5)0.0429 (11)
H7A0.62200.23620.65110.052*
C80.7799 (4)0.3035 (2)0.6177 (4)0.0341 (9)
H8A0.72670.33160.55800.041*
C90.9186 (4)0.31954 (18)0.6490 (3)0.0226 (7)
C100.9890 (4)0.2773 (2)0.7360 (3)0.0277 (8)
H10A1.08650.28590.75860.033*
C110.9168 (5)0.2228 (2)0.7900 (4)0.0357 (9)
H11A0.96600.19440.85180.043*
C120.9917 (4)0.38275 (18)0.5938 (3)0.0214 (7)
C130.6142 (5)0.4175 (3)1.0415 (4)0.0475 (12)
H13A0.56280.40931.11510.057*
C140.5398 (4)0.4212 (3)0.9289 (3)0.0384 (10)
H14A0.43920.41490.92410.046*
C150.6128 (4)0.43401 (19)0.8225 (3)0.0237 (7)
C160.7585 (4)0.4397 (2)0.8339 (4)0.0318 (9)
H16A0.81330.44760.76220.038*
C170.8231 (5)0.4338 (3)0.9503 (4)0.0402 (10)
H17A0.92410.43680.95750.048*
C180.5350 (3)0.44648 (18)0.6990 (3)0.0199 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Eu10.02142 (13)0.01718 (13)0.01167 (12)0.00061 (6)0.00198 (8)0.00027 (6)
O1W0.0269 (13)0.0294 (15)0.0314 (14)0.0040 (11)0.0029 (11)0.0126 (12)
O2W0.0277 (14)0.0491 (17)0.0197 (13)0.0032 (13)0.0043 (11)0.0107 (13)
O10.0249 (13)0.0287 (14)0.0365 (15)0.0058 (11)0.0027 (11)0.0085 (12)
O20.0332 (14)0.0249 (14)0.0293 (14)0.0050 (11)0.0022 (11)0.0088 (11)
O30.0283 (13)0.0263 (14)0.0225 (13)0.0016 (11)0.0039 (11)0.0040 (10)
O40.0258 (13)0.0366 (15)0.0216 (12)0.0022 (12)0.0031 (10)0.0104 (11)
O50.0382 (15)0.0345 (15)0.0173 (12)0.0074 (13)0.0001 (11)0.0031 (12)
O60.0273 (14)0.0425 (16)0.0239 (13)0.0008 (12)0.0059 (11)0.0059 (12)
N10.054 (2)0.055 (3)0.0217 (18)0.0079 (17)0.0126 (17)0.0005 (15)
N20.076 (3)0.055 (3)0.032 (2)0.005 (2)0.0035 (19)0.020 (2)
N30.043 (2)0.0296 (19)0.051 (2)0.0093 (16)0.0104 (17)0.0121 (17)
C10.079 (3)0.064 (3)0.033 (2)0.010 (3)0.012 (2)0.015 (2)
C20.060 (3)0.044 (3)0.031 (2)0.010 (2)0.010 (2)0.013 (2)
C30.0286 (19)0.031 (2)0.0216 (18)0.0055 (15)0.0045 (15)0.0086 (16)
C40.037 (2)0.032 (2)0.031 (2)0.0011 (17)0.0019 (17)0.0062 (17)
C50.051 (3)0.035 (2)0.044 (2)0.001 (2)0.007 (2)0.017 (2)
C60.0228 (17)0.0234 (18)0.0225 (18)0.0053 (15)0.0017 (15)0.0055 (14)
C70.034 (2)0.035 (2)0.059 (3)0.0092 (18)0.005 (2)0.011 (2)
C80.031 (2)0.030 (2)0.041 (2)0.0033 (16)0.0066 (18)0.0118 (18)
C90.0258 (18)0.0194 (18)0.0226 (18)0.0009 (14)0.0015 (14)0.0008 (14)
C100.0272 (19)0.0278 (19)0.0278 (19)0.0004 (15)0.0013 (15)0.0053 (15)
C110.044 (2)0.031 (2)0.032 (2)0.0020 (18)0.0003 (18)0.0126 (17)
C120.0301 (19)0.0181 (17)0.0160 (16)0.0020 (14)0.0015 (14)0.0010 (13)
C130.054 (3)0.067 (3)0.0221 (19)0.004 (2)0.0007 (18)0.0073 (19)
C140.036 (2)0.060 (3)0.0196 (19)0.002 (2)0.0002 (17)0.0106 (19)
C150.0276 (18)0.0236 (18)0.0195 (17)0.0022 (15)0.0041 (14)0.0014 (14)
C160.032 (2)0.042 (2)0.0218 (19)0.0031 (18)0.0038 (16)0.0015 (17)
C170.034 (2)0.055 (3)0.030 (2)0.004 (2)0.0162 (18)0.000 (2)
C180.0269 (18)0.0166 (16)0.0157 (16)0.0006 (14)0.0020 (14)0.0008 (13)
Geometric parameters (Å, º) top
Eu1—O22.338 (3)N3—C111.324 (6)
Eu1—O6i2.359 (3)N3—C71.336 (6)
Eu1—O52.370 (3)C1—C21.381 (6)
Eu1—O1ii2.403 (3)C2—C31.378 (6)
Eu1—O2W2.445 (3)C3—C41.387 (6)
Eu1—O1W2.450 (3)C3—C61.499 (5)
Eu1—O42.453 (2)C4—C51.385 (6)
Eu1—O32.594 (3)C7—C81.374 (6)
O1—C121.240 (4)C8—C91.378 (5)
O1—Eu1ii2.403 (3)C9—C101.382 (5)
O2—C121.259 (4)C9—C121.519 (5)
O3—C61.257 (4)C10—C111.382 (5)
O4—C61.263 (4)C12—Eu1ii3.226 (3)
O5—C181.252 (4)C13—C141.377 (6)
O6—C181.245 (3)C14—C151.385 (5)
O6—Eu1i2.359 (3)C15—C161.386 (5)
N1—C171.334 (5)C15—C181.510 (4)
N1—C131.332 (6)C16—C171.375 (5)
N2—C11.329 (7)C18—Eu1i3.244 (3)
N2—C51.335 (6)
O2—Eu1—O6i154.91 (10)O3—Eu1—C18i74.65 (8)
O2—Eu1—O583.80 (9)C6—Eu1—C18i100.46 (9)
O6i—Eu1—O5104.64 (9)C12ii—Eu1—C18i112.06 (8)
O2—Eu1—O1ii108.86 (9)C12—O1—Eu1ii121.2 (2)
O6i—Eu1—O1ii77.44 (9)C12—O2—Eu1171.6 (2)
O5—Eu1—O1ii146.04 (10)C6—O3—Eu190.2 (2)
O2—Eu1—O2W75.50 (9)C6—O4—Eu196.6 (2)
O6i—Eu1—O2W83.46 (9)C18—O5—Eu1169.3 (2)
O5—Eu1—O2W139.98 (11)C18—O6—Eu1i125.5 (2)
O1ii—Eu1—O2W73.85 (10)C17—N1—C13116.7 (3)
O2—Eu1—O1W82.98 (10)C1—N2—C5116.8 (4)
O6i—Eu1—O1W77.42 (9)C11—N3—C7116.3 (3)
O5—Eu1—O1W72.29 (9)N2—C1—C2123.6 (5)
O1ii—Eu1—O1W138.94 (9)C3—C2—C1119.3 (4)
O2W—Eu1—O1W71.48 (9)C2—C3—C4117.9 (4)
O2—Eu1—O476.61 (10)C2—C3—C6119.8 (4)
O6i—Eu1—O4127.95 (10)C4—C3—C6122.3 (3)
O5—Eu1—O478.13 (9)C5—C4—C3118.6 (4)
O1ii—Eu1—O474.68 (9)N2—C5—C4123.7 (4)
O2W—Eu1—O4127.70 (9)O3—C6—O4121.3 (3)
O1W—Eu1—O4145.57 (9)O3—C6—C3120.6 (3)
O2—Eu1—O3125.19 (9)O4—C6—C3118.0 (3)
O6i—Eu1—O379.74 (9)O3—C6—Eu164.01 (18)
O5—Eu1—O370.71 (9)O4—C6—Eu157.61 (17)
O1ii—Eu1—O376.50 (9)C3—C6—Eu1171.4 (3)
O2W—Eu1—O3148.43 (9)N3—C7—C8124.2 (4)
O1W—Eu1—O3129.30 (8)C7—C8—C9118.9 (4)
O4—Eu1—O351.53 (8)C8—C9—C10117.8 (3)
O2—Eu1—C6100.54 (10)C8—C9—C12121.7 (3)
O6i—Eu1—C6104.54 (10)C10—C9—C12120.5 (3)
O5—Eu1—C671.27 (10)C9—C10—C11119.0 (4)
O1ii—Eu1—C675.41 (10)N3—C11—C10123.8 (4)
O2W—Eu1—C6145.59 (10)O1—C12—O2124.5 (3)
O1W—Eu1—C6142.72 (9)O1—C12—C9118.0 (3)
O4—Eu1—C625.78 (9)O2—C12—C9117.5 (3)
O3—Eu1—C625.82 (9)O1—C12—Eu1ii39.57 (17)
O2—Eu1—C12ii89.72 (9)O2—C12—Eu1ii85.0 (2)
O6i—Eu1—C12ii95.37 (9)C9—C12—Eu1ii157.2 (2)
O5—Eu1—C12ii145.76 (9)N1—C13—C14123.8 (4)
O1ii—Eu1—C12ii19.19 (9)C13—C14—C15118.7 (4)
O2W—Eu1—C12ii68.88 (10)C14—C15—C16118.2 (3)
O1W—Eu1—C12ii140.26 (9)C14—C15—C18120.8 (3)
O4—Eu1—C12ii67.67 (9)C16—C15—C18120.8 (3)
O3—Eu1—C12ii86.25 (8)C17—C16—C15118.5 (4)
C6—Eu1—C12ii77.01 (9)N1—C17—C16124.0 (4)
O2—Eu1—C18i152.60 (9)O6—C18—O5124.5 (3)
O6i—Eu1—C18i18.21 (8)O6—C18—C15116.9 (3)
O5—Eu1—C18i86.50 (9)O5—C18—C15118.6 (3)
O1ii—Eu1—C18i93.34 (8)O6—C18—Eu1i36.31 (16)
O2W—Eu1—C18i96.37 (9)O5—C18—Eu1i89.6 (2)
O1W—Eu1—C18i69.65 (9)C15—C18—Eu1i149.4 (2)
O4—Eu1—C18i126.16 (9)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1···O3i0.95 (7)1.84 (7)2.784 (4)165 (8)
O1W—H2···N3iii0.97 (1)1.84 (7)2.799 (5)166 (6)
O2W—H3···O4ii0.88 (6)1.88 (5)2.752 (4)165 (3)
O2W—H4···N1iv0.86 (3)1.96 (7)2.800 (4)161 (9)
C16—H16A···O40.96 (1)2.58 (8)3.255 (5)126 (7)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+1; (iii) x, y+1/2, z1/2; (iv) x, y, z1.

Experimental details

Crystal data
Chemical formula[Eu(C6H4O2)3(H2O)2]
Mr554.30
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)9.4860 (19), 18.974 (4), 10.759 (2)
β (°) 92.48 (3)
V3)1934.7 (7)
Z4
Radiation typeMo Kα
µ (mm1)3.30
Crystal size (mm)0.32 × 0.26 × 0.24
Data collection
DiffractometerCAD-4
diffractometer
Absorption correctionEmpirical (using intensity measurements) from ψ scan
(North et al., 1968)
Tmin, Tmax0.348, 0.452
No. of measured, independent and
observed [I > 2σ(I)] reflections
3615, 3402, 3060
Rint0.017
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.070, 1.09
No. of reflections3402
No. of parameters271
No. of restraints25
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.73, 2.01

Computer programs: CAD-4 Software (Enraf-Nonius, 1989), CAD-4 Software, SHELXS97 (Sheldrick, 1990), SHELXTL (Sheldrick, 1997), SHELXTL.

Selected bond lengths (Å) top
Eu1—O22.338 (3)Eu1—O2W2.445 (3)
Eu1—O6i2.359 (3)Eu1—O1W2.450 (3)
Eu1—O52.370 (3)Eu1—O42.453 (2)
Eu1—O1ii2.403 (3)Eu1—O32.594 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1···O3i0.95 (7)1.84 (7)2.784 (4)165 (8)
O1W—H2···N3iii0.97 (1)1.84 (7)2.799 (5)166 (6)
O2W—H3···O4ii0.88 (6)1.88 (5)2.752 (4)165 (3)
O2W—H4···N1iv0.86 (3)1.96 (7)2.800 (4)161 (9)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+1; (iii) x, y+1/2, z1/2; (iv) x, y, z1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds