Download citation
Download citation
link to html
A rubidium titanyl arsenate single-crystal has been studied by neutron diffraction ([lambda] = 1.207 Å). The polished sample used was 5 × 3 × 2 mm and was cut from a crystal made by top-seeded solution growth. The crystal showed severe extinction. It was, however, possible to obtain a structural model with well defined oxy­gen sites and reasonable anisotropic displacement parameters.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100001505/qa0218sup1.cif
Contains datablocks rta, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100001505/qa0218Isup2.hkl
Contains datablock I

Comment top

Rubidium titanyl arsenate (RTA) belongs to the KTiOPO4 (KTP) family of compounds well known for their non-linear optical and ferroelectric properties (Stucky et al., 1989). The structure is based on a three-dimensional network of arsenic tetrahedra and titanium octahedra with open channels along the c axis where the Rb atoms are situated at two independent sites (Thomas et al., 1992). Additional alkaline positions were detected as `ghost' sites in Cs-rich mixtures of RTA and CsTiOAsO4 (CTA) (Womersley et al., 1998). The original and additional sites are related by pseudosymmetry retained at room temperature from the high-temperature paraelectric phase (Thomas et al., 1990, 1998). The evolution towards centrosymmetry for the KTP and RbTiOPO4 structures has been studied extensively by Delarue et al. (1998, 1999). For these isomorphs, split alkaline positions could be refined for structures above 473 K.

A study of the RTA structure at 9.6 K showed additional electron density near the Rb atoms but a structural model with split Rb positions was not applicable (Almgren et al., 1999). However, using synchrotron-radiation data, it is currently shown that there is a partial occupancy of additional sites in RTA at room temperature, which is reported separately (Streltsov et al., 2000). A parallel study of the CTA structure confirms splitting of the alkaline sites in CTA (Nordborg, 2000). In the present study, single-crystal neutron diffraction has been used to improve the structural model for RTA as concerns the O sites. The aim was to get well defined nuclear positions for the O atoms together with reasonable displacement parameters.

The displacement ellipsoids for O atoms have an average value for Umin/Umax of about 0.7. These are more uniform than those obtained previously from X-ray tube data, for which the Umin/Umax average was approximately 0.5 (Almgren et al., 1999). The values presently obtained from a common independent atomic model refinement are comparable to those obtained by multipole refinements in the parallel synchrotron study (Streltsov et al., 2000). The atomic displacement parameters along the principal axes have been calculated using the program ORFFE modified for PC (Busing et al., 1964; Gustafsson, 1993). The Rb1 atom predominantly vibrates in the [-101] direction with an angle to the c axis of 33 (4)°, while the Rb2 atom vibrates in the [001] direction deviating by 18 (7)°. The anisotropy of the ellipsoids is markedly pronounced for the Rb atoms. The displacements along principal axes r1, r2 and r3 are 0.09 (1), 0.138 (9) and 0.201 (6) Å for Rb1, and 0.109 (8), 0.130 (7) and 0.171 (6) Å for Rb2. This is consistent with the r.m.s. parameters obtained from X-ray data.

More uniform r.m.s. displacements of the O atoms have been obtained compared to those from X-ray data previously reported by Almgren et al. (1999). This is represented, for example, by the displacements for O2 along principal axes r1 and r3, which are 0.09 (1) and 0.13 (1) Å when derived from neutron data, and 0.06 (2) and 0.134 (9) Å when derived from X-ray data. The corresponding values for O7 are 0.07 (1) and 0.13 (1) Å, and 0.05 (2) and 0.13 (1) Å, respectively. The Rb—O and bond distances are given in Table 1. In CTA, the Cs3 site, which is the additional site at Cs1, is coordinated by 6 O atoms and not binding to O1, O11 and O7 (Nordborg, 2000). This is propably the case also for the Rb1–Rb3 pair as splitting is seen in the c direction which is the direction of the Rb1—O1, Rb1—O11 and Rb1—O7 bonds.

Experimental top

The RTA crystals were grown by the top-seeded solution growth technique (Nordborg et al., 2000) using the Rb5As3O10 self-flux (Cheng et al., 1994). The starting material for both flux and crystals were prepared simultaneously from powder mixtures of analytical grade Rb2CO3, TiO2 and As2O5. A batch of approximately 0.5 g RTA per 1 g Rb5As3O10 flux was mixed in a platinum crucible and inserted in a vertical tube furnace. The mixture was homogenized at 1270 K, then the seed was set just below the flux surface and growth was accomplished with the subsequent cooling of 2 K d-1 from the crystallization temperature at 1190 K. The as-grown RTA crystal had the size of 10 × 12 × 20 mm.

Refinement top

Data were collected at beam channel No. H8 at NFL, the Studsvik Neutron Research Laboratory, Sweden. The three standard reflections, (-534), (-733) and (-543), were remeasured every 36 reflections to monitor the experimental stability, no significant variations were noted during the data collection. Intensity profiles were measured for 1/8 of a sphere, with a step size of 0.1° and a scan time of 10 s per step. Each reflection was sampled with 40 steps. Independent structural parameters, including scale factor, positional and displacement parameters for all atoms were refined by conventional full-matrix least squares. Extinction was severe and the best correction was made by refinement of the isotropic parameter for a type-I crystal with Lorentzian mosaic spread implemented by Becker & Coppens (1974). Still, six reflections with extinction correction parameters less than 0.45 had to be excluded from the refinement (the observed structure factor is Fobs = yFkin, where Fkin is the kinematical value of the structure factor). The minimum extinction correction parameter ymin was then 0.52 for the (220) reflection.

Computing details top

Data collection: Huber diffractometer software; cell refinement: Huber diffractometer software; data reduction: Xtal3.6 DIFDAT ADDREF SORTRF (Hall et al., 1999); program(s) used to refine structure: Xtal3.6 CRYLSQ; software used to prepare material for publication: Xtal3.6 CIFIO.

(I) top
Crystal data top
RbTiOAsO4F(000) = 31.08
Mr = 288.27Dx = 4.016 Mg m3
Orthorhombic, Pna21Neutron radiation, λ = 1.207 Å
Hall symbol: P 2c -2nCell parameters from 11 reflections
a = 13.26 (2) Åθ = 24.8–32.1°
b = 6.677 (7) ŵ = 0.01 mm1
c = 10.766 (7) ÅT = 295 K
V = 953.5 (18) Å3Rectangular, colourless
Z = 85 × 3 × 2 mm
Data collection top
Huber four-circle
diffractometer
Rint = 0
Radiation source: neutron constant wavelengthθmax = 52.0°, θmin = 5.2°
Double Cu(220) monochromatorh = 170
ω/2θ scansk = 08
1174 measured reflectionsl = 014
1153 independent reflections3 standard reflections every 36 reflections
1153 reflections with F > 0 intensity decay: none
Refinement top
Refinement on F0 constraints
Least-squares matrix: fullw = 1/σ2
R[F2 > 2σ(F2)] = 0.034(Δ/σ)max = 0.003
wR(F2) = 0.033Δρmax = 0.06 e Å3
S = 1.36Δρmin = 0.06 e Å3
1153 reflectionsExtinction correction: Becker-Coppens
145 parametersExtinction coefficient: 7219 (45)
0 restraints
Crystal data top
RbTiOAsO4V = 953.5 (18) Å3
Mr = 288.27Z = 8
Orthorhombic, Pna21Neutron radiation, λ = 1.207 Å
a = 13.26 (2) ŵ = 0.01 mm1
b = 6.677 (7) ÅT = 295 K
c = 10.766 (7) Å5 × 3 × 2 mm
Data collection top
Huber four-circle
diffractometer
Rint = 0
1174 measured reflections3 standard reflections every 36 reflections
1153 independent reflections intensity decay: none
1153 reflections with F > 0
Refinement top
R[F2 > 2σ(F2)] = 0.034145 parameters
wR(F2) = 0.0330 restraints
S = 1.36Δρmax = 0.06 e Å3
1153 reflectionsΔρmin = 0.06 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Rb10.3829 (3)0.7824 (5)0.6499 (4)0.0228 (16)
Rb20.1092 (2)0.6936 (5)0.9025 (4)0.0191 (16)
Ti10.3740 (3)0.5053 (9)0.9782 (7)0.005 (2)
Ti20.2487 (4)0.2699 (8)0.7288 (5)0.004 (2)
As10.4997 (2)0.3284 (4)0.7213 (4)0.0055 (10)
As20.17972 (18)0.5050 (5)0.4667 (4)0.0065 (10)
O10.4878 (3)0.4890 (6)0.8374 (4)0.0118 (17)
O20.5106 (3)0.4610 (6)0.5885 (4)0.0113 (18)
O30.3948 (3)0.1877 (5)0.6990 (4)0.0098 (15)
O40.6000 (3)0.1765 (5)0.7407 (4)0.0103 (16)
O110.2813 (3)0.4524 (6)0.8382 (4)0.0098 (16)
O120.2176 (3)0.0566 (6)0.5878 (4)0.0108 (17)
O50.1102 (3)0.3031 (6)0.4311 (4)0.0112 (16)
O60.1070 (3)0.7036 (5)0.4984 (4)0.0119 (16)
O70.2588 (3)0.5448 (5)0.3449 (4)0.0106 (17)
O80.2571 (3)0.4590 (6)0.5869 (16)0.0122 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rb10.0245 (16)0.0104 (13)0.034 (2)0.0035 (11)0.0085 (14)0.0046 (14)
Rb20.0147 (14)0.0148 (14)0.028 (2)0.0031 (11)0.0016 (13)0.0026 (13)
Ti10.007 (2)0.005 (2)0.005 (3)0.001 (2)0.000 (2)0.001 (2)
Ti20.0038 (19)0.005 (2)0.005 (2)0.0002 (17)0.0007 (17)0.000 (2)
As10.0059 (10)0.0039 (10)0.0066 (10)0.0007 (11)0.0009 (8)0.0007 (12)
As20.0093 (10)0.0037 (10)0.0065 (10)0.0008 (12)0.0001 (15)0.0004 (8)
O10.0115 (17)0.0115 (16)0.0123 (19)0.0036 (13)0.0031 (14)0.0058 (14)
O20.0126 (18)0.0108 (17)0.0107 (18)0.0023 (14)0.0035 (14)0.0037 (14)
O30.0090 (15)0.0075 (14)0.0130 (17)0.0004 (12)0.0002 (13)0.0018 (14)
O40.0077 (15)0.0081 (15)0.0150 (19)0.0008 (12)0.0014 (14)0.0012 (14)
O110.0098 (16)0.0095 (16)0.0099 (17)0.0008 (12)0.0021 (14)0.0031 (14)
O120.0122 (17)0.0099 (16)0.0104 (17)0.0003 (13)0.0038 (15)0.0021 (14)
O50.0172 (17)0.0049 (14)0.0114 (17)0.0004 (13)0.0040 (14)0.0008 (15)
O60.0146 (16)0.0045 (15)0.0165 (18)0.0015 (13)0.0044 (14)0.0006 (14)
O70.0127 (17)0.0094 (17)0.0097 (17)0.0028 (14)0.0049 (15)0.0037 (14)
O80.018 (2)0.0100 (17)0.0088 (18)0.0038 (15)0.0027 (15)0.0036 (15)
Geometric parameters (Å, º) top
Rb1—Rb24.574 (7)Rb2—Ti13.800 (7)
Rb1—Ti23.806 (7)Rb2—O12.753 (6)
Rb1—As13.490 (5)Rb2—O52.926 (6)
Rb1—O13.138 (6)Ti1—O12.142 (8)
Rb1—O22.812 (6)Ti1—O111.977 (8)
Rb1—O32.762 (6)Ti1—O5i2.063 (8)
Rb1—O113.283 (6)Ti1—O21.951 (7)
Rb1—O122.933 (6)Ti1—O62.042 (8)
Rb1—O5i3.031 (6)Ti1—O12i1.728 (7)
Rb1—O63.392 (6)Ti2—O32.040 (7)
Rb1—O7i3.318 (6)Ti2—O122.122 (7)
Rb1—O82.812 (7)Ti2—O7i1.958 (7)
Rb1—Rb24.750 (6)Ti2—O42.009 (7)
Rb1—Rb23.827 (6)Ti2—O111.749 (7)
Rb1—Rb24.053 (6)Ti2—O81.985 (15)
Rb2—Ti13.819 (7)As1—O11.654 (6)
Rb2—As2i3.556 (5)As1—O21.688 (5)
Rb2—O43.025 (5)As1—O31.696 (5)
Rb2—O112.879 (6)As1—O41.686 (5)
Rb2—O7i2.992 (5)As2i—O5i1.677 (5)
Rb2—O3i3.193 (6)As2i—O7i1.699 (6)
Rb2—O12i3.177 (6)As2i—O6i1.675 (5)
Rb2—O2i3.118 (6)As2i—O8i1.681 (14)
Rb2—O8i3.198 (12)
Rb2—Rb1—Ti266.87 (12)O7i—Rb2—O2i88.98 (15)
Rb2—Rb1—As196.24 (12)O7i—Rb2—O8i50.9 (3)
Rb2—Rb1—O183.60 (14)O7i—Rb2—Rb1105.28 (14)
Rb2—Rb1—O2121.24 (14)O7i—Rb2—Ti196.33 (17)
Rb2—Rb1—O393.36 (13)O7i—Rb2—O171.71 (17)
Rb2—Rb1—O1138.77 (9)O7i—Rb2—O5126.72 (16)
Rb2—Rb1—O1267.88 (13)Rb1—Rb2—O3i45.23 (10)
Rb2—Rb1—O5i55.70 (11)Rb1—Rb2—O12i48.43 (11)
Rb2—Rb1—O6170.03 (13)Rb1—Rb2—Rb1i101.71 (13)
Rb2—Rb1—O7i40.78 (10)Rb1—Rb2—O2i88.73 (14)
Rb2—Rb1—O864.7 (3)Rb1—Rb2—O8i87.1 (2)
Rb2—Rb1—Rb2104.10 (9)Rb1—Rb2—Rb1121.05 (11)
Rb2—Rb1—Rb2121.92 (11)Rb1—Rb2—Ti1104.65 (15)
Rb2—Rb1—Rb2101.19 (14)Rb1—Rb2—O1138.23 (16)
Ti2—Rb1—As1154.33 (17)Rb1—Rb2—O587.69 (12)
Ti2—Rb1—O1126.71 (17)O3i—Rb2—O12i51.73 (12)
Ti2—Rb1—O2170.62 (17)O3i—Rb2—Rb1i56.63 (10)
Ti2—Rb1—O331.36 (12)O3i—Rb2—O2i49.94 (12)
Ti2—Rb1—O11104.15 (16)O3i—Rb2—O8i52.8 (3)
Ti2—Rb1—O1233.64 (12)O3i—Rb2—Rb1131.22 (13)
Ti2—Rb1—O5i75.66 (14)O3i—Rb2—Ti177.19 (14)
Ti2—Rb1—O6119.57 (14)O3i—Rb2—O1104.74 (15)
Ti2—Rb1—O7i30.95 (11)O3i—Rb2—O583.02 (13)
Ti2—Rb1—O8115.68 (19)O12i—Rb2—Rb1i82.53 (12)
Ti2—Rb1—Rb2147.50 (14)O12i—Rb2—O2i97.46 (16)
Ti2—Rb1—Rb263.55 (12)O12i—Rb2—O8i50.85 (16)
Ti2—Rb1—Rb299.37 (14)O12i—Rb2—Rb1165.49 (13)
As1—Rb1—O128.27 (11)O12i—Rb2—Ti1127.67 (18)
As1—Rb1—O228.56 (11)O12i—Rb2—O1143.57 (17)
As1—Rb1—O3141.57 (17)O12i—Rb2—O5130.94 (17)
As1—Rb1—O1157.54 (12)Rb1i—Rb2—O2i34.62 (10)
As1—Rb1—O12157.54 (15)Rb1i—Rb2—O8i35.01 (10)
As1—Rb1—O5i78.83 (13)Rb1i—Rb2—Rb1111.09 (10)
As1—Rb1—O674.98 (12)Rb1i—Rb2—Ti157.31 (12)
As1—Rb1—O7i124.79 (16)Rb1i—Rb2—O161.22 (13)
As1—Rb1—O869.48 (18)Rb1i—Rb2—O587.53 (11)
As1—Rb1—Rb252.76 (10)O2i—Rb2—O8i64.3 (2)
As1—Rb1—Rb2139.84 (14)O2i—Rb2—Rb191.78 (14)
As1—Rb1—Rb263.76 (10)O2i—Rb2—Ti130.80 (13)
O1—Rb1—O253.68 (14)O2i—Rb2—O154.88 (14)
O1—Rb1—O3117.59 (18)O2i—Rb2—O554.67 (12)
O1—Rb1—O1150.64 (14)O8i—Rb2—Rb1143.63 (16)
O1—Rb1—O12150.19 (18)O8i—Rb2—Ti191.65 (18)
O1—Rb1—O5i51.16 (13)O8i—Rb2—O193.20 (18)
O1—Rb1—O686.44 (15)O8i—Rb2—O5118.8 (2)
O1—Rb1—O7i100.00 (16)Rb1—Rb2—Ti160.99 (14)
O1—Rb1—O886.5 (3)Rb1—Rb2—O150.61 (12)
O1—Rb1—Rb280.45 (13)Rb1—Rb2—O548.23 (12)
O1—Rb1—Rb2152.05 (15)Ti1—Rb2—O133.59 (14)
O1—Rb1—Rb242.69 (11)Ti1—Rb2—O532.55 (13)
O2—Rb1—O3139.29 (18)O1—Rb2—O555.89 (14)
O2—Rb1—O1183.11 (15)Rb2—Ti1—O1120.9 (3)
O2—Rb1—O12150.8 (2)Rb2—Ti1—O1147.48 (17)
O2—Rb1—O5i104.55 (16)Rb2—Ti1—O5i74.0 (2)
O2—Rb1—O651.71 (13)Rb2—Ti1—O2144.5 (3)
O2—Rb1—O7i153.20 (18)Rb2—Ti1—O6117.5 (2)
O2—Rb1—O873.42 (18)Rb2—Ti1—O12i55.5 (2)
O2—Rb1—Rb239.05 (11)Rb2—Ti1—Rb2122.4 (2)
O2—Rb1—Rb2111.55 (16)O1—Ti1—O1183.6 (3)
O2—Rb1—Rb275.04 (14)O1—Ti1—O5i78.6 (3)
O3—Rb1—O11124.26 (18)O1—Ti1—O283.3 (3)
O3—Rb1—O1258.32 (13)O1—Ti1—O686.5 (3)
O3—Rb1—O5i76.25 (14)O1—Ti1—O12i171.4 (4)
O3—Rb1—O690.84 (14)O1—Ti1—Rb245.30 (17)
O3—Rb1—O7i52.69 (12)O11—Ti1—O5i92.7 (3)
O3—Rb1—O8146.38 (18)O11—Ti1—O2166.6 (4)
O3—Rb1—Rb2156.50 (16)O11—Ti1—O688.9 (3)
O3—Rb1—Rb255.16 (13)O11—Ti1—O12i96.8 (3)
O3—Rb1—Rb277.89 (12)O11—Ti1—Rb2116.2 (3)
O11—Rb1—O12104.66 (17)O5i—Ti1—O287.6 (3)
O11—Rb1—O5i55.02 (12)O5i—Ti1—O6164.7 (3)
O11—Rb1—O6132.45 (14)O5i—Ti1—O12i92.8 (3)
O11—Rb1—O7i74.42 (14)O5i—Ti1—Rb249.73 (16)
O11—Rb1—O852.4 (4)O2—Ti1—O687.3 (3)
O11—Rb1—Rb278.45 (12)O2—Ti1—O12i96.5 (4)
O11—Rb1—Rb2157.30 (14)O2—Ti1—Rb254.9 (2)
O11—Rb1—Rb285.20 (13)O6—Ti1—O12i102.1 (3)
O12—Rb1—O5i102.81 (15)O6—Ti1—Rb2116.3 (2)
O12—Rb1—O6121.87 (17)O12i—Ti1—Rb2128.2 (3)
O12—Rb1—O7i52.52 (12)Rb1—Ti2—O344.80 (16)
O12—Rb1—O888.9 (2)Rb1—Ti2—O1249.99 (17)
O12—Rb1—Rb2113.92 (14)Rb1—Ti2—O7i60.6 (2)
O12—Rb1—Rb254.13 (12)Rb1—Ti2—O4128.7 (2)
O12—Rb1—Rb2132.96 (15)Rb1—Ti2—O11129.1 (3)
O5i—Rb1—O6116.89 (15)Rb1—Ti2—O8110.2 (4)
O5i—Rb1—O7i50.29 (12)O3—Ti2—O1283.8 (3)
O5i—Rb1—O8107.1 (4)O3—Ti2—O7i86.7 (3)
O5i—Rb1—Rb2126.66 (13)O3—Ti2—O4172.3 (3)
O5i—Rb1—Rb2131.40 (14)O3—Ti2—O1193.3 (3)
O5i—Rb1—Rb246.04 (11)O3—Ti2—O889.8 (3)
O6—Rb1—O7i141.81 (14)O12—Ti2—O7i86.1 (3)
O6—Rb1—O8115.2 (3)O12—Ti2—O488.6 (3)
O6—Rb1—Rb274.56 (10)O12—Ti2—O11175.8 (4)
O6—Rb1—Rb267.75 (11)O12—Ti2—O883.5 (4)
O6—Rb1—Rb270.88 (13)O7i—Ti2—O492.6 (3)
O7i—Rb1—O8102.8 (3)O7i—Ti2—O1196.7 (3)
O7i—Rb1—Rb2143.56 (13)O7i—Ti2—O8169.3 (5)
O7i—Rb1—Rb294.43 (13)O4—Ti2—O1194.3 (3)
O7i—Rb1—Rb288.50 (14)O4—Ti2—O889.5 (3)
O8—Rb1—Rb240.7 (2)O11—Ti2—O893.5 (4)
O8—Rb1—Rb2113.5 (3)Rb1—As1—O163.95 (19)
O8—Rb1—Rb2129.2 (3)Rb1—As1—O252.82 (17)
Rb2—Rb1—Rb2101.71 (13)Rb1—As1—O394.9 (2)
Rb2—Rb1—Rb2113.11 (10)Rb1—As1—O4154.2 (2)
Rb2—Rb1—Rb2114.72 (11)O1—As1—O2107.9 (2)
Rb1—Rb2—Ti155.92 (14)O1—As1—O3112.8 (3)
Rb1—Rb2—As2i54.17 (11)O1—As1—O4111.8 (3)
Rb1—Rb2—O478.21 (11)O2—As1—O3103.9 (3)
Rb1—Rb2—O1145.57 (11)O2—As1—O4110.7 (3)
Rb1—Rb2—O7i46.43 (10)O3—As1—O4109.4 (2)
Rb1—Rb2—Rb1119.01 (11)Rb2—As2i—O5i85.3 (2)
Rb1—Rb2—O3i127.52 (12)Rb2—As2i—O7i57.01 (17)
Rb1—Rb2—O12i80.61 (14)Rb2—As2i—O6i163.0 (2)
Rb1—Rb2—Rb1i102.03 (9)Rb2—As2i—O8i64.0 (4)
Rb1—Rb2—O2i135.38 (13)O5i—As2i—O7i106.8 (3)
Rb1—Rb2—O8i81.8 (2)O5i—As2i—O6i111.5 (2)
Rb1—Rb2—Rb1100.59 (14)O5i—As2i—O8i111.4 (3)
Rb1—Rb2—Ti1135.28 (15)O7i—As2i—O6i112.9 (3)
Rb1—Rb2—O1102.30 (15)O7i—As2i—O8i104.2 (4)
Rb1—Rb2—O5148.29 (15)O6i—As2i—O8i109.8 (4)
Ti1—Rb2—As2i55.02 (14)Rb1—O1—Ti196.4 (2)
Ti1—Rb2—O483.76 (14)Rb1—O1—As187.8 (2)
Ti1—Rb2—O1130.42 (14)Rb1—O1—Rb286.70 (17)
Ti1—Rb2—O7i76.34 (16)Ti1—O1—As1129.4 (3)
Ti1—Rb2—Rb165.79 (13)Ti1—O1—Rb2101.1 (2)
Ti1—Rb2—O3i78.33 (14)As1—O1—Rb2129.5 (3)
Ti1—Rb2—O12i26.63 (13)Rb1—O2—As198.6 (2)
Ti1—Rb2—Rb1i97.60 (13)Rb1—O2—Ti1121.9 (3)
Ti1—Rb2—O2i121.32 (17)Rb1—O2—Rb2106.33 (18)
Ti1—Rb2—O8i62.60 (15)As1—O2—Ti1130.0 (3)
Ti1—Rb2—Rb1146.87 (16)As1—O2—Rb2101.5 (2)
Ti1—Rb2—Ti1152.06 (18)Ti1—O2—Rb294.3 (3)
Ti1—Rb2—O1147.77 (17)Rb1—O3—Ti2103.8 (2)
Ti1—Rb2—O5153.47 (17)Rb1—O3—As1128.1 (2)
As2i—Rb2—O4128.41 (14)Rb1—O3—Rb279.61 (14)
As2i—Rb2—O1175.48 (15)Ti2—O3—As1127.5 (3)
As2i—Rb2—O7i28.45 (11)Ti2—O3—Rb297.9 (2)
As2i—Rb2—Rb1105.23 (13)As1—O3—Rb298.5 (2)
As2i—Rb2—O3i79.98 (12)Rb2—O4—Ti298.2 (2)
As2i—Rb2—O12i58.46 (13)Rb2—O4—As1126.5 (2)
As2i—Rb2—Rb1i52.37 (9)Ti2—O4—As1131.3 (3)
As2i—Rb2—O2i86.64 (15)Rb1—O11—Rb295.66 (15)
As2i—Rb2—O8i28.2 (2)Rb1—O11—Ti195.5 (2)
As2i—Rb2—Rb1133.65 (13)Rb1—O11—Ti298.8 (3)
As2i—Rb2—Ti1107.18 (16)Rb2—O11—Ti1102.1 (2)
As2i—Rb2—O193.43 (16)Rb2—O11—Ti2110.8 (3)
As2i—Rb2—O5139.32 (15)Ti1—O11—Ti2142.4 (3)
O4—Rb2—O1155.71 (13)Rb1—O12—Ti296.4 (2)
O4—Rb2—O7i123.00 (16)Rb1—O12—Rb277.44 (16)
O4—Rb2—Rb179.39 (13)Rb1—O12—Ti1123.9 (3)
O4—Rb2—O3i124.39 (15)Ti2—O12—Rb296.6 (2)
O4—Rb2—O12i98.95 (14)Ti2—O12—Ti1139.3 (3)
O4—Rb2—Rb1i178.52 (13)Rb2—O12—Ti197.9 (3)
O4—Rb2—O2i144.78 (15)Rb1—O5i—Ti1101.5 (3)
O4—Rb2—O8i146.34 (15)Rb1—O5i—As2i104.4 (2)
O4—Rb2—Rb167.44 (11)Rb1—O5i—Rb285.73 (14)
O4—Rb2—Ti1121.50 (15)Ti1—O5i—As2i131.5 (3)
O4—Rb2—O1117.30 (17)Ti1—O5i—Rb297.7 (2)
O4—Rb2—O591.52 (13)As2i—O5i—Rb2124.4 (2)
O11—Rb2—O7i85.66 (16)Rb1—O6—Ti197.6 (2)
O11—Rb2—Rb175.18 (12)Rb1—O6—As2128.7 (2)
O11—Rb2—O3i104.29 (14)Ti1—O6—As2133.5 (3)
O11—Rb2—O12i54.31 (13)Rb1—O7i—Rb292.79 (15)
O11—Rb2—Rb1i125.48 (14)Rb1—O7i—Ti288.4 (2)
O11—Rb2—O2i151.51 (17)Rb1—O7i—As2i93.2 (2)
O11—Rb2—O8i91.12 (17)Rb2—O7i—Ti2139.8 (3)
O11—Rb2—Rb1116.62 (15)Rb2—O7i—As2i94.5 (2)
O11—Rb2—Ti1177.21 (17)Ti2—O7i—As2i125.5 (3)
O11—Rb2—O1146.46 (19)Rb1—O8—Ti2109.7 (6)
O11—Rb2—O5144.91 (16)Rb1—O8—Rb2104.3 (2)
O7i—Rb2—Rb1133.66 (15)Rb1—O8—As2114.1 (4)
O7i—Rb2—O3i103.08 (14)Ti2—O8—Rb299.0 (2)
O7i—Rb2—O12i86.13 (15)Ti2—O8—As2132.4 (3)
O7i—Rb2—Rb1i56.93 (11)Rb2—O8—As287.8 (6)
Symmetry code: (i) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaRbTiOAsO4
Mr288.27
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)295
a, b, c (Å)13.26 (2), 6.677 (7), 10.766 (7)
V3)953.5 (18)
Z8
Radiation typeNeutron, λ = 1.207 Å
µ (mm1)0.01
Crystal size (mm)5 × 3 × 2
Data collection
DiffractometerHuber four-circle
diffractometer
Absorption correction
No. of measured, independent and
observed (F > 0) reflections
1174, 1153, 1153
Rint0
(sin θ/λ)max1)0.653
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.033, 1.36
No. of reflections1153
No. of parameters145
Δρmax, Δρmin (e Å3)0.06, 0.06

Computer programs: Huber diffractometer software, Xtal3.6 DIFDAT ADDREF SORTRF (Hall et al., 1999), Xtal3.6 CRYLSQ, Xtal3.6 CIFIO.

Selected bond lengths (Å) top
Rb1—O13.138 (6)Rb2—O43.025 (5)
Rb1—O22.812 (6)Rb2—O112.879 (6)
Rb1—O32.762 (6)Rb2—O7i2.992 (5)
Rb1—O113.283 (6)Rb2—O3i3.193 (6)
Rb1—O122.933 (6)Rb2—O12i3.177 (6)
Rb1—O5i3.031 (6)Rb2—O2i3.118 (6)
Rb1—O63.392 (6)Rb2—O8i3.198 (12)
Rb1—O7i3.318 (6)Rb2—O12.753 (6)
Rb1—O82.812 (7)Rb2—O52.926 (6)
Symmetry code: (i) x+1/2, y+1/2, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds