Download citation
Download citation
link to html
The title compound, C10H9NO2S, has a boat-shaped heterocyclic six-membered ring such that the S and N atoms lie essentially in the plane of the benzene ring while the remaining two C atoms are above this plane.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100005692/qa0206sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100005692/qa0206Isup2.hkl
Contains datablock I

CCDC reference: 145663

Comment top

4H-1,4-Benzothiazines have been reported to possess a wide spectrum of pharmacological properties similar to phenothiazines (Krapcho, 1976; Keyzer et al., 1992; Chihara et al., 1984; Corona et al., 1992; Hiroyuki et al., 1990). These products constitute an interesting series of heterocyclic compounds, not only from their biological activities, but also for structural investigations

The structure of the title compound, (I), was assigned on the basis of NMR and IR spectroscopy, and mass spectrometry, and by X-ray crystallography in order to establish its structure in the solid state. The S and N atoms of the six-membered heterocyclic ring lie almost in the plane of the benzene ring, such that the dihedral angle between the mean C6 and SCCN planes is 176.4 (6)°. The other two C atoms of the heterocylic ring lie 0.4806 (3) and 1.0163 (3) Å above the SCCN mean plane. This corresponds to a boat conformation for the ring.

Experimental top

Dithioanilin (10 g, 0.04 mol) was refluxed in a 250 ml two-necked round-bottomed flask equipped with a reflux condenser and a dropping funnel. Then ethyl acetoacetate (0.08 mol) in xylol (15 ml) was added dropwise. After 1.5 h the reaction was stopped, the solvent volume was reduced and the solution was allowed to settle. The product obtained was filtered off, washed with ether and recrystallized from ethanol (yield: 60%, m.p.: 447–449 K).

Refinement top

The difference Fourier maps showed that the methyl H atoms attached to the C14 atom have two equilibrium positions with an equal occupancy of 0.5.

Computing details top

Data collection: KappaCCD software; data reduction: DENZO and SCALEPAK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: maXus (Mackay et al., 1999); software used to prepare material for publication: maXus.

(I) top
Crystal data top
C10H9NO2SF(000) = 432
Mr = 207.25Dx = 1.448 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.384 (1) ÅCell parameters from 6857 reflections
b = 10.202 (1) Åθ = 1–26.4°
c = 14.942 (2) ŵ = 0.31 mm1
β = 146.816 (6)°T = 298 K
V = 950.0 (9) Å3Cube, colourless
Z = 40.35 × 0.30 × 0.30 mm
Data collection top
KappaCCD
diffractometer
Rint = 0.023
Radiation source: fine-focus sealed tubeθmax = 26.4°
ϕ scanh = 1414
2011 measured reflectionsk = 120
1900 independent reflectionsl = 1814
1741 reflections with I > 3σ(I)
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: geom, diff
R[F2 > 2σ(F2)] = 0.032H-atom parameters not refined
wR(F2) = 0.045Weighting scheme based on measured s.u.'s w = 1/[σ2(Fo2) + 0.03Fo2]
S = 1.18(Δ/σ)max = 0.005
1741 reflectionsΔρmax = 0.22 e Å3
127 parametersΔρmin = 0.26 e Å3
Primary atom site location: structure-invariant direct methods
Crystal data top
C10H9NO2SV = 950.0 (9) Å3
Mr = 207.25Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.384 (1) ŵ = 0.31 mm1
b = 10.202 (1) ÅT = 298 K
c = 14.942 (2) Å0.35 × 0.30 × 0.30 mm
β = 146.816 (6)°
Data collection top
KappaCCD
diffractometer
1741 reflections with I > 3σ(I)
2011 measured reflectionsRint = 0.023
1900 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.032127 parameters
wR(F2) = 0.045H-atom parameters not refined
S = 1.18Δρmax = 0.22 e Å3
1741 reflectionsΔρmin = 0.26 e Å3
Special details top

Refinement. Refinement on F2.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.04468 (2)0.036131 (13)0.859442 (14)0.06158 (5)
O20.24298 (4)0.07377 (3)0.82898 (3)0.0763 (2)
O30.04470 (5)0.20333 (3)0.64665 (4)0.1068 (2)
N40.34585 (5)0.08011 (3)0.99404 (4)0.0552 (2)
C50.19747 (6)0.00268 (3)0.86074 (4)0.0545 (2)
C60.03175 (5)0.01477 (3)0.74704 (4)0.0503 (2)
C70.14659 (6)0.12712 (4)0.62642 (5)0.0633 (2)
C80.31115 (6)0.17569 (3)1.03816 (4)0.0499 (2)
C90.13345 (6)0.16913 (3)0.98148 (4)0.0494 (2)
C100.43311 (7)0.36795 (4)1.19302 (5)0.0832 (2)
C110.46010 (6)0.27535 (4)1.14367 (5)0.0680 (2)
C120.10690 (6)0.26411 (4)1.03062 (5)0.0671 (2)
C130.25574 (7)0.36276 (4)1.13566 (5)0.0867 (3)
C140.38369 (7)0.13880 (4)0.48812 (5)0.0721 (2)
H60.103650.065030.685140.05000*
H100.537410.436351.267020.05000*
H110.582200.280051.182470.05000*
H120.015800.260210.991230.05000*
H130.236640.427861.169160.05000*
H14A0.435190.213600.422720.05000*0.50
H14B0.415390.149500.530320.05000*0.50
H14C0.452790.061100.422120.05000*0.50
H40.470150.074811.045440.05000*
H14D0.450090.055000.484020.05000*0.50
H14E0.414090.227200.498720.05000*0.50
H14F0.449990.139100.380220.05000*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.03280 (5)0.03968 (5)0.03646 (5)0.00362 (4)0.03083 (5)0.00045 (4)
O20.0398 (2)0.0418 (2)0.0488 (2)0.00110 (10)0.0390 (2)0.00850 (10)
O30.0585 (2)0.0556 (2)0.0666 (2)0.0033 (2)0.0546 (2)0.0165 (2)
N40.0256 (2)0.0380 (2)0.0342 (2)0.00050 (10)0.0257 (2)0.00380 (10)
C50.0307 (2)0.0293 (2)0.0326 (2)0.0018 (2)0.0275 (2)0.0022 (2)
C60.0274 (2)0.0278 (2)0.0299 (2)0.0016 (2)0.0243 (2)0.0020 (2)
C70.0388 (2)0.0334 (2)0.0352 (2)0.0006 (2)0.0325 (2)0.0003 (2)
C80.0288 (2)0.0308 (2)0.0267 (2)0.0026 (2)0.0238 (2)0.0026 (2)
C90.0284 (2)0.0317 (2)0.0257 (2)0.0033 (2)0.0230 (2)0.0037 (2)
C100.0548 (3)0.0402 (2)0.0420 (3)0.0126 (2)0.0408 (3)0.0118 (2)
C110.0378 (2)0.0437 (2)0.0373 (2)0.0096 (2)0.0323 (2)0.0072 (2)
C120.0374 (2)0.0468 (2)0.0351 (2)0.0081 (2)0.0313 (2)0.0038 (2)
C130.0579 (3)0.0422 (3)0.0441 (3)0.0051 (2)0.0439 (3)0.0024 (2)
C140.0378 (2)0.0465 (3)0.0368 (2)0.0073 (2)0.0284 (2)0.0067 (2)
Geometric parameters (Å, º) top
S1—C61.8181 (5)C7—C141.4948 (8)
S1—C91.7579 (5)C8—C91.3952 (6)
O2—C51.2299 (6)C8—C111.3864 (7)
O3—C71.2061 (6)C9—C121.3928 (7)
N4—C51.3462 (6)C10—C111.3823 (8)
N4—C81.4060 (6)C10—C131.3852 (9)
C5—C61.5134 (7)C12—C131.3771 (8)
C6—C71.5251 (7)
C6—S1—C997.84 (2)N4—C8—C9121.16 (5)
C5—N4—C8127.16 (4)N4—C8—C11119.11 (4)
O2—C5—N4121.89 (4)C9—C8—C11119.91 (5)
O2—C5—C6120.41 (4)S1—C9—C8119.60 (4)
N4—C5—C6117.58 (4)S1—C9—C12120.92 (4)
S1—C6—C5111.68 (3)C8—C9—C12119.39 (5)
S1—C6—C7110.51 (3)C11—C10—C13120.18 (5)
C5—C6—C7110.81 (4)C8—C11—C10120.13 (5)
O3—C7—C6119.72 (5)C9—C12—C13120.46 (5)
O3—C7—C14122.68 (5)C10—C13—C12119.95 (5)
C6—C7—C14117.65 (4)

Experimental details

Crystal data
Chemical formulaC10H9NO2S
Mr207.25
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)11.384 (1), 10.202 (1), 14.942 (2)
β (°) 146.816 (6)
V3)950.0 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.35 × 0.30 × 0.30
Data collection
DiffractometerKappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 3σ(I)] reflections
2011, 1900, 1741
Rint0.023
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.045, 1.18
No. of reflections1741
No. of parameters127
No. of restraints?
H-atom treatmentH-atom parameters not refined
Δρmax, Δρmin (e Å3)0.22, 0.26

Computer programs: KappaCCD software, DENZO and SCALEPAK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), maXus (Mackay et al., 1999), maXus.

 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds