organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[(4-cyano­benz­yl)ammonium] bis­­(perchlorate) monohydrate

aSchool of Chemical Engineering, Yunnan Radio and TV University, Kunming 650023, People's Republic of China
*Correspondence e-mail: huangyao308sys@yahoo.com.cn

(Received 14 October 2011; accepted 16 November 2011; online 25 November 2011)

The asymmetric unit of the title compound, 2C8H9N2+·2ClO4·H2O, consists of two (4-cyano­benz­yl)>ammonium cations, two disordered ClO4 anions and one water mol­ecule. The differences in the two cations are reflected in the N—C—C—C torsion angles [−94.7 (3) and −115.9 (3)°]. In addition, the cations show different hydrogen-bonding patterns as one N atom bonds to two O atoms of ClO4 ions, while the other N atom is involved in hydrogen bonding with the O atoms of the ClO4 ions and water mol­ecules. In the crystal, N—H⋯O and O—H⋯O hydrogen bonds result in a three-dimensional network. An O atom in each of the anions is disordered over two positions of equal occupancy.

Related literature

For a related structure, see: Shahwar et al. (2009[Shahwar, D., Tahir, M. N., Ahmad, N., Khan, M. A. & Yasmeen, A. (2009). Acta Cryst. E65, o1312.]).

[Scheme 1]

Experimental

Crystal data
  • 2C8H9N2+·2ClO4·H2O

  • Mr = 483.26

  • Triclinic, [P \overline 1]

  • a = 5.0305 (10) Å

  • b = 13.616 (3) Å

  • c = 16.695 (3) Å

  • α = 66.79 (3)°

  • β = 86.17 (3)°

  • γ = 88.97 (3)°

  • V = 1048.6 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 293 K

  • 0.29 × 0.25 × 0.21 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.8, Tmax = 0.9

  • 10950 measured reflections

  • 4796 independent reflections

  • 3490 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.179

  • S = 1.00

  • 4796 reflections

  • 285 parameters

  • 62 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.70 e Å−3

  • Δρmin = −0.70 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2C⋯O1i 0.89 2.32 2.77 (3) 111
N2—H2C⋯O2ii 0.89 2.34 3.015 (4) 133
N2—H2C⋯O1′i 0.89 2.42 2.96 (3) 120
N2—H2C⋯O5′i 0.89 2.46 2.905 (9) 112
N2—H2C⋯O5i 0.89 2.55 3.036 (9) 115
N2—H2E⋯O7iii 0.89 2.43 3.306 (5) 167
N2—H2E⋯O5iii 0.89 2.45 3.176 (8) 139
N4—H4C⋯O1Wiv 0.89 1.96 2.845 (4) 177
N4—H4D⋯O3iv 0.89 2.15 3.002 (5) 159
O1W—H1WA⋯O6v 0.82 (1) 2.02 (1) 2.839 (5) 173 (5)
O1W—H1WB⋯O7ii 0.82 (1) 2.21 (2) 2.991 (4) 160 (4)
O1W—H1WB⋯Cl2ii 0.82 (1) 2.98 (3) 3.593 (3) 133 (4)
N2—H2D⋯O2 0.89 2.25 3.096 (5) 158
N2—H2D⋯O3 0.89 2.40 3.154 (5) 143
N4—H4B⋯O1W 0.89 2.25 3.011 (4) 143
N4—H4B⋯O1′ 0.89 2.50 3.04 (3) 119
N4—H4B⋯O5′ 0.89 2.66 3.225 (8) 123
N4—H4D⋯O4 0.89 2.63 3.202 (5) 123
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) x+1, y, z; (iii) -x+1, -y+1, -z+1; (iv) x-1, y, z; (v) -x+1, -y, -z+1.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Recently, the crystal structure phenylmethanaminium chloroacetate (Shahwar et al., 2009) has been reported. In our laboratory, a compound containing protonated 4-(aminomethyl)benzonitrile, ClO4- anions and water molecule has been synthesized. In this paper, we report the crystal structure of the title compound.

The asymmetric unit of the title compound, consists of two independent 4-(aminomethyl)benzonitrile cations, two disorder ClO4- anions and a water molecule. The dihedral angle between the 4-(aminomethyl)benzonitrile planes in the two cations is 7.25(9 )°. The atoms N2 and N4 are displaced out of these planes (C9–C16/N1 and C1–C8/N3) by 1.93 (3) and 1.325 (3) Å, respectively, with torsion angles C9/C12—C14/N2 and C6/C5—C2/N4 being -94.7 (3) and -115.9 (3) °, respectively.

The cations show different hydrogen bonding patterns as N2 atom bonds to two O atoms of ClO4- ions, while N2 atom is involved in hydrogen bonding with the O atoms of the ClO4- ions and H2O of hydration. In the crystal structure, intermolecular hydrogen bonds of the types N—H···O and O—H···O result in a three-dimensional network thus stabilizing the structure. (Tab. 1 & Fig. 2).

Related literature top

For a related structure, see: Shahwar et al. (2009).

Experimental top

4-(Aminomethyl)benzonitrile (20 mmol, 2.64 g) and 10% aqueous HClO4 in a molar ratio of 1:1 were mixed and dissolved in 50 ml water by heating to 363 K forming a clear solution. The reaction mixture was cooled slowly to room temperature, block crystals of the title compound were formed after five days.

Refinement top

The H atoms were placed in calculated positions, with C—H = 0.93–0.97 Å and N—H = 0.89 Å, and refined using a riding model, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(N). The H-atoms of water molecule were located from a difference Fourier map and were allowed to refine with O—H = 0.82 (1) Å constrains. For the disordered ClO4-, SIMU and DELU commands in SHELXL-97 (Sheldrick, 2008) were used to restrict their Ueq.

Structure description top

Recently, the crystal structure phenylmethanaminium chloroacetate (Shahwar et al., 2009) has been reported. In our laboratory, a compound containing protonated 4-(aminomethyl)benzonitrile, ClO4- anions and water molecule has been synthesized. In this paper, we report the crystal structure of the title compound.

The asymmetric unit of the title compound, consists of two independent 4-(aminomethyl)benzonitrile cations, two disorder ClO4- anions and a water molecule. The dihedral angle between the 4-(aminomethyl)benzonitrile planes in the two cations is 7.25(9 )°. The atoms N2 and N4 are displaced out of these planes (C9–C16/N1 and C1–C8/N3) by 1.93 (3) and 1.325 (3) Å, respectively, with torsion angles C9/C12—C14/N2 and C6/C5—C2/N4 being -94.7 (3) and -115.9 (3) °, respectively.

The cations show different hydrogen bonding patterns as N2 atom bonds to two O atoms of ClO4- ions, while N2 atom is involved in hydrogen bonding with the O atoms of the ClO4- ions and H2O of hydration. In the crystal structure, intermolecular hydrogen bonds of the types N—H···O and O—H···O result in a three-dimensional network thus stabilizing the structure. (Tab. 1 & Fig. 2).

For a related structure, see: Shahwar et al. (2009).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with atom labels. Displacement ellipsoids were drawn at the 30% probability level. The oxygen atoms of the anions O1/O1' and O5/O5' were disordered in a 1:1 ratio.
[Figure 2] Fig. 2. The packing viewed along the a-axis. Hydrogen bonds are drawn as dashed lines
Bis[(4-cyanobenzyl)ammonium] bis(perchlorate) monohydrate top
Crystal data top
2C8H9N2+·2ClO4·H2OZ = 2
Mr = 483.26F(000) = 500
Triclinic, P1Dx = 1.531 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.0305 (10) ÅCell parameters from 3490 reflections
b = 13.616 (3) Åθ = 3.3–27.5°
c = 16.695 (3) ŵ = 0.37 mm1
α = 66.79 (3)°T = 293 K
β = 86.17 (3)°Block, colorless
γ = 88.97 (3)°0.29 × 0.25 × 0.21 mm
V = 1048.6 (4) Å3
Data collection top
Rigaku SCXmini
diffractometer
4796 independent reflections
Radiation source: fine-focus sealed tube3490 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.3°
ω scansh = 66
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1717
Tmin = 0.8, Tmax = 0.9l = 2121
10950 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.066H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.179 w = 1/[σ2(Fo2) + (0.0699P)2 + 1.794P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
4796 reflectionsΔρmax = 0.70 e Å3
285 parametersΔρmin = 0.70 e Å3
62 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.047 (4)
Crystal data top
2C8H9N2+·2ClO4·H2Oγ = 88.97 (3)°
Mr = 483.26V = 1048.6 (4) Å3
Triclinic, P1Z = 2
a = 5.0305 (10) ÅMo Kα radiation
b = 13.616 (3) ŵ = 0.37 mm1
c = 16.695 (3) ÅT = 293 K
α = 66.79 (3)°0.29 × 0.25 × 0.21 mm
β = 86.17 (3)°
Data collection top
Rigaku SCXmini
diffractometer
4796 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
3490 reflections with I > 2σ(I)
Tmin = 0.8, Tmax = 0.9Rint = 0.038
10950 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06662 restraints
wR(F2) = 0.179H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.70 e Å3
4796 reflectionsΔρmin = 0.70 e Å3
285 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.5034 (8)0.8947 (3)0.0455 (3)0.0622 (10)
N21.2660 (6)0.6834 (3)0.36264 (19)0.0446 (7)
H2C1.38920.65730.40130.067*
H2D1.14630.63270.37020.067*
H2E1.18550.73820.37020.067*
C111.0956 (8)0.6906 (3)0.1705 (2)0.0445 (9)
H11A1.15340.62020.19060.053*
C151.1073 (8)0.8638 (3)0.1743 (2)0.0431 (8)
H15A1.17370.91040.19660.052*
C130.8291 (7)0.8294 (3)0.0775 (2)0.0367 (7)
C101.1925 (7)0.7590 (3)0.2048 (2)0.0363 (7)
C140.9249 (8)0.8999 (3)0.1109 (2)0.0441 (8)
H14A0.86680.97020.09090.053*
C91.3941 (7)0.7202 (3)0.2730 (2)0.0474 (9)
H9A1.49380.66180.26660.057*
H9B1.51880.77770.26410.057*
C160.6445 (8)0.8667 (3)0.0090 (2)0.0444 (8)
C120.9149 (8)0.7251 (3)0.1071 (2)0.0443 (8)
H12A0.85100.67850.08440.053*
N30.4792 (8)0.3873 (3)0.0191 (2)0.0595 (9)
N40.3279 (6)0.2507 (3)0.37842 (19)0.0423 (7)
H4B0.45200.22840.41710.063*
H4C0.17830.21340.40110.063*
H4D0.29680.31970.36530.063*
C30.1437 (8)0.3734 (3)0.1900 (2)0.0444 (8)
H3A0.21870.42460.20580.053*
C10.4220 (7)0.2352 (3)0.2980 (2)0.0459 (9)
H1A0.46460.16050.31330.055*
H1B0.58390.27670.27330.055*
C80.3365 (8)0.3600 (3)0.0352 (2)0.0433 (8)
C60.0743 (8)0.2218 (3)0.1421 (3)0.0458 (9)
H6A0.14690.17060.12580.055*
C20.2180 (7)0.2681 (3)0.2300 (2)0.0371 (7)
C70.1075 (8)0.1923 (3)0.2058 (3)0.0464 (9)
H7A0.15600.12100.23260.056*
C40.0396 (8)0.4042 (3)0.1271 (2)0.0438 (8)
H4A0.09010.47530.10130.053*
C50.1485 (7)0.3278 (3)0.1025 (2)0.0375 (7)
Cl10.81260 (16)0.45679 (7)0.38569 (6)0.0390 (2)
O10.771 (5)0.356 (3)0.4610 (17)0.068 (5)0.50
O1'0.709 (6)0.363 (3)0.4491 (18)0.073 (5)0.50
O20.7525 (6)0.5448 (3)0.4098 (2)0.0673 (9)
O31.0947 (6)0.4613 (3)0.3634 (2)0.0665 (9)
O40.6749 (6)0.4664 (3)0.3112 (2)0.0647 (8)
Cl20.23525 (17)0.09462 (7)0.62797 (6)0.0409 (2)
O60.3449 (6)0.0479 (3)0.5708 (2)0.0705 (5)
O70.0484 (6)0.0887 (3)0.6317 (2)0.0705 (5)
O80.3295 (6)0.0431 (3)0.7120 (2)0.0705 (5)
O50.2648 (14)0.2074 (7)0.6001 (5)0.0705 (5)0.50
O5'0.3568 (14)0.1992 (7)0.5835 (5)0.0705 (5)0.50
O1W0.8375 (6)0.1387 (3)0.4461 (2)0.0520 (7)
H1WA0.799 (10)0.083 (2)0.442 (3)0.075 (17)*
H1WB0.827 (9)0.128 (4)0.4981 (8)0.059 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.070 (2)0.057 (2)0.063 (2)0.0166 (18)0.035 (2)0.0242 (18)
N20.0431 (17)0.0548 (19)0.0367 (16)0.0024 (14)0.0109 (13)0.0175 (14)
C110.053 (2)0.0374 (19)0.044 (2)0.0122 (16)0.0147 (17)0.0160 (16)
C150.050 (2)0.0426 (19)0.0417 (19)0.0012 (16)0.0097 (16)0.0209 (16)
C130.0365 (17)0.0427 (19)0.0316 (17)0.0051 (14)0.0069 (13)0.0150 (14)
C100.0326 (17)0.0454 (19)0.0301 (16)0.0022 (14)0.0032 (13)0.0138 (14)
C140.052 (2)0.0365 (19)0.045 (2)0.0070 (16)0.0091 (16)0.0166 (16)
C90.0368 (19)0.067 (3)0.0360 (19)0.0068 (17)0.0091 (15)0.0168 (18)
C160.047 (2)0.043 (2)0.044 (2)0.0073 (16)0.0117 (17)0.0164 (16)
C120.054 (2)0.0408 (19)0.043 (2)0.0017 (16)0.0142 (17)0.0193 (16)
N30.069 (2)0.060 (2)0.057 (2)0.0119 (18)0.0292 (19)0.0274 (18)
N40.0353 (15)0.0513 (18)0.0396 (16)0.0022 (13)0.0093 (12)0.0159 (14)
C30.050 (2)0.0411 (19)0.046 (2)0.0003 (16)0.0115 (16)0.0202 (16)
C10.0342 (18)0.060 (2)0.044 (2)0.0085 (16)0.0076 (15)0.0213 (18)
C80.047 (2)0.045 (2)0.042 (2)0.0020 (16)0.0067 (17)0.0199 (17)
C60.050 (2)0.043 (2)0.051 (2)0.0010 (16)0.0124 (17)0.0240 (17)
C20.0331 (17)0.047 (2)0.0338 (17)0.0030 (14)0.0021 (13)0.0184 (15)
C70.053 (2)0.0351 (19)0.051 (2)0.0074 (16)0.0103 (17)0.0154 (16)
C40.051 (2)0.0361 (18)0.044 (2)0.0040 (16)0.0105 (16)0.0151 (16)
C50.0357 (18)0.0453 (19)0.0314 (16)0.0024 (14)0.0042 (13)0.0149 (15)
Cl10.0360 (4)0.0405 (5)0.0415 (5)0.0010 (3)0.0033 (3)0.0172 (4)
O10.090 (12)0.056 (5)0.042 (8)0.005 (7)0.005 (8)0.004 (6)
O1'0.100 (12)0.061 (8)0.043 (6)0.033 (8)0.028 (6)0.000 (5)
O20.0622 (19)0.066 (2)0.094 (2)0.0170 (15)0.0153 (17)0.0525 (19)
O30.0370 (15)0.077 (2)0.095 (2)0.0056 (14)0.0030 (15)0.0434 (19)
O40.0577 (18)0.087 (2)0.0553 (18)0.0067 (16)0.0151 (14)0.0324 (17)
Cl20.0403 (5)0.0452 (5)0.0388 (5)0.0029 (4)0.0029 (3)0.0181 (4)
O60.0604 (11)0.0881 (12)0.0651 (11)0.0018 (9)0.0026 (8)0.0325 (9)
O70.0604 (11)0.0881 (12)0.0651 (11)0.0018 (9)0.0026 (8)0.0325 (9)
O80.0604 (11)0.0881 (12)0.0651 (11)0.0018 (9)0.0026 (8)0.0325 (9)
O50.0604 (11)0.0881 (12)0.0651 (11)0.0018 (9)0.0026 (8)0.0325 (9)
O5'0.0604 (11)0.0881 (12)0.0651 (11)0.0018 (9)0.0026 (8)0.0325 (9)
O1W0.0477 (16)0.0612 (19)0.0485 (17)0.0074 (14)0.0066 (13)0.0222 (15)
Geometric parameters (Å, º) top
N1—C161.132 (5)C3—H3A0.9300
N2—C91.482 (5)C1—C21.510 (5)
N2—H2C0.8900C1—H1A0.9700
N2—H2D0.8900C1—H1B0.9700
N2—H2E0.8900C8—C51.444 (5)
C11—C121.374 (5)C6—C71.382 (5)
C11—C101.380 (5)C6—C51.386 (5)
C11—H11A0.9300C6—H6A0.9300
C15—C141.381 (5)C2—C71.384 (5)
C15—C101.384 (5)C7—H7A0.9300
C15—H15A0.9300C4—C51.392 (5)
C13—C121.379 (5)C4—H4A0.9300
C13—C141.393 (5)Cl1—O1'1.38 (3)
C13—C161.447 (5)Cl1—O41.423 (3)
C10—C91.506 (5)Cl1—O21.428 (3)
C14—H14A0.9300Cl1—O31.439 (3)
C9—H9A0.9700Cl1—O11.45 (3)
C9—H9B0.9700Cl2—O81.410 (3)
C12—H12A0.9300Cl2—O61.420 (3)
N3—C81.135 (5)Cl2—O51.426 (9)
N4—C11.486 (5)Cl2—O71.426 (3)
N4—H4B0.8900Cl2—O5'1.445 (9)
N4—H4C0.8900O5—O5'0.557 (8)
N4—H4D0.8900O1W—H1WA0.820 (2)
C3—C41.377 (5)O1W—H1WB0.820 (2)
C3—C21.379 (5)
C9—N2—H2C109.5N4—C1—H1B109.1
C9—N2—H2D109.5C2—C1—H1B109.1
H2C—N2—H2D109.5H1A—C1—H1B107.8
C9—N2—H2E109.5N3—C8—C5178.1 (5)
H2C—N2—H2E109.5C7—C6—C5119.9 (3)
H2D—N2—H2E109.5C7—C6—H6A120.0
C12—C11—C10120.8 (3)C5—C6—H6A120.0
C12—C11—H11A119.6C3—C2—C7119.3 (3)
C10—C11—H11A119.6C3—C2—C1120.8 (3)
C14—C15—C10120.6 (3)C7—C2—C1119.9 (3)
C14—C15—H15A119.7C6—C7—C2120.4 (3)
C10—C15—H15A119.7C6—C7—H7A119.8
C12—C13—C14120.5 (3)C2—C7—H7A119.8
C12—C13—C16119.6 (3)C3—C4—C5119.4 (3)
C14—C13—C16119.8 (3)C3—C4—H4A120.3
C11—C10—C15119.4 (3)C5—C4—H4A120.3
C11—C10—C9120.1 (3)C6—C5—C4119.8 (3)
C15—C10—C9120.5 (3)C6—C5—C8120.5 (3)
C15—C14—C13119.0 (3)C4—C5—C8119.6 (3)
C15—C14—H14A120.5O1'—Cl1—O4102.7 (9)
C13—C14—H14A120.5O1'—Cl1—O2110.4 (14)
N2—C9—C10111.8 (3)O4—Cl1—O2110.4 (2)
N2—C9—H9A109.3O1'—Cl1—O3117.5 (13)
C10—C9—H9A109.3O4—Cl1—O3108.8 (2)
N2—C9—H9B109.3O2—Cl1—O3106.82 (19)
C10—C9—H9B109.3O1'—Cl1—O114.8 (18)
H9A—C9—H9B107.9O4—Cl1—O1115.4 (10)
N1—C16—C13178.5 (4)O2—Cl1—O1110.3 (11)
C11—C12—C13119.6 (3)O3—Cl1—O1104.6 (11)
C11—C12—H12A120.2O8—Cl2—O6110.8 (2)
C13—C12—H12A120.2O8—Cl2—O5109.5 (4)
C1—N4—H4B109.5O6—Cl2—O5117.2 (3)
C1—N4—H4C109.5O8—Cl2—O7110.7 (2)
H4B—N4—H4C109.5O6—Cl2—O7109.4 (2)
C1—N4—H4D109.5O5—Cl2—O798.7 (3)
H4B—N4—H4D109.5O8—Cl2—O5'110.7 (4)
H4C—N4—H4D109.5O6—Cl2—O5'97.5 (3)
C4—C3—C2121.1 (3)O5—Cl2—O5'22.3 (3)
C4—C3—H3A119.4O7—Cl2—O5'117.1 (3)
C2—C3—H3A119.4O5'—O5—Cl280.8 (15)
N4—C1—C2112.7 (3)O5—O5'—Cl276.9 (15)
N4—C1—H1A109.1H1WA—O1W—H1WB108 (5)
C2—C1—H1A109.1
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2C···O1i0.892.322.77 (3)111
N2—H2C···O2ii0.892.343.015 (4)133
N2—H2C···O1i0.892.422.96 (3)120
N2—H2C···O5i0.892.462.905 (9)112
N2—H2C···O5i0.892.553.036 (9)115
N2—H2E···O7iii0.892.433.306 (5)167
N2—H2E···O5iii0.892.453.176 (8)139
N4—H4C···O1Wiv0.891.962.845 (4)177
N4—H4D···O3iv0.892.153.002 (5)159
O1W—H1WA···O6v0.82 (1)2.02 (1)2.839 (5)173 (5)
O1W—H1WB···O7ii0.82 (1)2.21 (2)2.991 (4)160 (4)
O1W—H1WB···Cl2ii0.82 (1)2.98 (3)3.593 (3)133 (4)
N2—H2D···O20.892.253.096 (5)158
N2—H2D···O30.892.403.154 (5)143
N4—H4B···O1W0.892.253.011 (4)143
N4—H4B···O10.892.503.04 (3)119
N4—H4B···O50.892.663.225 (8)123
N4—H4D···O40.892.633.202 (5)123
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y, z; (iii) x+1, y+1, z+1; (iv) x1, y, z; (v) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula2C8H9N2+·2ClO4·H2O
Mr483.26
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)5.0305 (10), 13.616 (3), 16.695 (3)
α, β, γ (°)66.79 (3), 86.17 (3), 88.97 (3)
V3)1048.6 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.37
Crystal size (mm)0.29 × 0.25 × 0.21
Data collection
DiffractometerRigaku SCXmini
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.8, 0.9
No. of measured, independent and
observed [I > 2σ(I)] reflections
10950, 4796, 3490
Rint0.038
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.179, 1.00
No. of reflections4796
No. of parameters285
No. of restraints62
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.70, 0.70

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2C···O1i0.892.322.77 (3)111.1
N2—H2C···O2ii0.892.343.015 (4)132.8
N2—H2C···O1'i0.892.422.96 (3)119.7
N2—H2C···O5'i0.892.462.905 (9)111.5
N2—H2C···O5i0.892.553.036 (9)115.2
N2—H2E···O7iii0.892.433.306 (5)167.0
N2—H2E···O5iii0.892.453.176 (8)139.0
N4—H4C···O1Wiv0.891.962.845 (4)176.5
N4—H4D···O3iv0.892.153.002 (5)159.1
O1W—H1WA···O6v0.820 (2)2.024 (9)2.839 (5)173 (5)
O1W—H1WB···O7ii0.820 (2)2.209 (17)2.991 (4)160 (4)
O1W—H1WB···Cl2ii0.820 (2)2.98 (3)3.593 (3)133 (4)
N2—H2D···O20.892.253.096 (5)157.9
N2—H2D···O30.892.403.154 (5)142.7
N4—H4B···O1W0.892.253.011 (4)143.3
N4—H4B···O1'0.892.503.04 (3)119.3
N4—H4B···O5'0.892.663.225 (8)122.6
N4—H4D···O40.892.633.202 (5)123.1
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y, z; (iii) x+1, y+1, z+1; (iv) x1, y, z; (v) x+1, y, z+1.
 

Acknowledgements

This work was supported by a start-up grant from the Yunnan Radio and TV University.

References

First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationShahwar, D., Tahir, M. N., Ahmad, N., Khan, M. A. & Yasmeen, A. (2009). Acta Cryst. E65, o1312.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds