Download citation
Download citation
link to html
The absolute configuration of the title compound, C25H29NO4S, has been determined unambiguously. The benzoyl group lies in an axial position and the oxazine ring adopts a chair conformation. One of the inter­esting features of this structure is that the carbonyl group is nearly perpendicular to the α-C—O bond.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807056917/pv2042sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807056917/pv2042Isup2.hkl
Contains datablock I

CCDC reference: 672940

Key indicators

  • Single-crystal X-ray study
  • T = 295 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.032
  • wR factor = 0.091
  • Data-to-parameter ratio = 18.6

checkCIF/PLATON results

No syntax errors found



Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 27.48 From the CIF: _reflns_number_total 5215 Count of symmetry unique reflns 2988 Completeness (_total/calc) 174.53% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 2227 Fraction of Friedel pairs measured 0.745 Are heavy atom types Z>Si present yes PLAT791_ALERT_1_G Confirm the Absolute Configuration of C1 = . S PLAT791_ALERT_1_G Confirm the Absolute Configuration of C4 = . S PLAT791_ALERT_1_G Confirm the Absolute Configuration of C6 = . R PLAT791_ALERT_1_G Confirm the Absolute Configuration of C8 = . R
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 0 ALERT level C = Check and explain 5 ALERT level G = General alerts; check 4 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

As part of a project on the diastereoselective reaction employing 2-acyl-1,3-oxazines, we prepared (1R)-(+)-camphor-based 2-benzoyl-1,3-oxazines as a 4.0:1 mixture from the condensation of N-(toluene-4-sulfonyl)amino alcohol and phenylglyoxal. Based on our previous experience, we anticipated that equatorial conformer would be the major product (Ko & Park, 1997). However, 1H-NMR spectrum of the mixture suggested the formation of axial conformer, viz. the title compound as the major product; H4 of the major product resonated at lower field, implying the equatorial position of H4. To confirm the axial nature of the benzoyl group, the crystal structure determination of the title compound was performed.

As shown in Fig. 1, the title compound clearly has the benzoyl group in an axial position. According to a low-temperature study on conformational equilibria of 2-benzoyl-1,3-dithianes (Juaristi et al., 1986), axial conformer is more stable than equatorial one by 4.85 kJ/mol due to the so called anomeric effect. In the present case of 1,3-oxazine ring, the axial conformer seems to be more stable by 3.4 kJ/mol.

In contrast to the boat conformation of the similar N-tosyl-1,3-oxazine ring (Rochon & Breau, 1999), the oxazine ring has a chair conformation with torsion angles: C4—O3—C2—C1 = -59.2 (2)° and C4—N5—C6—C1 = 39.6 (2)°. The environment around atom N5 is pseudopyramidal wherein atom N5 is located 0.281 (1) Å from the plane composed of atoms S22, C4, and C6.

The orientation of carbonyl group relative to three α-groups is quite interesting. Carbonyl group, situated inside the oxazine ring has 92.0 (2)° of dihedral angle [O3—C4—C14—O21], meaning that the carbonyl group is nearly perpendicular to α-C—O bond. The relative orientation of C=O group is important in the context of stereoselection that carbonyl group reveals during nucleophilic additions.

Related literature top

A similar N-tosyl-1,3-oxazine ring derived from pulegone has been reported to possess a boat conformation (Rochon & Breau, 1999).

For related literature, see: Juaristi et al. (1986); Ko & Park (1997).

Experimental top

The title compound was prepared from the reaction of (2-N-tosylamino-7,7-dimethyl-bicyclo[2.2.1]hept-1-yl)-methanol with phenylglyoxal in the presence of catalytic amount of p-toluenesulfonic acid at 355 K in benzene. The crude product (90%) consisting of axial and equatorial isomer in a ratio of 4:1 was recrystallized from ethanol to give colorless crystals of pure axial isomer (60%), mp 454–455 K. [α]D20 -65.1 (c = 0.98, CHCl3). Analysis found: C 68.16, H 6.68, N 3.16, S 6.91%; calculated for C25H29NO4S: C 68.23, H 6.66, N 3.19, S 7.29%.

Refinement top

The H atoms were introduced at calculated positions (tertiary C—H, 0.98 Å; secondary CH2, 0.97 Å; –CH3, 0.96 Å; aromatic C—H, 0.93 Å) and treated as riding. Their displacement parameters were fixed to be equivalent to 1.2Ueq (tertiary C—H, secondary CH2, aromatic C—H) or 1.5Ueq (–CH3) of the parent C atoms. The Flack paratemeter (x=1.00 (6)) for the inverted enantiomeric form indicated that the current absolute structure is correct. The highest residual electron density (0.16 e/Å3) is 0.81 Å from the C23 site. The deepest hole (-0.22 e/Å3) is 0.68 Å from the S22 site.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2005); cell refinement: RAPID-AUTO (Rigaku, 2005); data reduction: RAPID-AUTO (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: locally modified version of ORTEP (Johnson, 1965); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound; displacement ellipsoides are drawn at the 30% probability level and H atoms are omitted for clarity.
(-)-(1S,4S,6R,8R)-[11,11-Dimethyl-5-(4-tolylsulfonyl)-3-oxa-5-azatricyclo[6.2.1.01,6]undec-4-yl](phenyl)methanone top
Crystal data top
C25H29NO4SF(000) = 936
Mr = 439.55Dx = 1.285 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 19715 reflections
a = 6.60966 (14) Åθ = 3.0–27.5°
b = 17.0902 (4) ŵ = 0.17 mm1
c = 20.1206 (5) ÅT = 295 K
V = 2272.83 (9) Å3Block, colourless
Z = 40.48 × 0.29 × 0.27 mm
Data collection top
Rigaku R-axis RAPID
diffractometer
4683 reflections with I > 2σ(I)
ω scansRint = 0.019
Absorption correction: numerical
(NUMABS; Higashi, 2000)
θmax = 27.5°, θmin = 3.1°
Tmin = 0.92, Tmax = 0.95h = 88
22149 measured reflectionsk = 2222
5215 independent reflectionsl = 2626
Refinement top
Refinement on F2 w = 1/[σ2(Fo2) + (0.0528P)2 + 0.1501P]
where P = (Fo2 + 2Fc2)/3
Least-squares matrix: full(Δ/σ)max = 0.001
R[F2 > 2σ(F2)] = 0.032Δρmax = 0.17 e Å3
wR(F2) = 0.091Δρmin = 0.22 e Å3
S = 1.07Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
5215 reflectionsExtinction coefficient: 0.0102 (12)
281 parametersAbsolute structure: Flack (1983), 2231 Friedel pairs
0 restraintsAbsolute structure parameter: 0.02 (5)
H-atom parameters constrained
Crystal data top
C25H29NO4SV = 2272.83 (9) Å3
Mr = 439.55Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.60966 (14) ŵ = 0.17 mm1
b = 17.0902 (4) ÅT = 295 K
c = 20.1206 (5) Å0.48 × 0.29 × 0.27 mm
Data collection top
Rigaku R-axis RAPID
diffractometer
5215 independent reflections
Absorption correction: numerical
(NUMABS; Higashi, 2000)
4683 reflections with I > 2σ(I)
Tmin = 0.92, Tmax = 0.95Rint = 0.019
22149 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.091Δρmax = 0.17 e Å3
S = 1.07Δρmin = 0.22 e Å3
5215 reflectionsAbsolute structure: Flack (1983), 2231 Friedel pairs
281 parametersAbsolute structure parameter: 0.02 (5)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3134 (2)0.13409 (7)0.58801 (7)0.0450 (3)
C20.1345 (3)0.16292 (9)0.54875 (8)0.0560 (4)
H2A0.05180.19620.57680.067*
H2B0.18200.19410.51160.067*
O30.01302 (16)0.09940 (7)0.52405 (5)0.0558 (3)
C40.1182 (2)0.04754 (9)0.48239 (7)0.0504 (3)
H40.02580.00500.47030.061*
N50.29237 (18)0.01282 (7)0.51794 (6)0.0479 (3)
C60.4313 (2)0.06731 (8)0.55322 (7)0.0450 (3)
H60.52700.08980.52130.054*
C70.5506 (2)0.02914 (9)0.61142 (7)0.0527 (3)
H7A0.50030.02300.62100.063*
H7B0.69390.02620.60140.063*
C80.5103 (2)0.08473 (9)0.66919 (7)0.0516 (3)
H80.54570.06340.71290.062*
C90.6132 (3)0.16320 (10)0.65297 (10)0.0651 (4)
H9A0.74990.15520.63670.078*
H9B0.61760.19690.69170.078*
C100.4763 (3)0.19802 (9)0.59837 (9)0.0605 (4)
H10A0.55190.20720.55780.073*
H10B0.41570.24680.61290.073*
C110.2829 (2)0.10415 (9)0.66079 (7)0.0486 (3)
C120.2079 (3)0.16776 (12)0.70935 (9)0.0714 (5)
H12A0.29190.21330.70540.107*
H12B0.21450.14820.75400.107*
H12C0.07060.18130.69880.107*
C130.1443 (3)0.03318 (10)0.66924 (8)0.0582 (4)
H13A0.18690.00780.63970.087*
H13B0.00760.04780.65900.087*
H13C0.15140.01490.71430.087*
C140.1826 (2)0.09002 (9)0.41743 (7)0.0545 (4)
C150.0379 (3)0.09349 (8)0.36117 (7)0.0489 (3)
C160.1601 (3)0.06745 (11)0.36551 (8)0.0592 (4)
H160.20830.04720.40540.071*
C170.2870 (3)0.07141 (13)0.31061 (9)0.0725 (5)
H170.41970.05380.31370.087*
C180.2153 (4)0.10165 (12)0.25144 (9)0.0755 (6)
H180.30030.10420.21470.091*
C190.0204 (4)0.12783 (11)0.24656 (8)0.0701 (5)
H190.02630.14830.20660.084*
C200.1077 (3)0.12409 (9)0.30086 (7)0.0581 (4)
H200.24020.14190.29730.070*
O210.3472 (2)0.12121 (10)0.41429 (7)0.0874 (5)
S220.39491 (7)0.06417 (2)0.482955 (18)0.05435 (11)
C230.3513 (2)0.14272 (8)0.53849 (7)0.0521 (3)
C240.5074 (3)0.19357 (10)0.55215 (8)0.0642 (4)
H240.63580.18450.53490.077*
C250.4719 (3)0.25846 (10)0.59190 (9)0.0695 (5)
H250.57740.29290.60090.083*
C260.2833 (4)0.27289 (9)0.61827 (8)0.0643 (5)
C270.1281 (3)0.22108 (11)0.60438 (9)0.0673 (4)
H270.00010.22990.62210.081*
C280.1608 (3)0.15594 (10)0.56425 (9)0.0627 (4)
H280.05530.12170.55490.075*
C290.2471 (5)0.34462 (12)0.66090 (10)0.0911 (7)
H29A0.32070.38820.64290.137*
H29B0.10530.35660.66140.137*
H29C0.29260.33450.70540.137*
O300.6094 (2)0.05411 (7)0.47826 (6)0.0680 (3)
O310.2807 (2)0.07975 (7)0.42374 (6)0.0760 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0484 (7)0.0391 (6)0.0475 (7)0.0035 (6)0.0016 (6)0.0052 (5)
C20.0596 (8)0.0528 (7)0.0557 (8)0.0078 (7)0.0034 (7)0.0089 (6)
O30.0467 (5)0.0721 (6)0.0486 (5)0.0003 (5)0.0029 (5)0.0074 (5)
C40.0527 (7)0.0590 (8)0.0397 (6)0.0107 (6)0.0062 (6)0.0091 (6)
N50.0543 (6)0.0445 (5)0.0447 (6)0.0056 (5)0.0056 (5)0.0019 (5)
C60.0463 (7)0.0436 (6)0.0452 (7)0.0051 (6)0.0008 (5)0.0026 (6)
C70.0500 (8)0.0510 (7)0.0572 (8)0.0025 (6)0.0089 (6)0.0008 (6)
C80.0512 (7)0.0539 (8)0.0496 (7)0.0037 (7)0.0111 (7)0.0014 (6)
C90.0574 (8)0.0599 (9)0.0780 (11)0.0131 (8)0.0095 (9)0.0080 (8)
C100.0675 (9)0.0446 (7)0.0694 (9)0.0134 (7)0.0001 (8)0.0030 (7)
C110.0512 (8)0.0508 (7)0.0436 (7)0.0032 (6)0.0026 (6)0.0015 (6)
C120.0711 (11)0.0823 (12)0.0608 (10)0.0077 (10)0.0020 (9)0.0163 (9)
C130.0557 (8)0.0673 (9)0.0515 (8)0.0116 (7)0.0019 (7)0.0137 (7)
C140.0589 (8)0.0602 (8)0.0442 (7)0.0082 (7)0.0003 (6)0.0102 (6)
C150.0652 (9)0.0437 (6)0.0379 (6)0.0062 (6)0.0011 (6)0.0023 (5)
C160.0640 (9)0.0671 (9)0.0464 (7)0.0005 (8)0.0025 (7)0.0066 (7)
C170.0685 (11)0.0861 (12)0.0630 (10)0.0053 (10)0.0140 (8)0.0023 (10)
C180.1007 (16)0.0759 (12)0.0500 (9)0.0165 (11)0.0219 (9)0.0017 (8)
C190.1109 (16)0.0602 (9)0.0391 (7)0.0084 (11)0.0009 (8)0.0056 (7)
C200.0801 (11)0.0506 (8)0.0436 (7)0.0040 (8)0.0074 (8)0.0051 (6)
O210.0723 (8)0.1270 (12)0.0628 (7)0.0363 (8)0.0072 (6)0.0344 (8)
S220.0704 (2)0.04833 (17)0.04433 (18)0.00821 (17)0.00749 (17)0.00204 (15)
C230.0670 (9)0.0429 (6)0.0464 (7)0.0056 (6)0.0046 (7)0.0045 (5)
C240.0772 (11)0.0564 (8)0.0590 (9)0.0054 (9)0.0101 (9)0.0068 (7)
C250.0982 (14)0.0540 (8)0.0564 (9)0.0145 (9)0.0005 (10)0.0045 (7)
C260.1053 (14)0.0471 (7)0.0405 (7)0.0112 (9)0.0074 (9)0.0039 (6)
C270.0756 (11)0.0637 (9)0.0627 (10)0.0199 (9)0.0037 (9)0.0042 (8)
C280.0663 (10)0.0546 (8)0.0672 (10)0.0070 (8)0.0019 (8)0.0035 (7)
C290.149 (2)0.0685 (11)0.0560 (10)0.0235 (13)0.0137 (13)0.0144 (9)
O300.0715 (7)0.0602 (6)0.0722 (7)0.0050 (6)0.0271 (6)0.0032 (6)
O310.1147 (11)0.0689 (7)0.0443 (6)0.0149 (7)0.0044 (6)0.0066 (5)
Geometric parameters (Å, º) top
C1—C21.505 (2)C13—H13B0.9600
C1—C101.548 (2)C13—H13C0.9600
C1—C61.549 (2)C14—O211.213 (2)
C1—C111.5641 (19)C14—C151.483 (2)
C2—O31.439 (2)C15—C161.385 (2)
C2—H2A0.9700C15—C201.400 (2)
C2—H2B0.9700C16—C171.389 (2)
O3—C41.4042 (19)C16—H160.9300
C4—N51.4794 (19)C17—C181.381 (3)
C4—C141.5545 (19)C17—H170.9300
C4—H40.9800C18—C191.367 (3)
N5—C61.4882 (17)C18—H180.9300
N5—S221.6389 (13)C19—C201.384 (3)
C6—C71.5549 (19)C19—H190.9300
C6—H60.9800C20—H200.9300
C7—C81.525 (2)S22—O301.4310 (13)
C7—H7A0.9700S22—O311.4352 (13)
C7—H7B0.9700S22—C231.7703 (15)
C8—C91.539 (2)C23—C241.377 (3)
C8—C111.549 (2)C23—C281.380 (2)
C8—H80.9800C24—C251.387 (3)
C9—C101.543 (3)C24—H240.9300
C9—H9A0.9700C25—C261.377 (3)
C9—H9B0.9700C25—H250.9300
C10—H10A0.9700C26—C271.384 (3)
C10—H10B0.9700C26—C291.515 (2)
C11—C131.529 (2)C27—C281.392 (2)
C11—C121.543 (2)C27—H270.9300
C12—H12A0.9600C28—H280.9300
C12—H12B0.9600C29—H29A0.9600
C12—H12C0.9600C29—H29B0.9600
C13—H13A0.9600C29—H29C0.9600
C2—C1—C10112.72 (12)C11—C12—H12C109.5
C2—C1—C6113.53 (12)H12A—C12—H12C109.5
C10—C1—C6103.33 (12)H12B—C12—H12C109.5
C2—C1—C11119.81 (13)C11—C13—H13A109.5
C10—C1—C11101.22 (12)C11—C13—H13B109.5
C6—C1—C11104.29 (11)H13A—C13—H13B109.5
O3—C2—C1111.89 (12)C11—C13—H13C109.5
O3—C2—H2A109.2H13A—C13—H13C109.5
C1—C2—H2A109.2H13B—C13—H13C109.5
O3—C2—H2B109.2O21—C14—C15121.40 (14)
C1—C2—H2B109.2O21—C14—C4119.64 (14)
H2A—C2—H2B107.9C15—C14—C4118.94 (13)
C4—O3—C2113.96 (12)C16—C15—C20119.11 (15)
O3—C4—N5110.48 (11)C16—C15—C14123.25 (13)
O3—C4—C14110.04 (12)C20—C15—C14117.63 (15)
N5—C4—C14112.39 (12)C15—C16—C17120.31 (16)
O3—C4—H4107.9C15—C16—H16119.8
N5—C4—H4107.9C17—C16—H16119.8
C14—C4—H4107.9C18—C17—C16119.8 (2)
C4—N5—C6117.38 (11)C18—C17—H17120.1
C4—N5—S22115.86 (10)C16—C17—H17120.1
C6—N5—S22116.87 (10)C19—C18—C17120.49 (18)
N5—C6—C1111.46 (11)C19—C18—H18119.8
N5—C6—C7114.18 (11)C17—C18—H18119.8
C1—C6—C7102.94 (11)C18—C19—C20120.31 (17)
N5—C6—H6109.3C18—C19—H19119.8
C1—C6—H6109.3C20—C19—H19119.8
C7—C6—H6109.3C19—C20—C15119.99 (18)
C8—C7—C6102.95 (12)C19—C20—H20120.0
C8—C7—H7A111.2C15—C20—H20120.0
C6—C7—H7A111.2O30—S22—O31119.23 (9)
C8—C7—H7B111.2O30—S22—N5109.97 (7)
C6—C7—H7B111.2O31—S22—N5106.74 (8)
H7A—C7—H7B109.1O30—S22—C23107.11 (8)
C7—C8—C9107.70 (14)O31—S22—C23107.31 (7)
C7—C8—C11102.69 (12)N5—S22—C23105.68 (7)
C9—C8—C11102.68 (13)C24—C23—C28120.36 (15)
C7—C8—H8114.2C24—C23—S22118.84 (13)
C9—C8—H8114.2C28—C23—S22120.66 (13)
C11—C8—H8114.2C23—C24—C25119.52 (18)
C8—C9—C10103.16 (13)C23—C24—H24120.2
C8—C9—H9A111.1C25—C24—H24120.2
C10—C9—H9A111.1C26—C25—C24121.23 (18)
C8—C9—H9B111.1C26—C25—H25119.4
C10—C9—H9B111.1C24—C25—H25119.4
H9A—C9—H9B109.1C25—C26—C27118.60 (16)
C9—C10—C1103.40 (12)C25—C26—C29120.4 (2)
C9—C10—H10A111.1C27—C26—C29121.0 (2)
C1—C10—H10A111.1C26—C27—C28120.90 (18)
C9—C10—H10B111.1C26—C27—H27119.6
C1—C10—H10B111.1C28—C27—H27119.6
H10A—C10—H10B109.0C23—C28—C27119.39 (17)
C13—C11—C12107.21 (14)C23—C28—H28120.3
C13—C11—C8113.53 (13)C27—C28—H28120.3
C12—C11—C8113.17 (13)C26—C29—H29A109.5
C13—C11—C1116.15 (12)C26—C29—H29B109.5
C12—C11—C1113.80 (13)H29A—C29—H29B109.5
C8—C11—C192.70 (11)C26—C29—H29C109.5
C11—C12—H12A109.5H29A—C29—H29C109.5
C11—C12—H12B109.5H29B—C29—H29C109.5
H12A—C12—H12B109.5
C4—O3—C2—C159.24 (16)O3—C4—C14—O2192.0 (2)
C4—N5—C6—C139.60 (16)

Experimental details

Crystal data
Chemical formulaC25H29NO4S
Mr439.55
Crystal system, space groupOrthorhombic, P212121
Temperature (K)295
a, b, c (Å)6.60966 (14), 17.0902 (4), 20.1206 (5)
V3)2272.83 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.17
Crystal size (mm)0.48 × 0.29 × 0.27
Data collection
DiffractometerRigaku R-axis RAPID
diffractometer
Absorption correctionNumerical
(NUMABS; Higashi, 2000)
Tmin, Tmax0.92, 0.95
No. of measured, independent and
observed [I > 2σ(I)] reflections
22149, 5215, 4683
Rint0.019
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.091, 1.07
No. of reflections5215
No. of parameters281
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.22
Absolute structureFlack (1983), 2231 Friedel pairs
Absolute structure parameter0.02 (5)

Computer programs: RAPID-AUTO (Rigaku, 2005), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), locally modified version of ORTEP (Johnson, 1965), WinGX (Farrugia, 1999).

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds