Download citation
Download citation
link to html
In order to gain a better understanding of how to improve the quality of small-molecule single-crystal X-ray diffraction data achievable in a finite time, a study was carried out to investigate the effect of varying the multiplicity, acquisition time, detector binning, maximum resolution and completeness. The results suggest that, unless there are strong arguments for a different strategy, a good routine procedure might be to optimize the conditions necessary to get the best data from single scans, and then choose a multiplicity of observations (MoO) to utilize the available time fully. Different strategies may be required if the crystal is highly absorbing, is larger than the incident beam, is enclosed in a capillary tube or is unusual in some other way. The signal-to-noise ratio should be used with care, as collecting data for longer or at higher multiplicity appears to give a systematic underestimate of the intensity uncertainties. Further, the results demonstrate that including poor-quality data in a refinement may degrade the result and, in the general case, the accidental omission of reflections has a very small impact on the refinement as long as they are omitted at random. Systematic omission of reflections needs a convincing procedural justification.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2052520619006681/ps5073sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520619006681/ps5073Isup2.hkl
Contains datablock I

CCDC reference: 1870078

Computing details top

Data collection: SuperNova, (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Rigaku Oxford Diffraction, 2017); data reduction: CrysAlis PRO (Rigaku Oxford Diffraction, 2017); program(s) used to solve structure: Superflip (Palatinus & Chapuis, 2007); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).

(I) top
Crystal data top
C24H16F(000) = 640
Mr = 304.39Dx = 1.216 Mg m3
Monoclinic, P21/nMelting point: not measured K
Hall symbol: -P 2ynCu Kα radiation, λ = 1.54184 Å
a = 9.8367 (5) ÅCell parameters from 1470 reflections
b = 17.1456 (8) Åθ = 5–76°
c = 9.8764 (4) ŵ = 0.52 mm1
β = 93.730 (4)°T = 290 K
V = 1662.19 (13) Å3Lath, clear_pale_colourless
Z = 40.25 × 0.12 × 0.03 mm
Data collection top
Oxford Diffraction SuperNova
diffractometer
2035 reflections with I > 2.0σ(I)
Focussing mirrors monochromatorRint = 0.057
ω scansθmax = 77.0°, θmin = 5.2°
Absorption correction: multi-scan
CrysAlisPro (Rigaku Oxford Diffraction, 2017)
h = 1212
Tmin = 0.88, Tmax = 1.00k = 2121
13736 measured reflectionsl = 127
3489 independent reflections
Refinement top
Refinement on F2Primary atom site location: other
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059H-atom parameters constrained
wR(F2) = 0.173 Method = Modified Sheldrick w = 1/[σ2(F2) + ( 0.06P)2 + 0.29P] ,
where P = (max(Fo2,0) + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.0002
3488 reflectionsΔρmax = 0.30 e Å3
217 parametersΔρmin = 0.33 e Å3
0 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C2410.4227 (3)0.70696 (15)0.4119 (2)0.0531
C2420.3843 (3)0.64034 (14)0.3202 (2)0.0510
C2430.3012 (3)0.58001 (14)0.3598 (2)0.0510
C2440.2516 (3)0.57509 (14)0.4996 (2)0.0521
C2450.1561 (3)0.62754 (15)0.5452 (2)0.0518
C2460.0983 (3)0.69156 (15)0.4567 (2)0.0508
C2470.1781 (3)0.75212 (14)0.4123 (2)0.0501
C2480.3258 (3)0.75993 (14)0.4525 (2)0.0526
C2490.3709 (4)0.82531 (16)0.5274 (3)0.0690
C2500.5083 (4)0.8367 (2)0.5622 (3)0.0869
C2510.6022 (4)0.7840 (2)0.5239 (3)0.0880
C2520.5605 (3)0.7196 (2)0.4485 (3)0.0710
C2530.1153 (3)0.81115 (15)0.3319 (3)0.0623
C2540.0220 (3)0.8102 (2)0.2965 (3)0.0734
C2550.1001 (3)0.7509 (2)0.3410 (3)0.0784
C2560.0413 (3)0.69247 (19)0.4207 (3)0.0662
C2570.1087 (3)0.61708 (18)0.6740 (3)0.0650
C2580.1562 (4)0.55616 (19)0.7567 (3)0.0756
C2590.2512 (4)0.50555 (19)0.7121 (3)0.0786
C2600.2979 (3)0.51439 (17)0.5847 (3)0.0663
C2610.2680 (3)0.51992 (16)0.2681 (3)0.0680
C2620.3163 (4)0.51976 (18)0.1400 (3)0.0775
C2630.4004 (4)0.57836 (18)0.1020 (3)0.0744
C2640.4347 (3)0.63796 (17)0.1910 (3)0.0636
H24910.30480.86100.55660.0830*
H25010.53450.88120.61280.1037*
H25110.69610.79230.54900.1061*
H25210.62580.68360.41890.0854*
H25310.17090.85090.29920.0750*
H25410.06170.85120.24300.0880*
H25510.19450.75000.31790.0942*
H25610.09570.65090.45230.0799*
H25710.04210.65210.70430.0779*
H25810.12330.55020.84390.0907*
H25910.28450.46450.76950.0945*
H26010.36220.47890.55360.0797*
H26110.20900.47940.29560.0817*
H26210.29060.47930.07750.0929*
H26310.43520.57790.01520.0891*
H26410.49380.67930.16770.0761*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C2410.0522 (14)0.0560 (14)0.0515 (13)0.0093 (11)0.0055 (11)0.0089 (11)
C2420.0514 (14)0.0481 (13)0.0540 (13)0.0074 (11)0.0061 (11)0.0044 (10)
C2430.0596 (15)0.0416 (12)0.0524 (13)0.0073 (11)0.0077 (11)0.0003 (10)
C2440.0605 (15)0.0446 (13)0.0516 (13)0.0062 (11)0.0065 (11)0.0018 (10)
C2450.0570 (15)0.0496 (13)0.0489 (12)0.0077 (11)0.0049 (11)0.0007 (10)
C2460.0504 (13)0.0543 (14)0.0481 (12)0.0032 (11)0.0064 (10)0.0045 (11)
C2470.0614 (15)0.0449 (12)0.0442 (11)0.0072 (11)0.0038 (10)0.0062 (9)
C2480.0635 (15)0.0468 (13)0.0472 (12)0.0072 (11)0.0005 (11)0.0033 (10)
C2490.097 (2)0.0529 (15)0.0556 (15)0.0176 (15)0.0026 (15)0.0009 (12)
C2500.113 (3)0.085 (2)0.0604 (17)0.051 (2)0.0080 (18)0.0031 (16)
C2510.076 (2)0.114 (3)0.072 (2)0.045 (2)0.0051 (17)0.013 (2)
C2520.0549 (16)0.088 (2)0.0699 (17)0.0148 (15)0.0035 (13)0.0138 (16)
C2530.085 (2)0.0467 (13)0.0546 (14)0.0124 (13)0.0030 (13)0.0010 (11)
C2540.080 (2)0.082 (2)0.0569 (16)0.0349 (18)0.0017 (15)0.0043 (14)
C2550.0590 (18)0.114 (3)0.0624 (16)0.0226 (18)0.0045 (14)0.0009 (17)
C2560.0521 (15)0.089 (2)0.0585 (15)0.0030 (14)0.0104 (12)0.0024 (14)
C2570.0715 (19)0.0691 (18)0.0557 (15)0.0070 (14)0.0144 (13)0.0021 (13)
C2580.096 (2)0.077 (2)0.0555 (16)0.0119 (18)0.0155 (16)0.0117 (14)
C2590.103 (3)0.0665 (19)0.0667 (18)0.0044 (18)0.0075 (17)0.0199 (15)
C2600.081 (2)0.0516 (15)0.0671 (16)0.0031 (14)0.0084 (14)0.0106 (13)
C2610.096 (2)0.0431 (14)0.0659 (17)0.0008 (14)0.0093 (15)0.0037 (12)
C2620.122 (3)0.0512 (16)0.0594 (16)0.0177 (17)0.0078 (17)0.0068 (13)
C2630.105 (3)0.0636 (18)0.0567 (15)0.0267 (18)0.0220 (16)0.0026 (13)
C2640.0706 (18)0.0617 (17)0.0602 (15)0.0122 (14)0.0171 (13)0.0094 (13)
Geometric parameters (Å, º) top
C241—C2421.491 (3)C252—H25210.951
C241—C2481.395 (4)C253—C2541.373 (4)
C241—C2521.397 (4)C253—H25310.945
C242—C2431.391 (3)C254—C2551.365 (5)
C242—C2641.399 (3)C254—H25410.948
C243—C2441.497 (3)C255—C2561.377 (4)
C243—C2611.396 (3)C255—H25510.942
C244—C2451.396 (3)C256—H25610.955
C244—C2601.395 (3)C257—C2581.388 (4)
C245—C2461.492 (3)C257—H25710.951
C245—C2571.395 (3)C258—C2591.369 (4)
C246—C2471.390 (3)C258—H25810.946
C246—C2561.396 (3)C259—C2601.376 (4)
C247—C2481.488 (4)C259—H25910.949
C247—C2531.405 (3)C260—H26010.943
C248—C2491.399 (3)C261—C2621.380 (4)
C249—C2501.387 (4)C261—H26110.956
C249—H24910.952C262—C2631.369 (5)
C250—C2511.363 (5)C262—H26210.952
C250—H25010.939C263—C2641.376 (4)
C251—C2521.380 (5)C263—H26310.944
C251—H25110.951C264—H26410.954
C242—C241—C248121.5 (2)C247—C253—C254121.6 (3)
C242—C241—C252118.6 (3)C247—C253—H2531118.1
C248—C241—C252119.6 (3)C254—C253—H2531120.3
C241—C242—C243121.9 (2)C253—C254—C255119.4 (3)
C241—C242—C264119.0 (2)C253—C254—H2541119.7
C243—C242—C264119.0 (2)C255—C254—H2541120.8
C242—C243—C244122.3 (2)C254—C255—C256120.1 (3)
C242—C243—C261118.9 (2)C254—C255—H2551120.0
C244—C243—C261118.7 (2)C256—C255—H2551119.9
C243—C244—C245121.9 (2)C246—C256—C255121.5 (3)
C243—C244—C260119.0 (2)C246—C256—H2561118.1
C245—C244—C260119.1 (2)C255—C256—H2561120.3
C244—C245—C246121.6 (2)C245—C257—C258120.9 (3)
C244—C245—C257118.9 (2)C245—C257—H2571119.0
C246—C245—C257119.4 (2)C258—C257—H2571120.1
C245—C246—C247122.2 (2)C257—C258—C259119.9 (3)
C245—C246—C256119.2 (2)C257—C258—H2581119.7
C247—C246—C256118.5 (3)C259—C258—H2581120.4
C246—C247—C248123.0 (2)C258—C259—C260120.0 (3)
C246—C247—C253118.7 (3)C258—C259—H2591119.6
C248—C247—C253118.2 (2)C260—C259—H2591120.4
C247—C248—C241122.6 (2)C244—C260—C259121.2 (3)
C247—C248—C249118.9 (3)C244—C260—H2601119.0
C241—C248—C249118.4 (3)C259—C260—H2601119.8
C248—C249—C250120.9 (3)C243—C261—C262121.1 (3)
C248—C249—H2491118.5C243—C261—H2611118.2
C250—C249—H2491120.6C262—C261—H2611120.7
C249—C250—C251120.4 (3)C261—C262—C263120.0 (3)
C249—C250—H2501118.4C261—C262—H2621120.3
C251—C250—H2501121.2C263—C262—H2621119.7
C250—C251—C252119.8 (3)C262—C263—C264119.8 (3)
C250—C251—H2511119.5C262—C263—H2631120.2
C252—C251—H2511120.7C264—C263—H2631119.9
C241—C252—C251120.9 (3)C242—C264—C263121.2 (3)
C241—C252—H2521118.9C242—C264—H2641117.2
C251—C252—H2521120.2C263—C264—H2641121.7
 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds