metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Hexa­aqua­zinc(II) bis­­[4-(2-hy­droxy­benzyl­­idene­amino)benzene­sulfonate]

aDepartment of Chemistry and Chemical Engineering, Weifang University, Weifang 261061, People's Republic of China, bDepartment of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, People's Republic of China, and cClinical College of Weifang Medical University, Weifang 261042, People's Republic of China
*Correspondence e-mail: taixishi@lzu.edu.cn

(Received 7 May 2007; accepted 21 November 2007; online 4 January 2008)

In the title compound, [Zn(H2O)6](C13H10NO4S)2, a distorted ZnO6 octa­hedron results from the coordination by the six water mol­ecules. Only three of the water molecules are crystallographically unique, as the Zn atom lies on an inversion center. The Zn—O bond lengths are in the range 2.054 (4)–2.073 (4) Å. A network of hydrogen bonds helps to establish the crystal packing.

Related literature

For related literature, see: Tai et al. (2005[Tai, X. S., Liu, W. Y., Liu, Y. Z. & Li, Y. Z. (2005). Acta Cryst. E61, o389-o390.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(H2O)6](C13H10NO4S)2

  • Mr = 726.03

  • Monoclinic, P 21 /n

  • a = 6.3255 (10) Å

  • b = 35.312 (3) Å

  • c = 6.9832 (10) Å

  • β = 90.391 (2)°

  • V = 1559.8 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.99 mm−1

  • T = 298 (2) K

  • 0.35 × 0.33 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SMART (Version 5.044), SAINT (Version 5.01), SADABS (Version 2.0) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.723, Tmax = 0.826

  • 6994 measured reflections

  • 2708 independent reflections

  • 2170 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.069

  • wR(F2) = 0.168

  • S = 1.08

  • 2708 reflections

  • 205 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.79 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7B⋯O3i 0.85 1.93 2.760 (6) 166
O7—H7A⋯O1 0.85 1.93 2.779 (5) 177
O6—H6B⋯O1ii 0.85 1.92 2.773 (6) 176
O6—H6A⋯O2iii 0.85 1.92 2.770 (6) 175
O5—H5B⋯O3 0.85 1.90 2.745 (6) 171
O5—H5A⋯O2ii 0.85 1.91 2.742 (6) 167
O4—H4⋯N1 0.82 1.93 2.602 (7) 139
Symmetry codes: (i) x+1, y, z; (ii) x, y, z-1; (iii) x+1, y, z-1.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART (Version 5.044), SAINT (Version 5.01), SADABS (Version 2.0) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART (Version 5.044), SAINT (Version 5.01), SADABS (Version 2.0) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: SHELXTL (Bruker, 1997[Bruker (1997). SMART (Version 5.044), SAINT (Version 5.01), SADABS (Version 2.0) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As part of our onging studies of metal coordination complexes with Shiff base ligands (Tai et al., 2005), the synthesis and structure of the title compound, (I), is reported. Six water molecules are attached to the zinc atom, resulting in a distorted ZnO6 octahedron (Fig. 1). The C7=N1 bond length [1.280 (9) Å] implies double bond character, while C4—O9 [1.332 (9) Å] is well regarded as a single bond. The dihedral angle between the two benzene ring mean planes (C1—C6 and C8—C13) is 32.2 (3)°. A network of hydrogen bonds helps to establish the crystal packing.

Related literature top

For related literature, see: Tai et al. (2005).

Experimental top

One mmol of zinc acetate was added to a solution of salicylaldehyde-4-aminobenzene sulfonic acid (1 mmol) in 20 ml of 95% CH3CH2OH. The mixture was continuously stirred for 2 h at refluxing temperature, evaporating some methanol, then, upon cooling, the solid product was collected by filtration and dried in vacuo (yield 76%). Clear blocks of (I) were obtained by evaporation from a methanol solution after a week.

Refinement top

The water H atoms were located in a difference map and refined as riding in their as-found relative positions with Uiso(H) = 1.2Ueq(O)". Other H atoms were placed geometrically (C—H = 0.93–0.97 Å, O—H = 0.82 Å, N—H = 0.86 Å) and refined as riding with Uiso(H) = 1.2Ueq(C,N) or 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SMART (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL (Bruker, 1997).

Figures top
[Figure 1] Fig. 1. The complex molecule in (I) with 50% probabiility ellipsoids (arbitrary spheres for the H atoms).
Hexaaquazinc(II) bis[4-(2-hydroxybenzylideneamino)benzenesulfonate] top
Crystal data top
[Zn(H2O)6](C13H10NO4S)2F(000) = 752
Mr = 726.03Dx = 1.546 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 6.3255 (10) ÅCell parameters from 2287 reflections
b = 35.312 (3) Åθ = 2.3–23.1°
c = 6.9832 (10) ŵ = 0.99 mm1
β = 90.391 (2)°T = 298 K
V = 1559.8 (4) Å3Block, colourless
Z = 20.35 × 0.33 × 0.20 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
2708 independent reflections
Radiation source: fine-focus sealed tube2170 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
phi and ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 75
Tmin = 0.723, Tmax = 0.826k = 4232
6994 measured reflectionsl = 88
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.168H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.063P)2 + 5.0428P]
where P = (Fo2 + 2Fc2)/3
2708 reflections(Δ/σ)max < 0.001
205 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.79 e Å3
Crystal data top
[Zn(H2O)6](C13H10NO4S)2V = 1559.8 (4) Å3
Mr = 726.03Z = 2
Monoclinic, P21/nMo Kα radiation
a = 6.3255 (10) ŵ = 0.99 mm1
b = 35.312 (3) ÅT = 298 K
c = 6.9832 (10) Å0.35 × 0.33 × 0.20 mm
β = 90.391 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2708 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
2170 reflections with I > 2σ(I)
Tmin = 0.723, Tmax = 0.826Rint = 0.034
6994 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0690 restraints
wR(F2) = 0.168H-atom parameters constrained
S = 1.08Δρmax = 0.37 e Å3
2708 reflectionsΔρmin = 0.79 e Å3
205 parameters
Special details top

Experimental. 'SADABS v2.0 (Bruker, 1997)'

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn11.00000.00000.00000.0366 (3)
N10.4209 (9)0.23101 (16)0.5074 (8)0.0590 (15)
O10.8397 (6)0.06182 (11)0.5063 (6)0.0432 (10)
O20.5147 (6)0.05114 (12)0.6744 (6)0.0517 (11)
O30.5147 (6)0.05133 (12)0.3282 (6)0.0508 (11)
O40.1459 (9)0.28426 (15)0.5713 (9)0.0841 (17)
H40.17650.26350.52710.126*
O50.7091 (6)0.02586 (12)0.0024 (6)0.0508 (11)
H5A0.66330.03650.09890.061*
H5B0.64030.03520.09530.061*
O61.1063 (6)0.03918 (14)0.1984 (7)0.0634 (13)
H6A1.23250.04380.23210.076*
H6B1.02730.04520.29260.076*
O71.1046 (6)0.03394 (15)0.2234 (6)0.0659 (14)
H7A1.02050.04280.30670.079*
H7B1.22850.03640.26960.079*
S10.6114 (2)0.06635 (4)0.5026 (2)0.0358 (4)
C10.5612 (8)0.11535 (16)0.4999 (7)0.0352 (12)
C20.7196 (10)0.14097 (18)0.5569 (9)0.0504 (16)
H20.85290.13230.59320.060*
C30.6734 (12)0.17949 (19)0.5582 (10)0.0616 (19)
H30.77700.19680.59460.074*
C40.4756 (11)0.19220 (18)0.5058 (10)0.0534 (16)
C50.3215 (11)0.16672 (18)0.4537 (10)0.0577 (18)
H50.18710.17550.42170.069*
C60.3630 (9)0.12829 (17)0.4482 (9)0.0486 (15)
H60.25840.11130.41000.058*
C70.5591 (11)0.25692 (19)0.4805 (9)0.0551 (17)
H70.69770.25000.45400.066*
C80.5058 (12)0.29691 (18)0.4902 (10)0.0567 (17)
C90.3022 (13)0.3086 (2)0.5377 (11)0.067 (2)
C100.2618 (15)0.3473 (2)0.5562 (11)0.072 (2)
H100.12810.35540.59260.086*
C110.4158 (15)0.3734 (2)0.5214 (11)0.073 (2)
H110.38490.39910.53110.087*
C120.6194 (16)0.3620 (2)0.4714 (12)0.082 (2)
H120.72430.37980.44770.098*
C130.6621 (13)0.3239 (2)0.4578 (11)0.067 (2)
H130.79780.31600.42640.081*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0234 (4)0.0495 (6)0.0370 (5)0.0006 (4)0.0002 (3)0.0018 (4)
N10.064 (4)0.047 (3)0.066 (4)0.013 (3)0.002 (3)0.007 (3)
O10.0223 (18)0.062 (3)0.046 (2)0.0040 (17)0.0003 (16)0.003 (2)
O20.037 (2)0.066 (3)0.052 (3)0.003 (2)0.0060 (19)0.018 (2)
O30.032 (2)0.064 (3)0.057 (3)0.0026 (19)0.0060 (19)0.011 (2)
O40.085 (4)0.068 (3)0.100 (5)0.013 (3)0.027 (3)0.005 (3)
O50.035 (2)0.079 (3)0.038 (2)0.016 (2)0.0023 (18)0.002 (2)
O60.031 (2)0.099 (4)0.060 (3)0.005 (2)0.003 (2)0.030 (3)
O70.029 (2)0.109 (4)0.060 (3)0.002 (2)0.004 (2)0.038 (3)
S10.0239 (7)0.0472 (8)0.0362 (7)0.0032 (6)0.0008 (5)0.0001 (6)
C10.028 (3)0.047 (3)0.031 (3)0.005 (2)0.001 (2)0.005 (2)
C20.039 (3)0.060 (4)0.053 (4)0.005 (3)0.010 (3)0.000 (3)
C30.066 (5)0.049 (4)0.069 (5)0.007 (3)0.007 (4)0.012 (3)
C40.053 (4)0.051 (4)0.056 (4)0.012 (3)0.010 (3)0.002 (3)
C50.046 (4)0.048 (4)0.079 (5)0.007 (3)0.007 (3)0.000 (3)
C60.037 (3)0.047 (4)0.062 (4)0.005 (3)0.014 (3)0.001 (3)
C70.058 (4)0.055 (4)0.053 (4)0.008 (3)0.001 (3)0.005 (3)
C80.068 (4)0.048 (4)0.053 (4)0.003 (4)0.002 (3)0.014 (3)
C90.081 (6)0.061 (5)0.058 (5)0.006 (4)0.006 (4)0.001 (4)
C100.104 (7)0.052 (4)0.059 (5)0.019 (4)0.005 (4)0.003 (3)
C110.108 (7)0.047 (4)0.062 (5)0.019 (4)0.006 (4)0.002 (4)
C120.109 (8)0.052 (5)0.084 (6)0.002 (5)0.007 (5)0.003 (4)
C130.073 (5)0.059 (5)0.071 (5)0.002 (4)0.008 (4)0.007 (4)
Geometric parameters (Å, º) top
Zn1—O5i2.054 (4)C1—C21.406 (8)
Zn1—O52.054 (4)C2—C31.391 (9)
Zn1—O7i2.072 (4)C2—H20.9300
Zn1—O72.072 (4)C3—C41.376 (9)
Zn1—O62.073 (4)C3—H30.9300
Zn1—O6i2.073 (4)C4—C51.374 (9)
N1—C71.280 (9)C5—C61.383 (9)
N1—C41.413 (8)C5—H50.9300
O1—S11.453 (4)C6—H60.9300
O2—S11.453 (4)C7—C81.454 (9)
O3—S11.459 (4)C7—H70.9300
O4—C91.332 (9)C8—C131.394 (10)
O4—H40.8200C8—C91.394 (10)
O5—H5A0.8500C9—C101.397 (10)
O5—H5B0.8499C10—C111.365 (11)
O6—H6A0.8500C10—H100.9300
O6—H6B0.8500C11—C121.396 (12)
O7—H7A0.8500C11—H110.9300
O7—H7B0.8500C12—C131.375 (10)
S1—C11.759 (6)C12—H120.9300
C1—C61.380 (8)C13—H130.9300
O5i—Zn1—O5180.0 (2)C3—C2—H2120.6
O5i—Zn1—O7i91.04 (17)C1—C2—H2120.6
O5—Zn1—O7i88.96 (17)C4—C3—C2120.5 (6)
O5i—Zn1—O788.96 (17)C4—C3—H3119.7
O5—Zn1—O791.04 (17)C2—C3—H3119.7
O7i—Zn1—O7180.0 (3)C5—C4—C3119.9 (6)
O5i—Zn1—O689.80 (17)C5—C4—N1117.6 (6)
O5—Zn1—O690.20 (17)C3—C4—N1122.4 (6)
O7i—Zn1—O689.2 (2)C4—C5—C6121.0 (6)
O7—Zn1—O690.8 (2)C4—C5—H5119.5
O5i—Zn1—O6i90.20 (17)C6—C5—H5119.5
O5—Zn1—O6i89.80 (17)C1—C6—C5119.4 (6)
O7i—Zn1—O6i90.8 (2)C1—C6—H6120.3
O7—Zn1—O6i89.2 (2)C5—C6—H6120.3
O6—Zn1—O6i180.0 (3)N1—C7—C8121.9 (7)
C7—N1—C4121.6 (6)N1—C7—H7119.1
C9—O4—H4109.5C8—C7—H7119.1
Zn1—O5—H5A119.3C13—C8—C9119.6 (7)
Zn1—O5—H5B129.9C13—C8—C7119.5 (7)
H5A—O5—H5B106.9C9—C8—C7120.9 (7)
Zn1—O6—H6A128.5O4—C9—C8122.6 (7)
Zn1—O6—H6B119.5O4—C9—C10118.6 (8)
H6A—O6—H6B106.6C8—C9—C10118.8 (8)
Zn1—O7—H7A122.0C11—C10—C9120.9 (8)
Zn1—O7—H7B129.4C11—C10—H10119.5
H7A—O7—H7B106.4C9—C10—H10119.5
O1—S1—O2111.6 (2)C10—C11—C12120.6 (7)
O1—S1—O3112.7 (2)C10—C11—H11119.7
O2—S1—O3112.2 (3)C12—C11—H11119.7
O1—S1—C1106.7 (2)C13—C12—C11118.8 (8)
O2—S1—C1107.2 (3)C13—C12—H12120.6
O3—S1—C1105.9 (2)C11—C12—H12120.6
C6—C1—C2120.4 (5)C12—C13—C8121.2 (8)
C6—C1—S1119.5 (4)C12—C13—H13119.4
C2—C1—S1120.1 (4)C8—C13—H13119.4
C3—C2—C1118.8 (6)
O1—S1—C1—C6163.8 (5)S1—C1—C6—C5177.4 (5)
O2—S1—C1—C676.5 (5)C4—C5—C6—C11.4 (10)
O3—S1—C1—C643.5 (5)C4—N1—C7—C8177.3 (6)
O1—S1—C1—C218.6 (5)N1—C7—C8—C13179.4 (7)
O2—S1—C1—C2101.1 (5)N1—C7—C8—C92.8 (11)
O3—S1—C1—C2138.9 (5)C13—C8—C9—O4179.7 (7)
C6—C1—C2—C30.7 (9)C7—C8—C9—O41.9 (11)
S1—C1—C2—C3178.3 (5)C13—C8—C9—C101.5 (11)
C1—C2—C3—C40.5 (10)C7—C8—C9—C10176.3 (7)
C2—C3—C4—C50.7 (11)O4—C9—C10—C11179.3 (7)
C2—C3—C4—N1179.1 (6)C8—C9—C10—C112.5 (12)
C7—N1—C4—C5152.7 (7)C9—C10—C11—C121.7 (12)
C7—N1—C4—C328.8 (10)C10—C11—C12—C130.0 (12)
C3—C4—C5—C61.7 (11)C11—C12—C13—C80.9 (12)
N1—C4—C5—C6179.8 (6)C9—C8—C13—C120.1 (11)
C2—C1—C6—C50.2 (9)C7—C8—C13—C12178.0 (7)
Symmetry code: (i) x+2, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7B···O3ii0.851.932.760 (6)166
O7—H7A···O10.851.932.779 (5)177
O6—H6B···O1iii0.851.922.773 (6)176
O6—H6A···O2iv0.851.922.770 (6)175
O5—H5B···O30.851.902.745 (6)171
O5—H5A···O2iii0.851.912.742 (6)167
O4—H4···N10.821.932.602 (7)139
Symmetry codes: (ii) x+1, y, z; (iii) x, y, z1; (iv) x+1, y, z1.

Experimental details

Crystal data
Chemical formula[Zn(H2O)6](C13H10NO4S)2
Mr726.03
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)6.3255 (10), 35.312 (3), 6.9832 (10)
β (°) 90.391 (2)
V3)1559.8 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.99
Crystal size (mm)0.35 × 0.33 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.723, 0.826
No. of measured, independent and
observed [I > 2σ(I)] reflections
6994, 2708, 2170
Rint0.034
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.168, 1.08
No. of reflections2708
No. of parameters205
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.79

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7B···O3i0.851.932.760 (6)166.3
O7—H7A···O10.851.932.779 (5)177.0
O6—H6B···O1ii0.851.922.773 (6)175.6
O6—H6A···O2iii0.851.922.770 (6)175.2
O5—H5B···O30.851.902.745 (6)171.0
O5—H5A···O2ii0.851.912.742 (6)167.0
O4—H4···N10.821.932.602 (7)138.6
Symmetry codes: (i) x+1, y, z; (ii) x, y, z1; (iii) x+1, y, z1.
 

Acknowledgements

The authors thank the National Natural Science Foundation of China (20671073), NingXia Natural Gas Transferring Key Laboratory (2004007), the Science and Technology Foundation of Weifang and Weifang University for research grants.

References

First citationBruker (1997). SMART (Version 5.044), SAINT (Version 5.01), SADABS (Version 2.0) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationTai, X. S., Liu, W. Y., Liu, Y. Z. & Li, Y. Z. (2005). Acta Cryst. E61, o389–o390.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds